A Unified Version of Weighted Weak-Type Inequalities for the One-Sided Hardy–Littlewood Maximal Function in Orlicz Classes
Abstract
:1. Introduction
- (1)
- The weak-type inequality:
- (2)
- The extra-weak-type inequality:
2. Preliminaries
- (i)
- φ is a quasi-convex function on ;
- (ii)
- the inequality
- (iii)
- is quasi-increasing, i.e., there is a constant such that
3. Main Result and Its Proof
- (i)
- there exists a constant such that
- (ii)
- there exists a constant such that
- (iii)
- there exist constants and such that
- (i)
- there exists a constant such that
- (ii)
- there exists a constant such that
- (iii)
- there exist constants and such that
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fabes, E.; Kenig, C.; Serapioni, R. The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differ. Equ. 1982, 7, 77–116. [Google Scholar] [CrossRef]
- Kenig, C. Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems; American Mathematical Society: Providence, RI, USA, 1994. [Google Scholar]
- Cabral, A.; Martín–Reyes, F.J. Sharp bound for the ergodic maximal operator associated to Cesàro bounded operators. J. Math. Anal. Appl. 2018, 462, 648–664. [Google Scholar] [CrossRef]
- Gillespie, T.A.; Torrea, J.L. Weighted ergodic theory and dimension free estimates. Q. J. Math. 2003, 54, 257–280. [Google Scholar] [CrossRef]
- Martín-Reyes, F.J.; De la Torre, A. The dominated ergodic estimate for mean bounded, invertible, positive operators. Proc. Amer. Math. Soc. 1988, 104, 69–75. [Google Scholar] [CrossRef]
- Martin-Reyes, F.J.; Ortega, P.; de Torre, A.L. Weights for One–Sided Operators. In Recent Developments in Real and Harmonic Analysis: In Honor of Carlos Segovia; Birkh User: Boston, MA, USA, 2010; pp. 97–132. [Google Scholar]
- Coifman, R.; Fefferman, C. Weighted norm inequalities for maximal functions and singular integrals. Stud. Math. 1974, 51, 241–250. [Google Scholar] [CrossRef]
- Riveros, M.S.; De la Torre, A. Norm inequalities relating one–sided singular integrals and the one-sided maximal function. J. Austr. Math. Soc. 2000, 69, 403–414. [Google Scholar] [CrossRef]
- Lorente, M.; Martell, J.M.; Pérez, C.; Riveros, M.S. Generalized Hörmander conditions and weighted endpoint estimates. Stud. Math. 2009, 195, 157–192. [Google Scholar] [CrossRef]
- Forzani, L.; Martín-Reyes, F.; Ombrosi, S. Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function. Trans. Amer. Math. Soc. 2011, 363, 1699–1719. [Google Scholar] [CrossRef]
- Lai, Q. A note on the weighted norm inequality for the one-sided maximal operator. Proc. Amer. Math. Soc. 1996, 124, 527–537. [Google Scholar]
- Lorente, M.; Martín-Reyes, F.J. The one-sided dyadic Hardy–Littlewood maximal operator. Proc. R. Soc. Edinb. Sec. A Math. 2014, 144, 991–1006. [Google Scholar] [CrossRef]
- Martín-Reyes, F.J. New proofs of weighted inequalities for the one–sided Hardy-Littlewood maximal functions. Proc. Amer. Math. Soc. 1993, 117, 691–698. [Google Scholar] [CrossRef]
- Martín–Reyes, F.J.; Alberto, D. Sharp weighted bounds for one–sided maximal operators. Coll. Math. 2015, 66, 161–174. [Google Scholar] [CrossRef]
- Salvador, P.O.; Torreblanca, C.R. Weighted inequalities for the one–sided geometric maximal operators. Math. Nach. 2011, 284, 1515–1522. [Google Scholar] [CrossRef]
- Ombrosi, S. Weak weighted inequalities for a dyadic one-sided maximal function in ℝn. Proc. Amer. Math. Soc. 2005, 133, 1769–1775. [Google Scholar] [CrossRef]
- Sawyer, E. Weighted inequalities for the one–sided Hardy–Littlewood maximal functions. Trans. Amer. Math. Soc. 1986, 297, 53–61. [Google Scholar] [CrossRef]
- Martín-Reyes, F.J.; Ortega Salvador, P.; De la Torre, A. Weighted inequalities for the one–sided maximal functions. Trans. Amer. Math. Soc. 1990, 3, 517–534. [Google Scholar] [CrossRef]
- Martín-Reyes, F.J.; De la Torre, A. Some weighted inequalities for general one-sided maximal operators. Stud. Math. 1997, 122, 1–14. [Google Scholar]
- Ortega Salvador, P.; Pick, L. Two-weight weak and extra-weak type inequalities for the one-sided maximal operator. Proc. R. Soc. Edinbur. Sec. A Math. 1993, 123, 1109–1118. [Google Scholar] [CrossRef]
- Ghosh, A.; Mohanty, P. Weighted inequalities for higher dimensional one-sided Hardy–Littlewood maximal function in Orlicz spaces. Expo. Math. 2022, 40, 23–44. [Google Scholar] [CrossRef]
- Gogatishvili, A. Weighted inequalities for one-sided maximal function in Orlicz classes. In Function Spaces, Differential Operators and Nonlinear Analysis: Proceedings of the Conference Held in Paseky na Jizerou, Czech Republic, 3–9 September 1995; Mathematical Institute, Czech Academy of Sciences, and Prometheus Publishing House: Praha, Czech Republic, 1996. [Google Scholar]
- Kokilashvili, V.; Krbec, M. Weighted Inequalities in Lorentz and Orlicz Spaces; World Scientific Publishing: Singapore, 1991. [Google Scholar]
- Lai, Q. Two–weight mixed Φ–inequalities for the one-sided maximal function. Stud. Math. 1995, 115, 1–22. [Google Scholar] [CrossRef]
- Zhang, E.X.; Ren, Y.B. A unified version of weighted weak type inequalities for one-sided maximal function on ℝ2. Bull. Mala. Math. Sci. Soc. 2023, 46, 122. [Google Scholar] [CrossRef]
- Ortega Salvador, P. Weighted inequalities for one-sided maximal functions in Orlicz spaces. Stud. Math. 1998, 131, 101–114. [Google Scholar] [CrossRef]
- Wang, J.; Ren, Y.B.; Zhang, E.X. A weighted weak type inequality for the one–sided maximal operator. Ukr. Math. J. 2023, 75, 712–720. [Google Scholar] [CrossRef]
- Gogatishvili, A.; Kokilashvili, V. Criteria of weighted inequalities in Orlicz classes for maximal functions defined on homogeneous type spaces. Georgian Math. J. 1994, 1, 641–673. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, E. A Unified Version of Weighted Weak-Type Inequalities for the One-Sided Hardy–Littlewood Maximal Function in Orlicz Classes. Mathematics 2024, 12, 2814. https://doi.org/10.3390/math12182814
Zhang E. A Unified Version of Weighted Weak-Type Inequalities for the One-Sided Hardy–Littlewood Maximal Function in Orlicz Classes. Mathematics. 2024; 12(18):2814. https://doi.org/10.3390/math12182814
Chicago/Turabian StyleZhang, Erxin. 2024. "A Unified Version of Weighted Weak-Type Inequalities for the One-Sided Hardy–Littlewood Maximal Function in Orlicz Classes" Mathematics 12, no. 18: 2814. https://doi.org/10.3390/math12182814
APA StyleZhang, E. (2024). A Unified Version of Weighted Weak-Type Inequalities for the One-Sided Hardy–Littlewood Maximal Function in Orlicz Classes. Mathematics, 12(18), 2814. https://doi.org/10.3390/math12182814