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Abstract: Let M+
g f be the one-sided Hardy–Littlewood maximal function, φ1 be a nonnegative

and nondecreasing function on [0, ∞), γ be a positive and nondecreasing function defined on
[0, ∞); let φ2 be a quasi-convex function and u, v, w be three weight functions. In this paper, we
present necessary and sufficient conditions on weight functions (u, v, w) such that the inequality
φ1(λ)

∫
{M+

g f>λ} u(x)g(x)dx ≤ C
∫ +∞
−∞ φ2(C

| f (x)|v(x)
γ(λ)

)w(x)g(x)dx holds. Then, we unify the weak
and extra-weak-type one-sided Hardy–Littlewood maximal inequalities in the above inequality.

Keywords: weight; weak-type inequality; one-sided maximal function; Orlicz classes

MSC: 42B25; 26D15

1. Introduction

As is well known, the theory of weight for one-sided maximal functions is an important
part of harmonic analysis and is widely applied in PDEs, integral transforms, singular
integrals and ergodic theory. Specifically, the research on weighted inequalities for one-
sided maximal functions can help establish regularity results and maximum principles for
solutions in the theory of PDEs, see [1,2], and can be employed to analyze the long-term
average behavior of dynamical systems in ergodic theory, see [3–6], and study singular
integrals associated to Calderón–Zygmund kernels, see [7–9]. Since weight theory for
one-sided maximal functions has such a wide range of applications, it has attracted a lot
of scholars’ attention [10–16]. For instance, E. Sawyer [17] began to study the one-sided
Hardy–Littlewood maximal function M+ and proved that M+ was bounded on Lp(w) iff
w satisfied the one-sided Ap condition. F. J. Martín–Reyes et al. [18] characterized pairs
of weight functions (u, v) such that M+

g maps Lp(v) to Lp(u) or to weak-Lp(u). Then,
F. J. Martín-Reyes and A. de la Torre [19] presented some weighted inequalities for general
one-sided maximal operators. In particular, if φ is a convex nondecreasing function on
(0, ∞), P. Ortega Salvador and L. Pick [20] considered a couple of weight functions (σ, ϱ)
and gave the following weak and extra-weak-type inequalities:

(1) The weak-type inequality:

φ(λ)ϱ({x : M+
g f > λ}) ≤ C

∫ +∞

−∞
φ(C| f (x)|)σ(x)dx, (1)

where the constant C is independent of f and λ > 0.
(2) The extra-weak-type inequality:

ϱ({x : M+
g f > λ}) ≤ C

∫ +∞

−∞
φ(

C| f (x)|
λ

)σ(x)dx, (2)

where the constant C is independent of f and λ > 0.
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Subsequently, some scholars extended the study of one-sided maximal functions to
Orlicz spaces (see [21–25]). For example, in 1998, P. Ortega Salvador [26] studied the
two-weight weak-type inequality for the one-sided maximal function in Orlicz spaces.
Recently, Wang et al. [27] characterized four-weight weak-type inequalities for the one-
sided maximal operator in Orlicz classes. In this paper, we continue to explore one-sided
maximal functions in Orlicz classes and obtain an equivalent condition for a three-weight
(u, v, w) weak-type one-sided Hardy–Littlewood maximal inequality of the form

φ1(λ)
∫
{M+

g f>λ}
u(x)g(x)dx ≤ C

∫ +∞

−∞
φ2(C

| f (x)|v(x)
γ(λ)

)w(x)g(x)dx.

We find that the forms of inequalities (1) and (2) can be unified in the inequality (11)
(see Corollary 1 and Remark 1).

The remainder of this paper is organized as follows: In Section 2, we briefly recall
some basic notions and lemmas. Section 3 is devoted to the proof of the main result and
ends with an important remark. Section 4 presents the conclusion of this paper.

2. Preliminaries

In order to enable readers to clearly understand the proof of Theorem 1, let us first
recall some known terminology and lemmas.

Definition 1 ([23]). Let φ : R → R be nonnegative, even, increasing on [0,+∞) and such that
φ(0+) = 0, limt→∞ φ(t) = ∞. Additionally, if φ is also convex and satisfies limt→0+

ω(t)
t =

limt→∞
t

ω(t) = 0, we call φ is a Young function.

Given a Young function φ, the Orlicz class is defined as the set of measurable functions
f such that ∫

X
φ( f (x))dµ(x) < ∞.

It is a convex space of random variables. The Orlicz space is defined by

Lφ := { f : X → R, measurable,
∫

X
φ(λ f (x))dµ(x) < ∞, f or some λ > 0}.

It is a vector space of random variables and is the span of the Orlicz class.

Definition 2 ([23]). A function φ : [0, ∞) → R is said to be quasi-convex if there is a convex
function ω and a constant c > 0 such that ω(t) ≤ φ(t) ≤ cω(ct) for any t ≥ 0.

Lemma 1 ([23,28]). Let φ be the same as in Definition 1. Then, the following statements are
equivalent:

(i) φ is a quasi-convex function on [0, ∞);
(ii) the inequality

φ(tx1 + (1 − t)x2) ≤ C(tφ(Cx1) + (1 − t)φ(Cx2))

holds for any x1, x2 ∈ [0,+∞) and all t ∈ (0, 1) with a constant C > 0 independent of

x1, x2, t;

(iii) φ(x)
x is quasi-increasing, i.e., there is a constant C > 0 such that

φ(x1)

x1
≤ C

φ(Cx2)

x2

is fulfilled for any 0 < x1 < x2.

For a quasi-convex function φ, its complementary function φ̃ is defined by
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φ̃(t) = sup
s≥0

(st − φ(s)).

The subadditivity of the supremum readily implies that φ̃ is a Young function,
and from the definition of the complementary function φ̃, we obtain the Young inequality

st ≤ φ(s) + φ̃(t). (3)

Lemma 2 ([17]). For a quasi-convex function φ, we have

εφ(t) ≤ φ(Cεt), t > 0, ε > 1

and
φ(γt) ≤ γφ(Ct), t > 0, γ < 1, (4)

where the constants C do not depend on t, ε, and γ.

Lemma 3 ([17]). Let φ be the same as in Definition 1 which is a quasi-convex function; then, there
is a constant δ > 0 such that for an arbitrary t > 0, we have

φ̃(δ
φ(t)

t
) ≤ φ(t) ≤ φ̃(2

φ(t)
t

)

and

φ(δ
φ̃(t)

t
) ≤ φ̃(t) ≤ φ(2

φ̃(t)
t

). (5)

Let g be a positive locally integrable function on the real line. Then, the one-sided
maximal operator M+

g is defined on L1,loc(R) by

M+
g f (x) = sup

h>0

1
g(x, x + h)

∫ x+h

x
| f (y)|g(y)dy,

where g(x, x + h) =
∫ x+h

x g(y)dy.
For a < b < c, the one-sided g–mean of f is defined as

µ+
g ( f ) = µ+

g ( f , a, b, c) =
1

g(a, c)

∫ c

b
| f (x)|g(x)dx.

Let (a, b) be an open interval, h be a measurable function; we denote h(a, b) =∫ b
a h(x)dx. As usual, {M+

g f > λ} stands for {x ∈ R : M+
g f > λ}.

An almost everywhere positive local integrable function ω : X → R is called a
weight function.

Throughout this paper, we use C and Ci to denote positive constants, and they may
denote different constants at different occurrences.

3. Main Result and Its Proof

The main result of this paper is stated as follows:

Theorem 1. Let f ∈ L1,loc(R), g be a positive locally integrable function on the real line, φ1 be
a nonnegative and nondecreasing function on [0, ∞), γ be a positive and nondecreasing function
defined on [0, ∞); let φ2 be a quasi-convex function with its complementary function φ̃2 and u, v, w
be three weight functions. Then, the following statements are equivalent:
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(i) there exists a constant C1 > 0 such that

φ1(λ)
∫
{M+

g f>λ}
u(x)g(x)dx ≤ C1

∫ +∞

−∞
φ2(C1

| f (x)|v(x)
γ(λ)

)w(x)g(x)dx (6)

holds for all f and λ > 0;

(ii) there exists a constant C2 > 0 such that

φ1(µ
+
g ( f ))

∫ b

a
u(x)g(x)dx ≤ C2

∫ c

b
φ2(C2

| f (x)|v(x)
γ(µ+

g ( f ))
)w(x)g(x)dx (7)

holds for all f and a < b < c;

(iii) there exist constants C3 > 0 and ε > 0 such that

∫ c

b
φ̃2(ε

φ1(λ)γ(λ)
∫ b

a u(y)g(y)dy
λg(a, c)v(x)w(x)

)w(x)g(x)dx ≤ C3 φ1(λ)
∫ b

a
u(x)g(x)dx (8)

holds for all λ > 0 and a < b < c.

Proof. We now complete the proof by showing that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
The implication (i) ⇒ (ii) is an easy consequence of the estimate

M+
g f (x) ≥ µ+

g ( f )χ(a,b)(x),

which is valid for all f , x and a < b < c. I.e., putting λ = µ+
g ( f )χ(a,b)(x) in (6), we obtain

the inequality (7).
(ii) ⇒ (iii). For k ∈ N, we put Bk = {x ∈ (b, c) : v(x)w(x) > 1

k} and

A(x) = (
φ1(λ)

∫ b
a u(y)g(y)dy

λg(a, c)v(x)w(x)
)−1 φ̃2(ε

φ1(λ)γ(λ)
∫ b

a u(y)g(y)dy
λg(a, c)v(x)w(x)

)χBk ,

where χBk denotes the characteristic function of the set Bk, and ε will be specified later.
Then,

I =
∫

Bk

φ̃2(ε
φ1(λ)γ(λ)

∫ b
a u(y)g(y)dy

λg(a, c)v(x)w(x)
)w(x)g(x)dx

=
φ1(λ)

λg(a, c)

∫ c

b

A(x)g(x)
v(x)

dx ·
∫ b

a
u(x)g(x)dx.

If 1
g(a,c)

∫ c
b

A(x)g(x)
v(x) dx < λ, then, we have

I < φ1(λ)
∫ b

a
u(x)g(x)dx; (9)

If 1
g(a,c)

∫ c
b

A(x)g(x)
v(x) dx ≥ λ, it follows from (4) and (ii) for the function f (x) = C A(x)

v(x)
that

I ≤ φ1(µ
+
g ( f ))

∫ b

a
u(x)g(x)dx

≤ C2

∫ c

b
φ2(

C2CA(x)
γ(λ)

)w(x)g(x)dx.
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According to (9) and the above inequality, we have

I ≤ φ1(λ)
∫ b

a
u(x)g(x)dx + C2

∫ c

b
φ2(

C2CA(x)
γ(λ)

)w(x)g(x)dx.

Choosing ε so small that C2C2ε
δ < 1, where the constant δ is from (5). By the definition

of A(x) (4) and (5), we have

I ≤ φ1(λ)
∫ b

a
u(x)g(x)dx +

C2C2ε

δ
I. (10)

Next, we will show that I is finite for a sufficiently small ε. If limt→∞
φ2(t)

t = ∞, then,
φ̃2 is finite everywhere, and thus,

I =
∫

Bk

φ̃2(ε
φ1(λ)γ(λ)

∫ b
a u(y)g(y)dy

λg(a, c)v(x)w(x)
)w(x)g(x)dx

= φ̃2(εk
φ1(λ)

∫ b
a u(y)g(y)dy

λg(a, c)
)
∫ c

b
w(x)g(x)dx < ∞.

If φ2(t)
t is bounded, then, by (7), we have

φ1(µ
+
g ( f ))

∫ b

a
u(x)g(x)dx ≤ C

∫ c

b

| f (x)|v(x)
γ(µ+

g ( f ))
w(x)g(x)dx.

Now, take f (x) = λg(a,c)
g(b,c) χ(b,c). Then,

φ1(λ)

g(a, c)

∫ b

a
u(x)g(x)dx ≤ Cλ

g(b, c)

∫ c

b

v(x)w(x)g(x)
γ(λ)

dx,

which yields the estimate

φ1(λ)γ(λ)
∫ b

a u(x)g(x)dy
λg(a, c)v(x)w(x)

≤ C

almost everywhere on the set (b, c), where C is independent of Bk and λ. Therefore,

I ≤ φ̃2(εC)
∫ c

b
w(x)g(x)dx.

Then, we can choose ε so small that φ̃2(εC) < ∞, so I is finite.
Since I is finite, it follows from (10) that

∫
Bk

φ̃2(ε
φ1(λ)γ(λ)

∫ b
a u(y)g(y)dy

λg(a, c)v(x)w(x)
)w(x)g(x)dx ≤ δ

δ − C2
2C2ε

φ1(λ)
∫ b

a
u(x)g(x)dx.

Now, let k → ∞; we then obtain (8).
(iii) ⇒ (i). For a fixed λ, it is known that {M+

g ( f ) > λ} =
⋃∞

i=1(ai, bi), where

λ ≤ 1
g(x, bi)

∫ bi

x
| f (t)|g(t)dt, ∀x ∈ (ai, bi).



Mathematics 2024, 12, 2814 6 of 8

Now using the “cutting method” introduced by F. J. Martín–Reyes [13], we assume
that (a, b) is one of the intervals (ai, bi), and wet x0 = a and xk with xk ↗ b such that∫ b

xk

| f (x)|g(x)dx = 2
∫ b

xk+1

| f (x)|g(x)dx

holds for any k ∈ N. Notice that

λ ≤ 4
g(xk−1, xk+1)

∫ xk+1

xk

| f (x)|g(x)dx,

so by (8) and Young inequality (3), we have

φ1(λ)
∫ xk

xk−1

u(x)g(x)dx ≤ 4
g(xk−1, xk+1)

∫ xk+1

xk

| f (x)|v(x)
γ(λ)

·
φ1(λ)γ(λ)

∫ xk
xk−1

u(y)g(y)dy

λv(x)w(x)
w(x)g(x)dx

≤ 1
2C4

∫ xk+1

xk

φ2(
8C4

ε

| f (x)|v(x)
γ(λ)

)w(x)g(x)dx

+
1

2C4

∫ xk+1

xk

φ̃2(ε
φ1(λ)γ(λ)

∫ xk
xk−1

u(y)g(y)dy

λg(xk−1, xk+1)v(x)w(x)
)w(x)g(x)dx

≤ 1
2C4

∫ xk+1

xk

φ2(
8C4

ε

| f (x)|v(x)
γ(λ)

)w(x)g(x)dx +
φ1(λ)

2

∫ xk

xk−1

u(x)g(x)dx.

It follows that

φ1(λ)
∫ xk

xk−1

u(x)g(x)dx ≤ C1

∫ xk+1

xk

φ2(C1
| f (x)|v(x)

γ(λ)
)w(x)g(x)dx,

where C1 = max{ 1
C4

, 8C4
ε }.

Summing over k, we have

φ1(λ)
∫ b

a
u(x)g(x)dx ≤ C1

∫ b

a
φ2(C1

| f (x)|v(x)
γ(λ)

)w(x)g(x)dx.

Consequently,

φ1(λ)
∫
{M+

g ( f )>λ}
u(x)g(x)dx =

∞

∑
i=1

φ1(λ)
∫ bi

ai

u(x)g(x)dx

≤ C1

∞

∑
i=1

∫ bi

ai

φ2(C1
| f (x)|v(x)

γ(λ)
)w(x)g(x)dx

≤ C1

∫ +∞

−∞
φ2(C1

| f (x)|v(x)
γ(λ)

)w(x)g(x)dx.

The proof is complete.

If u(x)g(x) and w(x)g(x) in Theorem 1 are, respectively, replaced with u(x) and w(x),
then, we have

Corollary 1. Let φ1 be a nonnegative and nondecreasing function on [0, ∞), let γ be a positive
and nondecreasing function defined on [0, ∞), and let φ2 be a quasi-convex function with its
complementary function φ̃2. Let u, v, w be three weight functions. Then, the following statements
are equivalent:
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(i) there exists a constant C1 > 0 such that

φ1(λ)
∫
{M+

g f>λ}
u(x)dx ≤ C1

∫ +∞

−∞
φ2(C1

| f (x)|v(x)
γ(λ)

)w(x)dx (11)

holds for all f and λ > 0;

(ii) there exists a constant C2 > 0 such that

φ1(µ
+
g ( f ))

∫ b

a
u(x)dx ≤ C2

∫ c

b
φ2(C2

| f (x)|v(x)
γ(µ+

g ( f ))
)w(x)dx

holds for all f and a < b < c;

(iii) there exist constants C3 > 0 and ε > 0 such that

∫ c

b
φ̃2(ε

φ1(λ)γ(λ)
∫ b

a u(y)dyg(x)
λg(a, c)v(x)w(x)

)w(x)dx ≤ C3 φ1(λ)
∫ b

a
u(x)dx

holds for all λ > 0 and a < b < c.

Remark 1. In 1993, P. Ortega Salvador and L. Pick [20] gave weak and extra-weak-type inequalities
for the one-sided maximal function M+. At the moment, in inequality (11), if we put φ2 = φ1 =
φ, v(x) = 1, γ(λ) = 1, u = ϱ, w = σ, then inequality (11) will become inequality (1), i.e., the
weak-type characterization for the one-sided maximal function M+. Additionally, in inequality
(11), if we put φ1(λ) = 1, γ(λ) = λ, φ2 = φ, v(x) = 1, u = ϱ, w = σ, then inequality (11) will
become inequality (2), i.e., the extra-weak-type inequality for the one-sided maximal function M+.
That is, inequalities (1) and (2) can be unified in inequality (11).

4. Conclusions

In 2023, we obtained a three-weight weak-type one-sided Hardy–Littlewood maximal
inequality on R2 in [25], which unified the weak and extra-weak-type inequalities for the
one-sided maximal function M+ on R2 in [21]. Inspired by the work [25], in this paper,
we obtain a equivalent characterization for a three-weight (u, v, w) weak-type one-sided
Hardy–Littlewood maximal inequality on R and integrate inequalities (1) and (2) into a
unified inequality (11). Since the three-weight equality (11) unifies the two-weight weak
and extra-weak-type inequalities for the one-sided Hardy–Littlewood maximal function
M+ in [20], it will be more convenient to study their application in various fields (there is
no need to consider the weak and extra-weak inequalities separately).

Funding: The author was supported by the National Natural Science Foundation of China (Grant
No. 12101193).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.
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