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Abstract: As a part of the service industry, product design practitioners should possess an understand-
ing of the multifaceted factors and solutions that contribute to delivering exceptional service quality.
However, related research on the service quality factors and solutions for China’s ceramic product
design industry is still an important research gap. In view of this, an integrated approach based on
multi-criteria decision making (MCDM), combining the fuzzy analytic hierarchy process (FAHP)
and the measurement of alternatives and ranking according to compromise solution (MARCOS),
was proposed in this research to analyse and evaluate the service quality factors and solutions for
China’s ceramic product design industry. Initially, the FAHP method determined the significance
of the service quality dimensions and indicators. Subsequently, the MARCOS method ranked the
alternatives based on their performance against these criteria. This research focuses on the growing
subject of service quality in China’s ceramic product design industry. The proposed model identifies
essential service quality factors and solutions for China’s ceramic product design industry. The
findings of this study may assist ceramic product design practitioners in China in making strategic
decisions to provide excellent service quality.

Keywords: SERVQUAL scale; fuzzy analytic hierarchy process (FAHP); the measurement of alter-
natives and ranking according to compromise solution (MARCOS); multi-criteria decision making
(MCDM); integrated method

MSC: 68U35

1. Introduction

As one of the oldest civilisations, China has a rich history in ceramics. As a result, many
studies on China’s ceramic industry have been published in recent decades. For example,
Li [1] mentioned that Chinese ceramic products are famous for their refined artistry and
durable quality. Heimann [2] reported that the significant development of Chinese ceramic
products occurred during the Ming Dynasty, when potters put more emphasis on quality
and artistic expression. The world-famous Jingdezhen “Blue and White” porcelain displays
a fusion of delicate artistry and technical mastery that set a benchmark for ceramic design.
Many scholars [3–5] have noted that China’s ceramic art continues to thrive in the modern
era, combining ancient practices with the latest technologies. Mahendri et al. [6] added
that contemporary artisans are incorporating cultural motifs into their wares to meet
the needs of domestic and global markets and to emphasise continued relevance in an
ever-connected world. In addition, Yu et al. [7] discussed the differences in opinions
between Jingdezhen ceramic product manufacturers and consumers from the perspective of
consumers’ purchasing experience. Mirfakhradini et al. [8] studied the impact of consumer
opinions on the new ceramic product development process. Duy et al. [9] discussed the
factors related to promoting consumer satisfaction and loyalty in the ceramic industry.
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Lin [10] and Guo et al. [11] studied the differences in consumer perspectives to find out the
sustainable development factors and strategies for the Jingdezhen ceramic product industry.

Furthermore, some scholars have begun to consider the service capabilities of China’s
ceramic industry to meet future challenges. For example, Lo et al. [12] examined the
competitive strategies of China’s ceramic industry in the globalised economic environment.
They found that the industry needs to evolve into a service industry by offering a range of
customised design services to meet the changes and challenges of this environment. Ke [13]
suggested that China’s ceramic industry should transform towards the cultural and creative
industry, enhancing the economic scale and influence of the ceramic industry by providing
cultural and creative content services. Li et al. [14] explored the influence of information
technology adoption on the ceramic design industry. They noted that technologies such as
VR or intelligent manufacturing have the potential to significantly enhance the industry’s
capacity to deliver design services in the post-pandemic era. Tian et al. [15] reported that
China’s ceramic industry should strengthen its industrial production and design service
capabilities, largely due to the challenges brought by the COVID-19 epidemic.

In 2023, Wang et al. [16] proposed a novel MCDM method that combines entropy-
based objective weighting and the MARCOS method to evaluate 3PL providers’ sustainable
performance. Miškić et al. [17] developed an integrated MEREC–MARCOS evaluation
model of the logistics performance index of European Union (EU) countries with an
emphasis on sensitivity analysis, which implies a change in the importance of criteria.
Badi [18] proposed a hybrid MCDM framework to analyse and evaluate wind farm locations
in Libya.

In 2024, Ristić et al. [19] discussed the evaluation of pedestrian crossings based on
pedestrian behaviour, particularly focusing on the start-up time. They employed an in-
tegrated fuzzy multi-criteria decision-making (MCDM) model to analyse how different
age groups and genders influence pedestrian behaviour and the rankings of various cities
regarding their pedestrian crossing characteristics.

In addition, Wan et al. [20] have presented a study investigating the service quality of
Yue Kiln Celadon in China. The study examined service quality indicators and potential
solutions for China’s yue kiln celadon industry in the post-pandemic era through the use
of a hybrid MCDM methodology. The authors argued that service quality is paramount in
this new landscape. Key indicators of such excellent service quality, including robust safety
mechanisms, high-calibre personnel and tailored service capabilities, were considered
essential for China’s ceramic-related industries to deliver exceptional service in the post-
pandemic world. It is noteworthy that Lin et al. [21] conducted a study to evaluate service
quality solutions within the design industry. Using an evaluation framework based on
the SERVQUAL scale, they applied a hybrid MCDM method in a fuzzy environment to
analyse and rank service quality indicators and solutions. The research undertaken by
these two research teams represents some of the most recent findings concerning service
quality within the ceramics and design industries during the post-COVID-19 era.

Despite this, there is still a lack of related research using the SERVQUAL scale to
measure service quality in China’s ceramic product design industry. Therefore, we first
attempted to establish a service quality evaluation framework based on the SERVQUAL
scale, specifically tailored to China’s ceramic product design industry. Subsequently, the
weights of service quality aspects and indicators relevant to this industry were analysed
and calculated. Subsequently, service quality solutions were evaluated and ranked with
the aim of providing relevant decision-making suggestions to promote the provision of
exemplary service quality in China’s ceramic product design industry. In view of this, we
established a framework grounded in the SERVQUAL scale to measure service quality
within China’s ceramic product design industry. This was achieved through questionnaires
distributed amongst experts in the field. Subsequently, the fuzzy analytic hierarchy process
(FAHP) was employed to calculate the weights of dimensions and indicators. Finally, we
utilised the measurement of alternatives and ranking according to the compromise solution
(MARCOS) to rank all alternatives, thereby addressing the following research objectives:
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• To construct the evaluation structure based on the SERVQUAL scale for China’s
ceramic product design service quality.

• To analyse and calculate the weight of dimensions and indicators using FAHP.
• To evaluate and rank all solutions using MARCOS.
• To provide related decision-making suggestions for China’s ceramic product design

industry for providing excellent service quality.

This paper begins with a review of the existing literature on the SERVQUAL scale
FAHP and MARCOS (Section 2). Section 3 details the methodology, including the construc-
tion of the evaluation framework and the calculation processes of FAHP and MARCOS
models. Section 4 presents the results of numerical analysis and research findings. Section 5
discusses the research findings. Lastly, Section 6 offers conclusions.

2. Literature Review

When multiple criteria influence a choice, the challenge is classified as multi-criteria
decision-making (MCDM), requiring decision-makers to weigh numerous elements before
choosing a course of action from a range of methodologies [22,23]. Li et al. [24] highlighted a
key advantage of MCDM approaches: they empower decision-makers to prioritise risk and
financial gain while minimising the weight given to other aspects. Similarly, Kou et al. [25]
analysed and calculated data from small-scale studies and demonstrated the effectiveness
of MCDM techniques in tackling a variety of MCDM-related problems.

In this research, the assessment framework of service quality for China’s ceramic
product design industry is constructed based on the SERVQUAL scale. In addition, two
MCDM methods, namely FAHP and MARCOS, are employed to evaluate and rank service
quality aspects, indicators and potential solutions.

The relevant research gaps are discussed in this section, and the SERVQUAL scale,
FAHP and MARCOS are explored.

2.1. Research Gaps

In terms of methodology, this paper proposes a model that combines FAHP and
MARCOS methods for the first time to evaluate the service quality of China’s ceramic
product design industry. In the MCDM process, the determination of the criterion weight
is crucial, as it greatly affects the results [26]. Therefore, both Odu [27] and Deng et al. [28]
mentioned that using mathematical methods to obtain weights is conducive to data-based
structural analysis and improves the decision-making level.

Additionally, Kumar et al. [29] presented an application of upgraded arithmetic opera-
tions on fuzzy numbers to extend the reliability from point estimation to interval estimation.
Also, Dhiman et al. [30] explored the reliability of Ultra-Low Temperature (ULT) freezers
under a fuzzy environment, particularly in the context of their critical role during the
COVID-19 pandemic for vaccine storage. They delved into how preventive maintenance
and situational factors can influence the performance of these essential machines. Their
findings aim to enhance our understanding of ULT freezers and ensure they operate effec-
tively when needed most. Moreover, Kumar et al. [31] discussed the performance analysis
of an “Injection Moulding Machine” under a fuzzy environment. The above research is
one of the latest studies to apply fuzzy numbers to the field of MCDM, demonstrating the
feasibility of fuzzy methods for solving MCDM problems.

Despite this, there is a lack of hybrid MCDM methods for service quality assessment
in China’s ceramic industry under a fuzzy environment. The hybrid method of FAHP and
MARCOS proposed in this study helps to improve the robustness of the method. Although
several studies focus on the ceramic product design industry, there are few studies on
service quality in this industry. This highlights some new characteristics of China’s ceramic
product design industry that have received little attention in previous studies. Therefore,
this article aims to fill this gap.
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2.2. SERVQUAL Scale

The SERVQUAL scale, developed by Parasuraman, Zeithaml and Berry [32], is a
multi-item scale used to measure customer perceptions of service quality. It assesses the
gap between customer expectations and perceptions across five dimensions: tangibility,
reliability, responsiveness, assurance and empathy, as shown in Table 1.

Table 1. Five main dimensions of the SERVQUAL scale.

Dimensions Description

Tangibility Appearance of physical facilities, personnel and written materials
Reliability Reliable and correct performance of the promised service capabilities

Responsiveness Willingness to help customers and provide prompt service
Assurance The ability of employees to inspire trust and confidence in customers
Empathy Give customers individualised treatment

The SERVQUAL scale examines five dimensions of service quality using 22 indica-
tors [33–35]. Also, customer perception is gauged using a fuzzy-like Likert scale [36].
Moreover, the following equation is employed to determine the discrepancy between
each dimension of service quality and customer expectations for analysing the specific
characteristics of different industries and services [37].

Oj =
∑n

i=1
(

Pij − Eij
)

nj
(1)

where j is SERVQUAL scale dimension, nj is the number of questions in j dimension, Pij
is the average of perceptions, Eij is the average of expectations and Oj is the gap between
every dimension.

If Oj is positive, the service quality level is higher in dimension than the customer
expectations. On the contrary, the service quality level is lower than customer expectations.
Accordingly, a reasonable score of service quality level can be calculated by weighting if
the weight value of each industry indicator in the SERVQUAL scale is obtained.

The SERVQUAL scale’s robustness and accuracy have been substantiated by re-
searchers across diverse disciplines [38–42]. Notably, several studies [43–48] have demon-
strated the viability of integrating the SERVQUAL scale with MCDM techniques for assess-
ing service quality.

Given this established efficacy, this paper utilises the SERVQUAL scale to analyse and
categorise customer requirements.

2.3. Fuzzy Analytic Hierarchy Process (FAHP)

Analytic Hierarchy Process (AHP) was first introduced by Saaty [49]. It stands out
as a comprehensive technique for addressing MCDM challenges across diverse fields, its
efficacy confirmed by numerous studies [50–52]. This method excels at structuring complex
problems and breaking them down into manageable levels for thorough evaluation and
quantitative assessment.

However, AHP falls short in addressing uncertainties inherent in real-world scenarios.
To overcome this limitation, Chang [53], in 1996, pioneered an integrated approach combin-
ing fuzzy logic with AHP, termed Fuzzy AHP (FAHP). This innovative method effectively
handles and computes decision-making challenges arising from imprecise or ambiguous
information.

Over recent decades, FAHP has gained widespread adoption and recognition as a
highly dependable and robust research method for tackling MCDM problems, as evidenced
by its successful application in various studies [54–58].
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2.4. Measurement of Alternatives and Ranking According to Compromise Solution (MARCOS)

The measurement of alternatives and ranking according to compromise solution
(MARCOS) was first proposed in 2020 [59]. It is an innovative and effective MCDM tech-
nique. It revolutionises the decision-making process by addressing several shortcomings
of other methods. In particular, MARCOS tackles issues such as overlooking the relative
importance of distances and reduces the burden of exhaustive calculations. The approach
takes into account various parameters related to the performance of alternatives and uses
utility-based functions to determine their final performance scores.

In recent years, Puška et al. [60] applied MARCOS to the performance assessment
field of software project management. Chakraborty et al. [61] proposed a supplier selection
model using an integrated method of D numbers and MARCOS. D numbers are a mathe-
matical tool used to represent and manage uncertainty in decision-making processes. They
are an extension of the Dempster–Shafer (D-S) theory [62]. They are particularly useful in
situations where information is incomplete or ambiguous. Ali [63] developed a solid waste
management model using MARCOS under a fuzzy environment. El-Araby [64] published
a research work in 2023 and reported that MARCOS is a new method that is very suitable
for application in the field of engineering decision-making because it is not easily affected
by the rank reversal phenomenon (RRP). Badi et al. [65] developed a supplier selection
model for the steelmaking industry using a hybrid approach of the grey system and the
MARCOS method.

More recently, some scholars have started to apply the MARCOS method to the sus-
tainability field. For example, Puška et al. [66] proposed a selection model of a sustainable
supplier industry using MARCOS under an uncertain environment. Badi et al. [67] and Pa-
mucar et al. [68] assessed sustainable performance indicators for the green innovation and
road transportation industries using an integrated method of FUCOM and MARCOS. In
2023, two groups of scholars [69,70] established an assessment framework for zero-carbon
mobility and fibre fabric recycling using the MARCOS methodology.

2.5. Summary

Based on the literature review, the methods of FAHP and MARCOS have proven effec-
tive in addressing MCDM problems within sustainability fields. Notably, Tešić et al. [71]
highlighted the MARCOS method as a powerful and robust tool for multi-objective opti-
misation, employing both ratio and reference point methods to generate a comprehensive
decision information scheme. Meanwhile, Ecer [72] argued that the MARCOS model ex-
hibits remarkable flexibility and capability, particularly when handling MCDM models.
Crucially, its ease of use is maintained even with an increasing number of criteria or options.

Also, the MARCOS method is characterised by its simplicity, effectiveness and ease
of extension compared to other methods. For example, compared to the TOPSIS method,
MARCOS demonstrates superior stability and robustness of results when adjustments
are made to the measurement scales of decision attributes [73]. Moreover, the MARCOS
method shows an exceptionally high-rank correlation with established MCDM methods
such as MABAC, SAW, ARAS, WASPAS and EDAS [74].

Furthermore, the evaluation criteria for each alternative are obtained by integrating
expert opinions into the FAHP model. Therefore, the disadvantage of such models is that
they rely on expert experience and are prone to subjective opinions.

In view of this, many scholars [75–77] suggested utilising MARCOS as another way to
assess the importance of evaluation indicators, thus avoiding interference with the result
by the subjective opinion of experts.

Accordingly, in this paper, the service quality assessment framework of China’s ce-
ramic product design industry will be established based on the SERVQUAL scale. Sub-
sequently, the overall weights of dimensions and indicators will be calculated by FAHP.
Finally, the MARCOS method will then be used to rank the alternatives to meet the primary
objectives of the research.
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3. Materials and Methods

In this research, we present an integrated approach of FAHP and MARCOS that is
based on the SERVQUAL scale to evaluate the service quality of China’s ceramic product
design industry. The process of this research is shown in Figure 1.
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3.1. The Construction of Hierarchy Structure

To construct the evaluation framework, we decomposed the problem into evaluation
criteria and alternatives in accordance with the research methods. In addition, Tsai et al. [78]
mentioned that the description of evaluation criteria and solutions should be reviewed and
revised via expert discussion. Accordingly, a total of ten experts were invited to establish
a focus group for this study. Among these, three are senior managers in ceramic product
design-related industries, four are senior creative directors and the other three are senior
ceramic product designers.

Subsequently, each focus group member independently scrutinised every dimen-
sion, indicator and potential solution, utilising their professional background and the
SERVQUAL scale as guides. This assessment sought to ascertain whether the descriptions
were congruent with the study’s aims. Thereafter, they engaged in an inductive exami-
nation for the assessment criteria and solutions to construct an initial hierarchy structure
for the research, including 5 main dimensions, 14 indicators and 4 solutions, as shown in
Figure 2.
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After an initial hierarchy structure was constructed, a preliminary test was conducted
to ascertain the coherence and adequacy of the semantic portrayal. A total of 112 expert
questionnaires were disseminated, with 73 valid responses retrieved. According to the
results of the pre-test, most experts mentioned that the semantic meanings of some indi-
cators were too close. Taking the dimension of assurance as an example, the semantics of
the two indicators D1 and D2 will prevent the test subjects from correctly assessing the
importance. Similarly, in the empathy dimension, the semantics of E1 and E2 were also very
close, so appropriate modifications need to be made. Meanwhile, the number of indicators
and solutions in the initial hierarchical structure was not sufficient to evaluate the service
quality of the ceramic product design industry. In addition, solutions related to customer
needs and employee quality should also be considered in this research.
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Accordingly, we invited another ten experts to review and revise the description
and phrasing of each dimension, indicator and potential solution in accordance with the
SERVQUAL scale and the findings of the pre-test. For example, the experts reviewed
each indicator in the assurance and empathy dimensions based on the pre-test results
and revised them based on the SERVQUAL scale to ensure that the description of each
indicator met the requirements of service quality assessment. In the meantime, the experts
also mentioned that the number of indicators in the three dimensions of responsiveness,
assurance and empathy was indeed insufficient. Therefore, they revised the number of
indicators in these three dimensions. In addition, the experts added solutions related to
potential customer needs and employee quality to the hierarchical structure.

Following this, the evaluation structure of service quality assessment for China’s
ceramic product design industry based on the SERVQUAL scale was constructed, including
5 main dimensions, 17 indicators and 6 solutions, as shown in Figure 3.
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3.2. Questionnaire Development and Measurement

This research utilises an expert questionnaire method to obtain and gather research
data for calculating the overall weight (OW) and the utility function of each dimension, in-
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dicator and solution in the hierarchy structure, according to FAHP and MARCOS methods.
Therefore, there is a need to consider validity before questionnaire development. In view
of this, this study rewrites the questionnaire statement on the basis of expert advice and
keeps the original representation of dimensions and indicators in order to maintain high
content validity [79]. In addition, this study conducts a pre-test and revises the statements
according to the results of the pre-test to check whether the meaning of the questionnaire
was clear.

As for the number of experts, F. J. Parenté and J. K. Anderson-Parenté [80] suggested
that there should be at least ten experts or more. Interestingly, Darko et al. [81] mentioned
that a large sample size may not be helpful, because “cold-called” experts could profoundly
affect the result of consistency examination. We found that much research [82–87] utilised
a small sample size of four to nine experts to obtain a valuable and reliable decision-
making basis.

Accordingly, a total of 30 experts were selected for this research to avoid the influence
of opinions from “cold-called” experts on the consistency evaluation results, thus achieving
our main research objectives. These experts were divided into two groups of 15. One
group completed the pairwise comparison questionnaires and used the FAHP method for
calculation and analysis. Another group of experts rated the solutions according to their
relative importance, which was then calculated and ranked using the MARCOS method.

3.3. Fuzzy Analytic Hierarchy Process (FAHP)
3.3.1. Fuzzy Theory and Linguistic Variables

Herrera et al. [88] asserted that linguistic markers like “very important”, “somewhat
important” and “not important” are frequently used to depict how individuals under-
stand the significance of a specific issue. However, Zimmermann [89] observed that these
linguistic markers, when employed to articulate the weight of human psychological under-
standing, often lack clarity. Therefore, it is crucial to integrate fuzzy theory to offer a more
precise depiction of human interpretation of these matters.

Fuzzy theory was first proposed by Dr. Lotfi Zadeh [90], addressing problems encoun-
tered in uncertain environments. It is an algorithm that operates on fuzzy numbers, which
incorporates a reasoning-like process to determine the outcome most aligned with human
psychological perception.

In view of this, the fuzzy numbers were studied and it was discovered that their
representation is often mathematical in nature [91–94]. For instance, a triangular fuzzy
number A can be denoted as (Lij, Mij, Uij), where the parameters Lij, Mij and Uij represent
the smallest, most likely and largest values, respectively. Figure 4 illustrates a triangular
fuzzy number A (Li, Mi, Ui) as defined by the following equation:

µ∼
A
(x) =


x−Lij

Mij−Lij
, Lij ≤ x ≤ Mij

x−Uij
Mij−Uij

, Mij ≤ x ≤ Uij

0 , otherwise

(2)
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Meanwhile, much research [96–99] mentioned that the most likely evaluation value of
triangular fuzzy numbers is the crisp value. The crisp value of triangular fuzzy numbers is
given by the following equation.

Aa = [la, ma] = [(m − l)a − (u − m)a + u] (3)

Additionally, Buckley [100] reported that the characteristics of triangular fuzzy num-
bers are helpful in accurately presenting human fuzzy psychological perception variables
by converting fuzzy numbers into clear and practical numbers. Moreover, triangular fuzzy
numbers have been proven by Pedrycz [101] to be very suitable for expressing the degree
of relative psychological perception and judgment of each criterion and alternative in the
hierarchy and network structure. Accordingly, triangular fuzzy numbers are utilised to
represent linguistic variable scales in this research.

Furthermore, AHP used a nine-point evaluation scale to indicate the importance of
each evaluation criterion. Therefore, we integrate the triangular fuzzy number and AHP
evaluation scale for assessing and measuring human psychological true preferences for
specific options. The corresponding fuzzy numbers are provided in Table 2 [102].

Table 2. Fuzzy numbers and linguistic variables.

Linguistic Variables Fuzzy Numbers Triangular Fuzzy Scale Reversed Triangular Fuzzy Scale

Equally Preferred
∼
1 1 1 1 1 1 1

Intermediate
∼
2 1 2 3 1/3 1/2 1

Moderately Preferred
∼
3 2 3 4 1/4 1/3 1/2

Intermediate
∼
4 3 4 5 1/5 1/4 1/3

Strongly Preferred
∼
5 4 5 6 1/6 1/5 1/4

Intermediate
∼
6 5 6 7 1/7 1/6 1/5

Very Strongly Preferred
∼
7 6 7 8 1/8 1/7 1/6

Intermediate
∼
8 7 8 9 1/9 1/8 1/7

Extremely Preferred
∼
9 9 9 9 1/9 1/9 1/9

3.3.2. The Construction of Fuzzy Pairwise Comparison Matrix

In this step, a fuzzy pairwise comparison matrix is performed and presented as follows:

∼
Ak =



∼
ak

11

∼
ak

12 · · ·
∼

ak
1n∼

ak
21

∼
ak

22 · · ·
∼

ak
2n

...
...

. . .
...

∼
ak

n1

∼
ak

n2 · · ·
∼

ak
nn

, (4)

where
∼
Ak represents the fuzzy pairwise comparison matrix and

∼
ak

nn is the triangular fuzzy
mean value for comparing priority pairs among elements.

3.3.3. The Calculation of Fuzzy Geometric Mean (
∼
r i) and Fuzzy Weight (

∼
wi)

The calculation of fuzzy geometric mean and fuzzy weight is as follows:

∼
r i =

[(
Lij1

⊗
Lij2

⊗
, · · · ,

⊗
Lijk

) 1
i ,

(
Mij1

⊗
Mij2

⊗
, · · · ,

⊗
Mijk

) 1
i ,

(
Uij1

⊗
Uij2

⊗
, · · · ,

⊗
Uijk

) 1
i
]

(5)

∼
wi =

∼
r i

⊗(∼
r 1

⊕ ∼
r 2

⊕
· · ·

⊕ ∼
r n

)−1
(6)

where
⊗

represents the operation of Kronecker product.
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3.3.4. Defuzzification

In terms of fuzzy decomposition, the optimism index (α, β) is utilised to combine the
smallest and largest values of triangular fuzzy numbers (Lij, Uij) for defuzzification [103–105].
Thus, the process of fuzzy decomposition is as follows:

tα,β
(
aij

)
=

[
β fa

(
Lij

)
+ (1 − β) fa

(
Uij

)]
, α ∈ [0, 1], β ∈ [0, 1], (7)

where
fa
(

Lij
)
=

(
Mij − Lij

)
α + Lij, (8)

fa
(
Uij

)
= Uij −

(
Mij − Lij

)
α, (9)

When the diagonal matrix is matching, we have

tα,β
(
aij

)
=

1
tα,β

(
aij

) , α ∈ [0, 1], β ∈ [0, 1], i > j (10)

where aij is the value of fuzzy decomposition.

3.3.5. Consistency Check

Saaty [106] proposed adopting the consistency index (C.I.) and consistency ratio (C.R.)
to verify the consistency of the comparison matrix. The C.I. and C.R. are defined as follows:

C.I. =
λmax − n

n − 1
, (11)

where λmax is the maximum value of the matrix and n is the number of criteria.

C.R. =
C.I.
R.I.

, (12)

Random index (R.I.) is a consistency index produced by positive reciprocal matrices
of different orders 2 to 14 generated from the integer set 1 to 9 [107]. It depends on the
number of involved criteria [108]. Table 3 shows the values of the random index.

Table 3. Random index (R.I.) values.

The Order of Matrix 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R.I. - - 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.57 1.59

When C.I. ≤ 0.1, it refers to the best acceptable error. When C.R. ≤ 0.1, it means that
the consistency of the matrix is satisfactory.

3.4. Measurement of Alternatives and Ranking According to Compromise Solution (MARCOS)
3.4.1. Establish an Extended Decision Matrix

The extended decision matrix is performed as follows:

X′ =

(AAI)
A1
A2
· · ·
Am
(AI)

C1 C2 · · · Cn︷ ︸︸ ︷

xaa1 xaa1 . . . xaan
x11 x12 . . . x1n
x21
· · ·
xm1
xai1

x22
· · ·

xm2
xai2

. . .
· · ·
. . .
. . .

x2n
· · ·
xmn
xain


, (13)
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The ideal (AI) solution represents an alternative with the highest performance, whereas
the anti-ideal (AAI) solution denotes the least desirable alternative. Depending on the
characteristics of the criteria, the AI and AAI sets are established as follows:

AI = max
i

xij i f j ∈ B and min
i

xij i f j ∈ C (14)

AAI = min
i

xij i f j ∈ B and max
i

xij i f j ∈ C (15)

where B denotes a benefit group of criteria while C denotes a group of cost criteria.

3.4.2. Construct the Normalised Decision Matrix

The normalised decision matrix can be calculated using the following equations.

nij =
xij

xai
i f j ∈ B (16)

nij =
xai
xij

i f j ∈ C (17)

where xij and xai represent the elements of the matrix X′.

3.4.3. Calculate the Weighted Normalised Decision Matrix

The weighted matrix V is obtained by multiplying the normalised matrix N with the
weight coefficient of each criterion ωj using the following equation.

vij = nij × ωj (18)

3.4.4. The Calculation of the Utility Degree of Alternatives

The utility degrees of an alternative in relation to the ideal (K+
i ) and anti-ideal (K−

i )
solution are calculated as follows:

K+
i =

Si
Sai

(19)

K−
i =

Si
Saai

(20)

where Si(i = 1, 2, . . . , m) signifies the summation of the elements within the weighted
matrix V, illustrated in the following equation.

Si =
n

∑
i=1

vij (21)

3.4.5. The Calculation of the Utility Function of Alternatives

The utility function of alternatives is calculated as follows:

f (Ki) =
K+

i + K−
i

1 +
1− f (K+

i )
f (K+

i )
+

1− f (K−
i )

f (K−
i )

(22)

where the utility functions concerning the ideal f
(
K+

i
)

and anti-ideal f
(
K−

i
)

solutions are
determined using the following equations.

f
(
K+

i
)
=

K−
i

K+
i + K−

i
(23)

f
(
K−

i
)
=

K+
i

K+
i + K−

i
(24)
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3.4.6. Ranking the Solutions

Within the MARCOS model, all potential solutions are ranked according to the final
values of the utility function, denoted as f (Ki). The most favourable alternative is identified
as the one that is closest to the ideal and at the same time furthest from the anti-ideal
reference point. This implies that potential solutions with higher utility function values are
considered more desirable.

4. Results
4.1. Numerical Analysis
4.1.1. Fuzzy Analytic Hierarchy Process (FAHP)

As for the construction of a fuzzy pairwise comparison matrix, we gathered the
opinions and integrated the perspectives of 15 experienced ceramic product design experts.
Subsequently, the fuzzy pairwise comparison matrix was established using Equation (4), as
shown in Table 4.

Table 4. The fuzzy pairwise comparison matrix of the five main dimensions from the FAHP model.

Dimensions Tangibility (A) Reliability (B) Responsiveness (C) Assurance (D) Empathy (E)

Tangibility (A) (1,1,1) (4,5,6) (5,6,7) (3,4,5) (6,7,8)
Reliability (B) (1/6,1/5,1/4) (1,1,1) (1,2,3) (1/3,1/2,1) (3,4,5)

Responsiveness (C) (1/7,1/6,1/5) (1/3,1/2,1) (1,1,1) (1/4,1/3,1/2) (1,2,3)
Assurance (D) (1/5,1/4,1/3) (1,2,3) (2,3,4) (1,1,1) (3,4,5)
Empathy (E) (1/8,1/7,1/6) (1/5,1/4,1/3) (1/3,1/2,1) (1/5,1/4,1/3) (1,1,1)

Subsequently, the fuzzy geometric mean values of the five main dimensions are
calculated through the use of Equation (5), as shown in Table 5.

Table 5. The calculation of fuzzy geometric mean values for the main dimensions.

Dimensions Computation Process Results

Tangibility (A)
[
(1 × 4 × 5 × 3 × 6)

1
5 , (1 × 5 × 6 × 4 × 7)

1
5 , (1 × 6 × 7 × 5 × 8)

1
5
]

3.245 3.845 4.416

Reliability (B)
[
(1/6 × 1 × 1 × 1/3 × 3)

1
5 , (1/5 × 1 × 2 × 1/2 × 4)

1
5 , (1/4 × 1 × 3 × 1 × 5)

1
5
]

0.699 0.956 1.303

Responsiveness (C)
[
(1/7 × 1/3 × 1 × 1/4 × 1)

1
5 , (1/6 × 1/2 × 1 × 1/3 × 2)

1
5 , (1/5 × 1 × 1 × 1/2 × 3)

1
5
]

0.412 0.561 0.786

Assurance (D)
[
(1/5 × 1 × 2 × 1 × 3)

1
5 , (1/4 × 2 × 3 × 1 × 4)

1
5 , (1/3 × 3 × 4 × 1 × 5)

1
5
]

1.037 1.431 1.821

Empathy (E)
[
(1/8 × 1/5 × 1/3 × 1/5 × 1)

1
5 , (1/7 × 1/4 × 1/2 × 1/4 × 1)

1
5 , (1/6 × 1/3 × 1 × 1/3 × 1)

1
5
]

0.278 0.339 0.450

Total 5.672 7.132 8.776

The calculation process of fuzzy weight (
∼
wi) for each dimension using Equation (6) is

shown in Table 6.

Table 6. The calculation of fuzzy weight for the main dimensions.

Dimensions Computation Process Results

Tangibility (A) (3.245, 3.845, 4.416)
⊗(

1
8.776 , 1

7.132 , 1
5.672

)
0.370 0.539 0.779

Reliability (B) (0.699, 0.956, 1.303)
⊗(

1
8.776 , 1

7.132 , 1
5.672

)
0.080 0.134 0.230

Responsiveness (C) (0.412, 0.561, 0.786)
⊗(

1
8.776 , 1

7.132 , 1
5.672

)
0.047 0.079 0.139

Assurance (D) (1.037, 1.431, 1.821)
⊗(

1
8.776 , 1

7.132 , 1
5.672

)
0.118 0.201 0.321

Empathy (E) (0.278, 0.339, 0.450)
⊗(

1
8.776 , 1

7.132 , 1
5.672

)
0.032 0.048 0.079
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As for fuzzy decomposition, this study utilises α = 0.5 and β = 0.5 during the
defuzzification [109–111]. The process of fuzzy decomposition for dimensions between
tangibility (A) and reliability (B) is as follows:

t0.5,0.5(aA,B) = [0.5 × 5.5 + (1 − 0.5)× 4.5] = 5

fa(LA,B) = (5 − 4)× 0.5 + 4 = 4.5

fa(UA,B) = 6 − (5 − 4)× 0.5 = 5.5

t0.5,0.5(aB,A) =
1
5

The processes of fuzzy decomposition for the remaining main dimensions are like the
above calculation. Subsequently, the de-fuzzified pairwise comparison matrix for the five
main dimensions from the FAHP model is shown in Table 7.

Table 7. The de-fuzzified pairwise comparison matrix of five dimensions from the FAHP model.

Dimensions Tangibility (A) Reliability (B) Responsiveness (C) Assurance (D) Empathy (E)

Tangibility (A) 1 5 6 4 7
Reliability (B) 1/5 1 2 1/2 4

Responsiveness (C) 1/6 1/2 1 1/3 2
Assurance (D) 1/4 2 3 1 4
Empathy (E) 1/7 1/4 1/2 1/4 1

The calculation of the maximum individual value (AM) for each dimension is shown
in Table 8.

Table 8. The maximum individual value calculation process.

Dimensions The Calculation Process Maximum Individual Value

Tangibility (A) (1 × 5 × 6 × 4 × 7)
1
5 3.8446

Reliability (B)
(

1
5 × 1 × 2 × 1

2 × 4
) 1

5 0.9564

Responsiveness (C)
(

1
6 × 1

2 × 1 × 1
3 × 2

) 1
5 0.561

Assurance (D)
(

1
4 × 2 × 3 × 1 × 4

) 1
5 1.431

Empathy (E)
(

1
7 × 1

4 × 1
2 × 1

4 × 1
) 1

5 0.3388

Total 7.1317

The calculation process of weight (ω) for each dimension is shown in Table 9.

Table 9. The calculation of weight for the five dimensions.

Dimensions The Calculation Process Weight (ω)

Tangibility (A) 3.8446
7.1317 0.5391

Reliability (B) 0.9564
7.1317 0.1341

Responsiveness (C) 0.561
7.1317 0.0787

Assurance (D) 1.431
7.1317 0.2006

Empathy (E) 0.3388
7.1317 0.0475

Total 1

The calculation of the normalised matrix is shown in Table 10.
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Table 10. Normalised matrix calculation.

Dimensions Tangibility (A) Reliability (B) Responsiveness (C) Assurance (D) Empathy (E)

Tangibility (A) 1 × 0.5391 5 × 0.1341 6 × 0.0787 4 × 0.2006 7 × 0.0475
Reliability (B) 1/5 × 0.5391 1 × 0.1341 2 × 0.0787 1/2 × 0.2006 4 × 0.0475

Responsiveness (C) 1/6 × 0.5391 1/2 × 0.1341 1 × 0.0787 1/3 × 0.2006 2 × 0.0475
Assurance (D) 1/4 × 0.5391 2 × 0.1341 3 × 0.0787 1 × 0.2006 4 × 0.0475
Empathy (E) 1/7 × 0.5391 1/4 × 0.1341 1/2 × 0.0787 1/4 × 0.2006 1 × 0.0475

The calculation of the maximum eigenvector (W1) is shown in Table 11.

Table 11. The calculation of the maximum eigenvector for the five main dimensions.

Dimensions A B C D E Total ω W1

A 0.5391 0.6705 0.4720 0.8026 0.3325 2.8167 0.5391 2.8167/0.5391 = 5.2249
B 0.1078 0.1341 0.1573 0.1003 0.1900 0.6896 0.1341 0.6896/0.1341 = 5.1424
C 0.0898 0.0670 0.0787 0.0669 0.0950 0.3975 0.0787 0.3975/0.0787 = 5.0528
D 0.1348 0.2682 0.2360 0.2006 0.1900 1.0296 0.2006 1.0296/0.2006 = 5.1315
E 0.0770 0.0335 0.0393 0.0502 0.0475 0.2475 0.0475 0.2475/0.0475 = 5.2105

Since the numbers of main dimensions are 5, we obtain n = 5. Therefore, λmax and
C.I. are calculated as follows:

λmax =
(5.2249 + 5.1424 + 5.0528 + 5.1315 + 5.2105)

5
= 5.1524

C.I. =
λmax − n

n − 1
=

5.1524 − 5
5 − 1

= 0.0381

For C.R., with n = 5, we have R.I. = 1.12.

C.R. =
C.I.
R.I.

=
0.0381

1.12
= 0.034

The calculation results of the de-fuzzified pairwise comparison matrix between five
main dimensions are shown in Table 12.

Table 12. The pairwise comparison matrix for five main dimensions from the FAHP model.

Dimensions Tangibility (A) Reliability (B) Responsiveness (C) Assurance (D) Empathy (E) ω

Tangibility (A) 1 5 6 4 7 0.566
Reliability (B) 1/5 1 2 1/2 4 0.1408

Responsiveness (C) 1/6 1/2 1 1/3 2 0.0826
Assurance (D) 1/4 2 3 1 4 0.2107
Empathy (E) 1/7 1/4 1/2 1/4 1 0.0499

Total 1
λmax = 5.1524, C.I. = 0.0381, C.R. = 0.034

The calculation processes of defuzzification, maximum eigenvalue (λmax), consistency
index (C.I.) and consistency ratio (C.R.) for all indicators are like the above calculations.
Subsequently, the de-fuzzified pairwise comparison matrix for all sub-criteria is shown in
Tables A1–A5.

As shown in Tables A1–A5, values of the consistency index (C.I.) and consistency ratio
(C.R.) for all criteria are less than 0.1. This means that the result of the consistency tests
is acceptable.

After passing the consistency test, the overall weight (OW) of all indicators in the FAHP
model was calculated using Super Decisions software 3.2. This software was developed by
Prof. Saaty [112], the inventor of the analytic hierarchy process (AHP), and is suitable for
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obtaining the OW of all criteria. The OW of all indicators in the FAHP model is shown in
Table 13.

Table 13. The overall weight of all indicators in the FAHP model.

Indicators Description OW

A1 Ceramic product design service team has up-to-date equipment 0.0042
A2 Physical facilities are visually appealing 0.0076
A3 Equipment matches the service 0.0276
B1 When ceramic product design service team promises to do something by a certain time,

it does so
0.0154

B2 When consumer has a problem, ceramic product design service team is sympathetic and
reassuring

0.0895

B3 Ceramic product design service team provides service legally, safely and reliably 0.0395
B4 Ceramic product design service team keeps its records accurately 0.011
C1 Ceramic product design service team tells customers exactly when service

will be performed
0.0355

C2 Employees are always willing to help customers and provide prompt service 0.1625
C3 Employees of ceramic product design service team are never too busy to respond to

customer requests promptly
0.062

D1 Customers can trust employees of ceramic product design service team 0.0422
D2 Customers feel safe in their transactions with ceramic product design service team 0.0119
D3 Employees receive adequate support to do their jobs well 0.05
E1 Ceramic product design service team has operating hours convenient to all their customers 0.0207
E2 Ceramic product design service team’s employees care about the needs of customers and

keep them in mind
0.1013

E3 Ceramic product design service team pays great attention to what the customer wants 0.269
E4 Ceramic product design service team knows what customers’ needs are and gives care 0.0503

4.1.2. Measurement of Alternatives and Ranking according to Compromise
Solution (MARCOS)

After obtaining the overall weight of all indicators from the FAHP model, the MARCOS
method was applied to rank all alternatives. The ideal (AI) and anti-ideal (AAI) solutions
in relation to each criterion are determined. The ideal (AI) is the highest value of each
criterion while the lowest value is the anti-ideal (AAI).

The extended decision-making matrix was established using Equation (13), as shown
in Table 14.

Table 14. Extended decision-making matrix of the MARCOS model.

Alternatives
Indicators

A1 A2 A3 B1 B2 B3 B4 C1 C2 C3 D1 D2 D3 E1 E2 E3 E4

AAI 1.26 1.26 1.91 3.98 3.63 3.11 2.52 2.08 1.82 3.17 3.27 2.88 3.48 2.88 2.88 1.82 1.59
ALT 1 5.13 5.04 8.28 3.98 3.63 4.16 3.68 2.52 1.82 3.56 3.83 3.04 4.58 3.00 2.88 2.00 1.59
ALT 2 2.29 2.15 3.63 6.54 5.01 6.65 6.32 4.93 5.65 6.60 3.27 4.48 3.48 6.54 7.27 5.65 2.29
ALT 3 1.26 1.26 2.41 4.93 5.43 3.17 2.52 2.08 4.58 7.11 6.32 3.63 3.56 5.19 4.16 5.52 3.42
ALT 4 2.88 3.30 4.48 4.58 3.63 3.11 2.88 3.30 4.48 4.31 4.38 2.88 3.56 2.88 2.88 1.82 2.29
ALT 5 1.71 1.82 1.91 4.76 4.38 4.16 4.64 3.30 3.78 3.17 3.78 3.91 3.63 4.82 3.78 2.71 2.15
ALT 6 2.08 2.00 3.98 7.56 6.95 6.65 6.54 8.65 7.96 9.00 8.32 7.96 7.61 6.95 7.56 8.65 8.32

AI 5.13 5.04 8.28 6.54 5.43 6.65 6.32 4.93 5.65 7.11 6.32 4.48 4.58 6.54 7.27 5.65 3.42

Subsequently, the normalised decision-making matrix was constructed using
Equations (16) and (17), as shown in Table A6.

The values of the weighted normalised decision-making matrix shown in Table A7
were obtained by applying Equation (18): vij = n11 × ω1 = 1 × 0.0042 = 0.0042.

The calculations of utility degrees for all alternatives (Si) in the MARCOS model using
Equations (19)–(21) are shown in Table A8.
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4.2. Research Result
4.2.1. Fuzzy Analytic Hierarchy Process (FAHP)

In the FAHP model, all dimensions and indicators are ranked based on overall weight
(OW). As for the calculation of the OW, all data in the de-fuzzified pairwise comparison
matrix were input into Super Decisions software. Subsequently, the OW of main dimensions
and indicators were obtained, as shown in Figures 5 and 6.
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The OWs of indicators ranked fourth to sixth were “When consumer has problem, ce-
ramic product design service team is sympathetic and reassuring” (B2, 0.0895), “Employees
of ceramic product design service team are never too busy to respond to customer requests
promptly” (C3, 0.062) and “Ceramic product design service team knows what customers’
needs are and gives care” (E4, 0.053).

4.2.2. Measurement of Alternatives and Ranking according to Compromise
Solution (MARCOS)

In the MARCOS model, the ranking of all alternatives was determined by the value
of the final utility function ( f (Ki)). The final utility function value of all alternatives was
calculated using Equations (22)–(24), as shown in Table 15.
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Table 15. The final utility function value of all alternatives.
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ALT 1 0.7698 0.2302 5.156
ALT 2 0.7698 0.2302 6.4636
ALT 3 0.7698 0.2302 6.1711
ALT 4 0.7698 0.2302 5.3384
ALT 5 0.7698 0.2302 5.458
ALT 6 0.7698 0.2302 7.9213

The ranking result of all alternatives based on the final utility function value in the
MARCOS model is shown in Figure 7.
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In Figure 7, “Potential needs of customers” (ALT 6, 7.9213) ranked first, followed by
“Professional and reliable staff” (ALT 2, 6.4636), “Respond to customer needs empathically
and quickly” (ALT 3, 6.1711) and “Customised services and convenient operating hours”
(ALT 5, 5.458). In addition, “Trustworthy service team and safe transaction mechanism”
(ALT 4, 5.3384) and “The latest and attractive equipment that matches the service” (ALT 1,
5.156) were ranked fourth and fifth.

5. Discussion
5.1. Sensitivity Analysis of Criteria Weight

In MCDM problems, the input data are often fluid and constantly changing, as opposed
to being consistent and stable. Therefore, sensitivity analysis is essential to support the
decision-making process. In this study, sensitivity analysis in the context of MCDM
problems is used to assess the impact of changes in the weighting of a single criterion on
the overall results. These changes include adjustments to the weighting of other criteria
and variations in the final ranking of options [113].

For this purpose, each criterion is removed in turn, resulting in 18 scenarios for
sensitivity analysis of criteria weight. The weight of all criteria and the prospect value of
alternatives in all scenarios are shown in Tables A9 and A10. The ranking is visualised in
Figure 8.
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Figure 8. The ranking of alternatives in all scenarios.

While the prospect values changed, the final ranking remains largely consistent,
identifying “Potential needs of customers” (ALT 6) as the optimal solution. These results
from the sensitivity phase indicate a robust alternative ranking that is insensitive to changes
in criteria weights. This demonstrates the high stability and applicability of the proposed
FAHP-MARCOS model.
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5.2. Implications for Research

In this research, a hybrid MCDM method was proposed to exploit the strengths of
both FAHP and MARCOS, thereby increasing robustness and mitigating the limitations of
each method. Meanwhile, by applying this hybrid MCDM method to real-world data, the
study ensures greater objectivity and reduces bias, providing more practical insights for
decision making by practitioners in China’s ceramic product design industry.

Also, the hybrid MCDM method proposed in this study will positively help practi-
tioners in the ceramic product design industry to understand the service quality index
and solutions to provide excellent service quality. Therefore, China’s ceramic product
design practitioners can use the proposed priorities of the indicator to compare their own
industry’s priorities with the ideal proposed rankings.

Moreover, the main criteria, including empathy, responsiveness and reliability, emerge
as the three most significant in the FAHP model. In terms of indicator ranking, “Ceramic
product design service team pays great attention to what the customer wants” ranks first,
followed by “Employees are always willing to help customers and provide prompt service”
and “Ceramic product design service team’s employees care about the needs of customers
and keep them in mind”. Thus, practitioners in the ceramic product design industry should
give priority to these identified indicators for providing good service quality. It is important
to note that while relevant indicators such as “Ceramic product design service team keeps
its records accurately”, “Physical facilities are visually appealing” and “Ceramic product
design service team has up-to-date equipment” may appear lower in the ranking, this
reflects their relative priority within the context of this study’s decision model. It should
not be interpreted as meaning that these indicators are not important at all.

In addition, this research makes a scientific contribution by demonstrating the effec-
tiveness of the proposed hybrid MCDM method. It shows how the FAHP and MARCOS
methods can help in understanding the factors and solutions related to Chinese ceramic
product design. Furthermore, the relative priority of service quality factors was analysed,
evaluated and presented in the outcome of this study.

5.3. Implications for Management

For China’s ceramic product design industry, understanding these solutions of ex-
cellent service quality for making the right choices is a major decision-making challenge.
Making this choice is critical to helping companies achieve their service goals. According
to the findings of this study, the potential needs of customers, well-qualified staff and the
response speed to customer needs will contribute to the service quality of the ceramic
product design industry. Therefore, the ceramic product design industry should work with
suppliers to develop new standards to meet the requirement of excellent service quality.

Finally, this fundamental change in approach has implications for management across
related sectors. The proposed model is tailored to China’s ceramic product design indus-
try, offering valuable perspectives for ceramic product designers as well as for business,
management and industry professionals in related fields.

5.4. Research Limitations

This research proposed an integrated MCDM method by combining FAHP and MAR-
COS. In the FAHP model, the pairwise comparison of the importance of the indicators and
the values of C.I. and C.R. were used to verify the indicators’ progression and consistency.
As for the ranking of solutions, it was analysed and calculated using MARCOS.

The research results were obtained based on the opinions of experts. Therefore, the
research findings are contingent upon expert opinions, constituting a limitation of this
study. To mitigate this, the research involved the participation of highly experienced experts
in completing the questionnaire.

In addition, more than half of the experts involved in completing the questionnaire
were Chinese professionals within the ceramic design industry, aged between 34 and
56 years. Of these participants, 72.68% were male, with the remaining identifying as female.
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Consequently, the findings of this study hold relevance for China’s ceramic product design
sector, offering valuable insights to enhance understanding and alignment with customer
preferences. Thus, these insights serve as a crucial reference and guide for the industry to
offer good service quality that aligns closely with customer expectations.

6. Conclusions

In this research, an integrated method of FAHP and MARCOS is proposed and ap-
plied to assess and calculate the importance of the service quality index and solutions for
China’s ceramic design industry. This work makes a scientific contribution by evidencing
the effectiveness of the proposed hybrid MCDM method. It shows how the FAHP and
MARCOS methods can assist in comprehending the dimensions, indicators and solutions
concerning the service quality of China’s ceramic product design industry. Practically, this
research suggests that companies involved in China’s ceramic product design industry can
employ the decision-making model put forward to better address service quality index and
solutions for diminishing risks and enhancing informed decision-making.

The most three important dimensions in the FAHP model were empathy, responsive-
ness and reliability. Moreover, indicators related to accurately recognising the priority of
customer needs, willingness to serve customers and memorising customer needs were
among the top three in the FAHP model.

According to the MARCOS model, solutions related to the customers’ potential needs,
professional staff and the ability to empathise with the customer are the key points in
providing excellent service quality.

Furthermore, the originality of this article lies in the following. (1) This study is the
first to consider service quality index and solutions in China’s ceramic product design field
under a fuzzy environment. The research can provide valuable insights into the service
quality criteria of the ceramic product design industry. (2) Using the merits of both FAHP
and MARCOS methods, the proposed integrated method can conveniently express the real
condition of the decision-making problem, providing a better representation of experts’
evaluation with simplified calculations. (3) The implementation of sensitivity analysis
will allow decision-makers to test the method’s stability, while findings can be effectively
adapted to related sectors.

Finally, the integrated operations performed in this study were logically coherent,
practical and functional. In addition to establishing a systematic and objective general
model of selection in the context of this study and reflecting the characteristics of the
conditions to meet practical needs, it can also serve as a reference for future studies in
similar fields.
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Appendix A

Table A1. The pairwise comparison matrix for tangibility criteria.

Indicators A1 A2 A3 ω

A1 1 2 6 0.588
A2 1/2 1 4 0.323
A3 1/6 1/4 1 0.089

Total 1
λmax = 3.0092, C.I. = 0.0046, C.R. = 0.0079
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Table A2. The pairwise comparison matrix for reliability criteria.

Indicators B1 B2 B3 B4 ω

B1 1 5 4 1/2 0.334
B2 1/5 1 1/4 1/5 0.059
B3 1/4 4 1 1/4 0.133
B4 2 5 4 1 0.473

Total 1
λmax = 4.2338, C.I. = 0.0779, C.R. = 0.0866

Table A3. The pairwise comparison matrix for responsiveness criteria.

Indicators C1 C2 C3 ω

C1 1 4 2 0.558
C2 1/4 1 1/3 0.122
C3 1/2 3 1 0.32

Total 1
λmax = 3.0183, C.I. = 0.0091, C.R. = 0.0158

Table A4. The pairwise comparison matrix for assurance criteria.

Indicators D1 D2 D3 ω

D1 1 1/3 1 0.185
D2 3 1 5 0.659
D3 1 1/5 1 0.156

Total 1
λmax = 3.0291, C.I. = 0.0145, C.R. = 0.0251

Table A5. The pairwise comparison matrix for empathy criteria.

Indicators E1 E2 E3 E4 ω

E1 1 6 8 3 0.589
E2 1/6 1 5 1/3 0.123
E3 1/8 1/5 1 1/4 0.048
E4 1/3 3 4 1 0.24

Total 1
λmax = 4.2446, C.I. = 0.0815, C.R. = 0.0906

Table A6. Normalised decision-making matrix of the MARCOS model.

Alternatives
Indicators

A1 A2 A3 B1 B2 B3 B4 C1 C2 C3 D1 D2 D3 E1 E2 E3 E4

ALT 1 1.00 1.00 1.00 0.61 0.67 0.63 0.58 0.51 0.32 0.50 0.61 0.68 1.00 0.46 0.40 0.35 0.46
ALT 2 0.45 0.43 0.44 1.00 0.92 1.00 1.00 1.00 1.00 0.93 0.52 1.00 0.76 1.00 1.00 1.00 0.67
ALT 3 0.25 0.25 0.29 0.75 1.00 0.48 0.40 0.42 0.81 1.00 1.00 0.81 0.78 0.79 0.57 0.98 1.00
ALT 4 0.56 0.65 0.54 0.70 0.67 0.47 0.46 0.67 0.79 0.61 0.69 0.64 0.78 0.44 0.40 0.32 0.67
ALT 5 0.33 0.36 0.23 0.73 0.81 0.63 0.73 0.67 0.67 0.45 0.60 0.87 0.79 0.74 0.52 0.48 0.63
ALT 6 0.41 0.40 0.48 1.16 1.28 1.00 1.03 1.75 1.41 1.27 1.32 1.78 1.66 1.06 1.04 1.53 2.43

Table A7. Weighted normalised decision-making matrix of the MARCOS model.

Alternatives
Indicators

A1 A2 A3 B1 B2 B3 B4 C1 C2 C3 D1 D2 D3 E1 E2 E3 E4

ALT 1 0.004 0.008 0.028 0.009 0.060 0.025 0.006 0.018 0.052 0.031 0.026 0.009 0.048 0.010 0.040 0.095 0.023
ALT 2 0.002 0.003 0.012 0.015 0.083 0.039 0.011 0.035 0.162 0.058 0.022 0.013 0.036 0.021 0.101 0.269 0.034
ALT 3 0.001 0.002 0.008 0.012 0.090 0.019 0.004 0.015 0.132 0.062 0.043 0.011 0.037 0.016 0.058 0.263 0.050
ALT 4 0.002 0.005 0.015 0.011 0.060 0.018 0.005 0.024 0.129 0.038 0.030 0.008 0.037 0.009 0.040 0.087 0.034
ALT 5 0.001 0.003 0.006 0.011 0.072 0.025 0.008 0.024 0.109 0.028 0.026 0.011 0.038 0.015 0.053 0.129 0.032
ALT 6 0.002 0.003 0.013 0.018 0.115 0.039 0.011 0.062 0.229 0.078 0.057 0.023 0.079 0.022 0.105 0.412 0.122
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Table A8. The utility degrees of all alternatives.

Alternatives
Utility Degrees

K+
i K−

i Si

ALT 1 0.3483 1.1646 0.4922
ALT 2 0.6493 2.1713 0.9175
ALT 3 0.5820 1.9461 0.8224
ALT 4 0.3903 1.3051 0.5515
ALT 5 0.4178 1.3971 0.5904
ALT 6 0.9849 3.2934 1.3917

Table A9. The criteria weights in all scenarios.

Sub-Criteria
Scenarios

Base 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A1 0.004 0.000 0.005 0.006 0.005 0.009 0.006 0.005 0.006 0.014 0.008 0.007 0.005 0.007 0.005 0.010 0.020 0.007
A2 0.008 0.008 0.000 0.009 0.008 0.013 0.010 0.008 0.010 0.017 0.011 0.010 0.008 0.010 0.009 0.014 0.023 0.011
A3 0.028 0.028 0.028 0.000 0.028 0.033 0.030 0.028 0.030 0.037 0.031 0.030 0.028 0.030 0.029 0.034 0.043 0.031
B1 0.015 0.016 0.016 0.017 0.000 0.021 0.018 0.016 0.017 0.025 0.019 0.018 0.016 0.018 0.017 0.021 0.031 0.018
B2 0.090 0.090 0.090 0.091 0.090 0.000 0.092 0.090 0.092 0.099 0.093 0.092 0.090 0.092 0.091 0.095 0.105 0.092
B3 0.039 0.040 0.040 0.041 0.040 0.045 0.000 0.040 0.042 0.049 0.043 0.042 0.040 0.042 0.041 0.045 0.055 0.042
B4 0.011 0.011 0.011 0.013 0.012 0.016 0.013 0.000 0.013 0.021 0.015 0.014 0.012 0.014 0.012 0.017 0.027 0.014
C1 0.035 0.036 0.036 0.037 0.036 0.041 0.038 0.036 0.000 0.045 0.039 0.038 0.036 0.038 0.037 0.041 0.051 0.038
C2 0.162 0.163 0.163 0.164 0.163 0.168 0.165 0.163 0.165 0.000 0.166 0.165 0.163 0.165 0.164 0.168 0.178 0.165
C3 0.062 0.062 0.062 0.064 0.063 0.067 0.064 0.063 0.064 0.072 0.000 0.065 0.063 0.065 0.063 0.068 0.078 0.065
D1 0.043 0.044 0.044 0.045 0.044 0.049 0.046 0.044 0.045 0.053 0.047 0.000 0.044 0.046 0.045 0.049 0.059 0.046
D2 0.013 0.013 0.014 0.015 0.014 0.018 0.015 0.014 0.015 0.023 0.017 0.016 0.000 0.016 0.014 0.019 0.029 0.016
D3 0.048 0.048 0.048 0.049 0.049 0.053 0.050 0.048 0.050 0.057 0.051 0.050 0.048 0.000 0.049 0.054 0.063 0.051
E1 0.021 0.021 0.021 0.022 0.022 0.026 0.023 0.021 0.023 0.030 0.024 0.023 0.021 0.024 0.000 0.027 0.037 0.024
E2 0.101 0.102 0.102 0.103 0.102 0.107 0.104 0.102 0.103 0.111 0.105 0.104 0.102 0.104 0.103 0.000 0.117 0.104
E3 0.269 0.269 0.269 0.271 0.270 0.274 0.271 0.270 0.271 0.279 0.273 0.272 0.270 0.272 0.270 0.275 0.000 0.272
E4 0.050 0.051 0.051 0.052 0.051 0.056 0.053 0.051 0.052 0.060 0.054 0.053 0.051 0.053 0.051 0.056 0.066 0.000

Table A10. The prospect value of alternatives in all scenarios.

Sub-Criteria
Scenarios

Base 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ALT 1 5.156 5.145 5.136 5.080 5.189 5.378 5.193 5.159 5.131 5.088 5.191 5.194 5.170 5.228 5.178 5.240 4.966 5.082
ALT 2 6.464 6.461 6.459 6.439 6.493 6.724 6.478 6.457 6.407 6.108 6.453 6.552 6.480 6.651 6.461 6.399 5.838 6.406
ALT 3 6.171 6.169 6.168 6.150 6.205 6.352 6.234 6.181 6.164 5.849 6.117 6.168 6.188 6.322 6.173 6.203 5.456 6.031
ALT 4 5.338 5.333 5.326 5.297 5.366 5.557 5.390 5.344 5.291 5.003 5.344 5.360 5.353 5.447 5.359 5.407 5.135 5.227
ALT 5 5.458 5.455 5.453 5.444 5.485 5.643 5.491 5.454 5.412 5.188 5.499 5.495 5.464 5.569 5.459 5.489 5.126 5.357
ALT 6 7.921 7.922 7.923 7.910 7.970 8.256 7.988 7.926 7.826 7.515 7.924 7.962 7.931 8.077 7.941 7.956 7.119 7.656
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