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Abstract: One-shot devices are products that can only be used once. Typical one-shot devices
include airbags, fire extinguishers, inflatable life vests, ammo, and handheld flares. Most of them
are life-saving products and should be highly reliable in an emergency. Quality control of those
productions and predicting their reliabilities over time is critically important. To assess the reliability
of the products, manufacturers usually test them in controlled conditions rather than user conditions.
We may rely on public datasets that reflect their reliability in actual use, but the datasets often come
with missing observations. The experimenter may lose information on covariate readings due to
human errors. Traditional missing-data-handling methods may not work well in handling one-
shot device data as they only contain their survival statuses. In this research, we propose Multiple
Imputation with Unsupervised Learning (MIUL) to impute the missing data using Hierarchical
Clustering, k-prototype, and density-based spatial clustering of applications with noise (DBSCAN).
Our simulation study shows that MIUL algorithms have superior performance. We also illustrate
the method using datasets from the Crash Report Sampling System (CRSS) of the National Highway
Traffic Safety Administration (NHTSA).

Keywords: one-shot devices; missing data; clustering; imputation; inverse probability weighting;
unsupervised learning; clustering; k-prototype; DBSCAN

MSC: 62N05; 62F40; 62H30; 62P30

1. Introduction

One-shot devices are products that can only be used once. For example, airbags
deploy during collision. They have to be replaced as they cannot deploy again. EpiPens are
auto-injectors that are capable of injecting injections of epinephrine into patients who are
experiencing life-threatening allergic reactions. These pens need to be replaced because
they cannot be deployed again, obviously. Since most one-shot devices are life-saving, they
have to be extremely dependable in times of emergency.

As most products come with warranties and insurance, any small systematic errors
in one-shot device production would lead to colossal life and financial losses. The recent
bankruptcy of the Takata airbag company is an infamous example of this [1]. The quality
control of those products and predicting their reliability over time is critically important.
Accelerated Life Tests (ALTs) are popular procedures to assess and analyze the quality of
one-shot devices, and they depend heavily on the extrapolation of the life model from the
high-stress levels during the experiment to the user conditions. Any biases in the model
estimates would be amplified during the extrapolation.
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Under parametric settings, the one-shot device data with N observations would have
the likelihood function,

L(θ; xxx) =
N

∏
i=1

(F(ti; θ, xxxi))
1−δi (1 − F(ti; θ, xxxi))

δi , (1)

where θ is the parameter of the lifetime distribution with cumulative distribution function
F(·), xxxi is the vector of covariates of the ith subject, xxx = {xxx1, xxx2, . . . , xxxN}, ti is the observed
time when the ith one-shot device is activated and δi is the indicator equal to 1 if the device
functions correctly.

Manufacturers often carry out these tests before products enter the market, and we
rarely test them in actual user conditions. To address this issue, we can refer to publicly
available datasets that collect information from actual usage and retrospectively analyze the
reliability of those products. For example, the Crash Report Sampling System (CRSS) of the
National Highway Traffic Safety Administration (NHTSA) ([2]) has collected national crash
data since 2016. It collects details of car crashes, including the status of airbag deployment.
It provides a good data source for evaluating different car safety systems during the actual
user conditions. This kind of retrospective study is vitally important as it can indicate
potential problems in safety devices early and avoid disastrous replacements similar to the
Takada airbag recall, see [1].

In most reliability testing, there are seldom any missing data as the experiments are
under well-controlled conditions. However, datasets used in retrospective studies often
have missing data. For example, in CRSS, the proportion of missing observations in the
datasets is substantial (at least 16.43% in 2017, 13.39% in 2018, 10.00% in 2019 and 11.78% in
2020). This is due to various difficulties in data collection, such as lack of human resources,
vehicle conditions or the severity of the accidents. Most popular statistical methods, like
multiple imputations, to handle missing data often require the missingness not to depend
on the response [3–5], which may not be reasonable in a retrospective study. This is because
some latent factors not recorded in the datasets may affect both the responses and the
missing mechanism. One obvious latent factor is whether the car was parked in a covered
space, which is a factor of the airbag lifetime and overall car condition but is not reported
in the CRSS. The existence of latent variables leads to heterogeneous data and produces
biased imputation results.

Unsupervised learning (UL) techniques such as k-prototype, DBSCAN, and Hierarchi-
cal Clustering can effectively discover hidden variables in various domains. In the medical
field, refs. [6,7] utilize these methods to classify patients more precisely. They improve the
categorization of primary breast cancer and heart failure with maintained ejection fraction
by finding separate patient clusters with diverse clinical profiles and outcomes. In engi-
neering, ref. [8] apply the algorithms on railway vibration data to extract useful features for
defect detection. UL seems helpful in categorizing the datasets into homogeneous subsets,
the observations of which should have similar latent factors.

To analyze the one-shot device data with missing observations and latent factors, we
propose using an unsupervised learning algorithm to form clusters, of which the data
are considered homogeneous, and a standard statistical imputation technique should
be possible. This paper is organized as follows: Section 2 introduces the missing data
in one-shot data analysis and the inverse probability weighting (IPW). We review the
traditional imputation methods in Section 3. We propose the novel multiple imputations
with unsupervised learning (MIUL) in Section 4. We compare the proposed algorithm with
some traditional missing data-handling methods in Section 5 and illustrate the usefulness
of using CRSS datasets in Section 6. We provide concluding remarks and future research
directions in Section 7.
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2. Missing Mechanisms and IPW

There are many reasons missing data exist in one-shot device analysis. In particular,
when we analyze data from consumers, covariates are often lost for various reasons. For
example, customers may not recall certain variables or outcomes, or data entries may be
deleted due to human error.

2.1. Missing Data Mechanisms

The missing data mechanism describes how the missingness appears in the datasets.
Denote di to be the missing indicator for the ith observation, and di = 1 if all the covariates,
age of the devices at the instance and the survival statuses are observed, and di = 0
otherwise. We denote X∗ to be the variables that are completely observed for all data entries,
and X∗

i is the corresponding value of the ith observation. If Pr(di = 0|Xi) = Pr(di = 0)
which is a constant, the missing mechanism is referred to as missing completely at random
(MCAR); if Pr(di = 0|Xi) is not constant but independent of the missing values, it is
referred to as missing at random (MAR). Otherwise, we say the mechanism is missing not
at random (MNAR).

If data are MCAR, analysis based on complete cases remains valid with respect to
yielding unbiased results but loses statistical power [9–11]. The analysis may yield biased
results if data are MAR, but this can be overcome using appropriate statistical methods [12].
If data are MNAR, the probability that a variable value is missing depends on the missing
value and cannot be fully explained by the remaining observed variables. In that case,
analysis tends to yield biased results if missing data are not appropriately handled, and
sensitivity analyses are usually recommended to examine the effect of different assumptions
about the missing data. In most cases, the missing mechanism is not MCAR, and handling
the missing data properly is essential for valid estimation results.

2.2. Inverse Probability Weighting

Dropping the observations with missing information (i.e., complete case analysis) is
generally not recommended as it removes much information and may also introduce biases
in the model estimation. Therefore, in the analysis of missing data in the one-shot device
with completing risks, extra caution is required to assess the extent and types of missing
data before analysis, explore potential mechanisms that contribute to the missing data and
use appropriate missing-data strategies to handle the missing data and conduct sensitivity
analysis to assess the robustness of research findings.

The inverse probability weighting (IPW) method is a popular statistical approach to
handling missing data, see [13]. IPW is a technique that can correct the bias resulting from
complete data analysis and is also utilized to adjust for unequal fractions in missing data.
IPW addresses this issue by assigning weights to each individual in the analysis based
on the inverse of the corresponding probability of being a complete case. These weights
balance the distribution of observed data to resemble a distribution with no missing data,
thus reducing the bias introduced in a complete-case analysis.

Usually, we denote the non-missing probability as pi = p(xxx∗i ), where xxx∗ are the
covariates observable for all observations and X∗

i are the corresponding values for the ith
entry. Under the IPW method, the log-likelihood function of one-shot device data is

ℓIPW(θ; xxx) =
N

∑
i=1

di
pi
((1 − δi) ln(F(ti; θ, xxxi)) + δi ln(1 − F(ti; θ, xxxi))), (2)

and the score function is

Sθ(θ) =
∂ℓIPW(θ; xxx)

∂θ
=

N

∑
i=1

di
pi

(
1 − δi

F(ti; θ, xxxi)
− δi

1 − F(ti; θ, xxxi)

)
∂F(ti; θ, xxxi)

∂θ
. (3)
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If we assume that a parametric model for the non-missing probability, pi = p(xxx∗i ; α), the
score function for estimating pi would be

Sα(α) =
N

∑
i=1

(
di

p(xxx∗i ; α)
− 1 − di

1 − p(xxx∗i ; α)

)
∂p(xxx∗i ; α)

∂α
, (4)

where Sα(α̂) = 0 and p̂i = p(xxx∗i , α̂) is the corresponding estimate.

3. Literature Review on Imputation

Besides the IPW method, imputation strategies provide alternative ways to handle
missing data. They are more intuitive as they fill out the missing data and give “complete
datasets”. Researchers can use the datasets directly without complicated mathematical
formulas. Here are a few popular methods for imputing missing data.

3.1. Single Imputations
3.1.1. Mean (or Mode) Imputation

Imputation is a common strategy for dealing with missing data. It fills in the blanks
with an appropriate value to create a “completed” dataset that can be analyzed using
traditional statistical procedures. The most direct and intuitive strategy for continuous
variables is to replace missing observations with the mean of the observed sections, known
as mean imputation, see [14]. Similarly, unobserved categorical and ordinal variables
could be substituted by the mode of the observed ones (mode imputation). However,
because this method does not take into account association across variables [15,16], it also
produces biased and over-fitting results [17]. In Figure 1, we show how to perform a mean
imputation. The variable Region represents the region of a car accident, the variable Age
represents the age of the car involved, and the variable Success? represents whether the
airbags of the car function properly.

Figure 1. Illustration on how to perform a mean imputation. The highlighted entries are the missing
observations, and the red numbers represent the values imputed by the mean imputation. The table
on the left is complete data, and the table in the middle is the data with missing observations. The
table on the right has the missing data imputed by the mean of observed values.

3.1.2. Expectation Maximization Imputations

The expectation maximization (EM) imputation is a type of single imputation tech-
nique using the EM algorithm, and it is extensively studied by various literature [5,18].
Refs. [19,20] also consider using EM for the masked causes of one-shot devices. The EM
algorithm is an iterative procedure of expectation (E-steps) and maximization steps (M-
steps). In one iteration, the expected values of the missing responses or covariates would
be updated as the mean conditional on the observed covariates, such as the components’
manufacturer and current stress levels (E-step). The complete data formulas will then
be applied to the dataset with missing data filled from the E-step to obtain the updated
estimates by maximizing the complete likelihood function (M-step). The E-step and M-step
will be performed iteratively until the imputed values converge. To illustrate how EM
imputation works, we use the data example in Figure 1. We assume the Age follows the
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exponential distribution with rate = λ and the probability of Success, S = 1, given the Age
of the car is

P(S = 1) =
{

β, Age ≤ 6
0.5β, Age > 6

, for 0 < β < 1.

The observed likelihood function is

L(λ, β) = 0.5β3(1 − β)2(1 − 0.5β)λ7 exp(−33.5λ)(1 − 0.5 exp(−6λ))β,

and the complete log-likelihood is

ℓc(λ, β) =(1 + I(Age5 > 6)) ln 0.5 + 4β + 2 ln (1 − β) + ln (1 − 0.5β)

+ 8 ln λ − (33.5 + Age5)λ

with relevant expected values given the current parameter estimates λ(t) and β(t) being

E(I(Age5 > 6)) = exp
(
−6λ(t)

)
and E(Age5) = 1/λ(t).

We then maximize Qt(λ, β) = E
(
ℓc(λ, β)|λ(t), β(t)

)
to obtain the next parameter estimates,

λ(t+1) and β(t+1). Figure 2 illustrates how the EM imputation can be implemented.

Figure 2. An illustration on how we implement EM algorithm imputation. The highlighted entries are
the missing observations, and the red numbers represent the values imputed during the imputation
procedure. The initial parameter estimates are λ(0) = 0.1, β(0) = 0.5. We impute the missing data
with the expectation based on the current parameter estimates, λ(t), β(t).

3.2. Multiple Imputations

Multiple imputations have been considered as a gold standard to account for missing
data, and more specifically, the fully conditional specification (FCS) method (also labeled
the multiple imputations by chained equations (MICE) algorithm) [21]. The multiple
imputations by FCS impute multivariate missing data on a variable-by-variable basis, which
is particularly useful for studies with large datasets and complex data structures, see [22]. It
requires a specification of an imputation model for each incomplete variable and iteratively
creates imputations per variable [23]. Compared to a single imputation, MI replaces each
missing value with multiple plausible values, allowing uncertainty about the missing data
to be considered. MI consists of two stages. The first stage involves creating multiple
imputed datasets. In practice, we can first apply Box-Cox transformation on the numerical
covariates such that they follow a multivariate normal distribution approximately. The
MI method imputes the missing responses or the covariates stochastically based on the
distribution of the observed data. We will repeat the process five to ten times to create
ten imputed datasets. Once again, we use the data example in Figure 1 to show how
multiple imputation works. We assume the variable Age has a linear relationship with
the variables Region and Success and the log-odds of Success are linearly related to the
variables Region and Age. We first impute the missing data with the average of observed
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values. Then, we form a regression model on the variable under imputation and predict the
missing value with the model. If the variable is numerical, we often use the predictive mean
matching method, which imputes the missing entries with the closest observed values
to the predictions. For binary variables, we can perform a logistic regression and draw
Bernoulli random variables with the predicted probabilities to impute the missing variables.
Figure 3 shows how multiple imputation works step by step. For brevity reasons, we do
not consider the model coefficient uncertainty in this example.

Figure 3. An illustration of how the multiple imputation procedure works. The highlighted entries are
the missing observations, and the red numbers represent the values imputed during the procedure.
In this example, we assume there is no model coefficient uncertainty.

In the second stage, we will analyze each of the five or ten imputed datasets separately
using standard statistical models and then combine the results from the five or ten analyses
to report the conclusion; see [24]. One popular choice is to use Rubin’s Rules [25,26] to
combine the estimates β̃(m), m = 1, . . . , M from multiple imputed datasets, and obtain the
the pooled estimate and variance,

β̂ =
1
M

M

∑
i=1

β̃(m) and VTotal = VW + VB + VB/M,

respectively, where

VW =
1
M

M

∑
i=1

(
SE

(
β̃(m)

))2
and VB =

1
M − 1

M

∑
i=1

(
β̃(m) − β̂

)2
,

SE
(

β̃(m)
)

is the standard error of of the estimate from the m imputed dataset.
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4. Multiple Imputation with Unsupervised Learning

This research proposes new imputation methods to handle missing data in one-shot
devices that hybridize multiple imputations with unsupervised learning (MIUL). Tradi-
tional imputation assumes the data are from a homogenous group, which is only sometimes
valid in the actual ALTs or observational studies on a one-shot device. The components
of devices/systems may be coupled in the manufacturing process or assembly, so the
components within the device may have interrelationships, leading to data with latent
heterogeneity and dependence, which can be described by frailty models [27,28].

It is well-known that the latent variables will affect the model coefficients when they
are correlated with the observed variables. Since the latent variables are not observed,
an unsupervised ML algorithm would be a powerful way to discover hidden clusters
of the devices based on the observed variable [29]. We cluster one-shot devices into
groups with different characteristics using machine-learning techniques. Within each
group, their latent factors should be similar to each other. Therefore, the unknown latent
factors are “controlled”, and the regression model parameters would be correctly adjusted.
We can apply several conventional unsupervised clustering techniques to the observed
covariates to discover hidden structures. For example, the k-means clustering technique is
a popular method for clustering analysis in data mining. It is an unsupervised ML method
partitioning the dataset into k clusters according to the distance of each observation to
the cluster means. Once we cluster the data, we can impute the data using the following
Algorithm 1.

Algorithm 1: Multiple imputations with unsupervised learning (MIUL)
Data: Data with missing observations
Result: Multiple imputed datasets
Using unsupervised learning algorithms, divide the input data set into K clusters

C1, C2, · · · , CK;
for Each cluster Ck, k = 1, 2, · · · , K do

Multiple impute the data under Ck to obtain the imputed datasets,
D(I)

1k , D(I)
2k , · · · , D(I)

Mk;
end

for Each Imputed dataset D(I)
mk , m = 1, 2, · · · , M do

Combine the imputed datasets, D(I)
m1 , D(I)

m2 , · · · , D(I)
mK as the mth imputed

dataset D(I)
m .

end

Treat the imputed datasets D(I)
1 , D(I)

2 , · · · , D(I)
M as multiply imputed datasets and

follow the polling procedure of multiple imputations.

This algorithm describes our proposed methods: multiple imputations with unsu-
pervised learning (MIUL). Ref. [30] also discuss similar ideas, but they mainly focus on
imputing datasets for clustering, while this research study focuses on clustering the datasets
for imputation. There are several popular unsupervised learning algorithms, and they are
listed below.

4.1. Hierarchical Clustering

Hierarchical Clustering is a technique that creates an ordered sequence of data clusters
using a specific dissimilarity measure [31]. The concept of grouping hierarchically was
first introduced by [32]. The term “Hierarchical Clustering” was first coined by [33], who
discussed the approaches and the choice of distance measure. Ref. [34] gives further details
on how Hierarchical Clustering can be done. It is also an unsupervised ML method that
tries to build a hierarchy of clusters. In the agglomerative approach, each observation is first
treated as a distinct cluster. These single observation clusters gradually merge depending
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on the smallest dissimilarity. Given the distance measure between two data points Xi, Xi′

is dist(Xi, Xi′), there are three common dissimilarity measures between two clusters [35]:
suppose G and H are two groups during the clustering process:

Single linkage (SL) dissimilarity,

dSL(G, H) = min
{Xi∈G,Xi′∈H}

dist(Xi, Xi′),

complete linkage dissimilarity,

dCL(G, H) = max
{Xi∈G,Xi′∈H}

dist(Xi, Xi′),

and group average (GA),

dGA(G, H) =
1

NG NH
∑

Xi∈G
∑

Xi′∈H
dist(Xi, Xi′),

where NG and NH are the numbers of data points in Groups G and H, respectively. Similarly,
in the divisive approach, all the observations are treated as one cluster and split into clusters
based on dissimilarity until each observation is treated as a distinct cluster. Both methods
create multi-tiered hierarchies as the procedure goes on. They span the extremes of each
observation existing as their cluster and all observations combining into a single, all-
encompassing cluster. A dendrogram is a visual representation of the cluster-merging
process. The process can stop at k clusters if the average dissimilarity between a pair
of clusters changes substantially. Factors like many irrelevant variables may obscure
clusters, as they only exist within a small subset of variables. Thus, despite seeming
close due to relevant variables, the curse of dimensionality can create a vast distance
between observations in a high-dimensional space, which challenges the effectiveness of
dissimilarity measures and the accuracy of the resulting clusters.

4.2. K-Prototype

K-prototype was initially proposed by [36]. The term “prototypes” refers to the
centroids or representative points of clusters in a dataset. It extends the well-known k-
means clustering algorithm to the categorical variables or attributes with mixed numerical
and categorical values. The K-means clustering algorithm first normalizes each variable of
the ith observation, X∗

i = (x∗i1, · · · , x∗ij, · · · , x∗i J), by

xij =
x∗ij − min(x∗1j, · · · , x∗I j)

max(x∗1j, · · · , x∗I j)− min(x∗1j, · · · , x∗I j)
,

where Xi = (xi1, · · · , xij, · · · , xi J) It, then, partitions numerical dataset variables
XXX = {X1, X2, · · · , Xn} into k clusters by minimizing the within groups sum of squared
error (WGSS),

P(W, QQQ) =
k

∑
l=1

n

∑
i=1

wi,ldist(Xi, Ql), (5)

where wi,l ∈ {0, 1}, ∑k
l=1 wi,l = 1, 1 ≤ i ≤ n, is the indicator of the ith observation being in

the lth cluster, Ql , QQQ = {Q1, Q2, . . . , Qk} is a set of observations in the same cluster, and
dist(Xi, Ql) is the squared Euclidean distance between Xi and the cluster center of Ql ,

dist1(Xi, Ql) =
p

∑
j=1

(xi,j − ql,j)
2, (6)
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where xi,j is the value of the jth variable of the ith observations and there are p numerical
variables. We adopt the elbow method to determine k, which gives the reduction of
minimized WGSS less than 10%.

However, datasets often contain both numerical and categorical variables. Suppose the
first p variables are numerical and the remaining m− p variables are categorical in a dataset.
The k-prototype algorithm replaces d(Xi, Ql) by the following dissimilarity measure,

dist2(Xi, Ql) =
p

∑
j=1

(xi,j − ql,j)
2 + γ

m

∑
j=p+1

δ(xi,j, ql,j), (7)

where

ql,j =

{ 1
N ∑i∈Ql

xi,j, for 1 ≤ j ≤ p
ci,j, for p + 1 ≤ j ≤ m

,

and cl,j is the most frequent category of jth variable in the cluster. Ql and δ((xi,j, cl,j) = 1 if
xi,j = ql,j and zero otherwise. The weight γ is chosen to balance the effects of numerical and
categorical attributes. Details on how to select γ can be found in [37]. Ref. [38] reduces the
misclassification of data points near the boundary region by considering the distribution
centroids for the categorical variables in a cluster, and [39] further improves it by proposing
a new dissimilarity measure between data objects and cluster centers.

4.3. Density-Based Spatial Clustering of Application with Noise

Density-Based Spatial Clustering of Application with Noise (DBSCAN) was originally
proposed by [40]. The algorithm is uniquely designed to discover clusters of arbitrary
shape, and it requires minimal domain knowledge to determine input parameters with
very general assumptions [41]. It is efficient for large databases, making it a practical choice
for various applications. The effectiveness and efficiency of DBSCAN were evaluated using
synthetic and real data.

The concept of density-based clusters is central to the operation of DBSCAN. The
Eps-neighborhood of a point p in the dataset D is

NEps(p) = {q ∈ D|dist(p, q) ≤ Eps},

where dist(p, q) is a distance measure between points p and q. If, p ∈ NEps(q) and the
neighborhood size , |NEps(q)| is greater than a preset minimum number of points, MinPts,
then p is directly density-reachable to q. We also define p as density-reachable from q if there is
a chain of points p1 = p, p2, . . . pn = q which are directly density-reachable consecutively.
p and q are density-connected if they are both density-reachable from a common point o.
The cluster here is defined as the set of points that are density-reachable from each other
(maximality) and density-connected (connectivity). The set of points not belonging to any
cluster are considered to be noise. Ref. [42] addresses the issue of detecting the cluster
in data of varying densities by assigning the noise points to the closest eligible cluster.
Ref. [43] revisits the DBSCAN algorithm and discusses how to obtain the appropriate
parameters for DBSCAN. Ref. [44] extends the algorithm to produce DBSCAN clusters in a
nested, hierarchical way. Ref. [45] implements the hierarchical DBSCAN in Python that
gives the best DBSCAN parameters.

4.4. Gower’s Distance

Most dissimilarity measures for numerical variables are based on the Euclidean dis-
tance, the square root of (6). If discrete variables exist, the k-prototype algorithm adopts
the dissimilarity measure states in (7). However, both of them require the variables
to be completely observed. We may use Gower’s distance proposed by [46] to handle
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partially observed data entries. It provides another similarity measure between the ith and
kth observations,

distG(i, k) =
∑m

j=1 wjd
(j)
ik dist(j)

ik

∑m
j=1 wjd

(j)
ik

, (8)

where d(j)
ik is the indicator if the jth variable is observed for both the ith and kth data entries,

dist(j)
ik is the distance measure of the jth variable between ith and kth observations, x(j)

i and

x(j)
k . If jth variable is binary or nominal, dist(j)

ik = 1 if x(j)
i ̸= x(j)

k and 0 otherwise. If the

jth variable is numerical or ordinal, dist(j)
ik would be the absolute difference, standardized

by the range |x(j)
i − x(j)

k |/range(x(j)
i ). The weight for the jth variable, wj, indicating the

importance of the variable, is usually set to one, based on the Adansonian principle of
equal weighting, see [47].

5. Simulation Study
5.1. Simulation Settings

We develop a simulation study to compare various methods when handling missing
data in one-shot devices. Suppose we are monitoring the quality of airbags in the United
States. For simplicity, we assume that the airbags have exponential lifetimes with the
hazard rate, λ(xxx),

f (ti; xxxi) = λ(xxxi) exp(−λ(xxxi)ti), for ti > 0,

where xxxi is the variables that are associated with the airbag quality, the car make (A, B, and
C), the car registration region (Northeast, Midwest, South, and West) and parking location
(indoor or outdoor). To ensure the value is positive, we adopt a log-linear function.

λactual(xxxi) = exp(β0 + βmake + βregion + βpark), (9)

where β0 is the baseline log-hazard for all airbags, equal to −6, −5 and −4 representing
high, medium and low reliability (Relb.) levels of the devices, around 62%, 82% and
93%, respectively. βB

make = −0.4 and βC
make = −0.8 correspond to the log-hazard rates of

airbags from the car makes B and C relative to A. (βMW
region, βS

region, βW
region) = (−0.6, 0.4, 0.8)

represents the log-hazard rates of cars from Midwest, South and West relative to those from
Northeast, accordingly.

The effect of outdoor parking is assumed to be βout
park = 0.6 relative to parking inside.

Parking location is quite possibly related to various factors, namely, car owner’s location
(urban or rural), car body type (sedan, Sport Utility Vehicles and others), whether the car
is in the West region, and whether the driver is an alcohol drinker. Here, we assume the
probability of outdoor parking is linearly related to the factors mentioned. Parking location
is unlikely to be recorded, and we consider it a hidden variable. Therefore, the regression
equation would be limited to

λmodel(xxxi) = exp(β0 + βmake + βregion), (10)

which resembles the model misspecification in actual modeling.
Compared to other reliability experiments, this is an observational study, and some

data are inevitably missed during the data collection. We simulate two different types
of missing indicators. One is unrelated to the one-shot device response, nor any hidden
variable corresponding to the MAR mechanism. We also generate another missing indicator
related to the hidden variable, parking location, representing the MNAR scenarios. IPW
uses logistic regression with all the fully observed variables to model the probability of non-
missing. MI and all the MIUL methods use all the variables in the datasets for imputation.
Details of the parameter setting can be found in the Appendix A.
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In the simulation, we consider the scenarios with 1000, 2000, and 4000 cars we exam-
ined, representing small, medium, and large datasets. We also consider three missingness
levels: around 10%, 15%, and 25%. The simulation study aims to analyze car makes’
coefficients to see which one has potential problems.

5.2. The Competitors’ Details
5.2.1. Traditional Methods

In the simulation, we compare six missing handling methods. The first three are
mean imputation (Mean.I), IPW and MI, representing traditional and popular missing
handling methods.

In Mean.I, we impute the missing numerical observations by the average of the ob-
served variables. If the variables are categorical, it would be intuitive to use the mode (the
most frequently observed categorical values). However, it always imputes the survival
status as “success” as the one-shot devices are highly reliable. To have a more sensible im-
putation, we impute categorical variables by linear discrimination analysis, for which linear
equations are formed based on other variables to discriminate the categorical responses.

For IPW, we use all the fully observed variables to perform logistic regression on
non-missing indicators (1- the missing indicator of the missing variable). We then predict
the probabilities of non-missingness, pi and weight the score function by 1/pi when we
estimate the parameters for a one-shot device.

For MI, we use the default setting of mice() function from the mice package [48] in R
program [49]. By default, the program creates linear equations for imputing missing data.
Numerical variables are imputed by the predictive mean matching method (which gives
the closest observed values to the missing value prediction based on a linear model). It also
imputes the categorical values by the prediction from logistic regression, multinomial re-
gression and proportional odds model regression for binary, nominal and ordinal variables,
respectively. We then estimate the parameters, β̃

(m)
make for the mth imputed data. We then

use Rubin’s Rules [25,26] mentioned in Section 3.2 to obtain the estimate and variance.

5.2.2. Our Proposed Methods

The other three methods are based on our proposed method MIUL with the unsuper-
vised learning algorithms, k-prototype (K.MI), DBSCAN with Gower’s distance (DB.MI)
and Hierarchical Clustering with Gower’s distance (HC.MI). Before clustering, we calculate
the distance between data points by daisy function in the cluster package [50].

For k-prototype, we use the kproto function from the clustMixType package by [51].
We first group the data with the number of clusters k = 3 and then keep increasing the
cluster numbers until the reduction of the within-cluster sum of squares is less than 10%.

For DBscan, we modify the suggestion by [52] and select the Eps considering the
distance from each point to its third-nearest neighbor and define the minimum data points
for a cluster, MinPts as 50. We, then, use the dbscan function fpc package by [53] to
perform DBSCAN clustering.

For Hierarchical Clustering, we use the hclust from the stats package by [49] and
we cut trees to form five clusters.

After clustering, we use the MI methods mentioned above to impute data within each
cluster. We combine the clusters as imputed datasets and follow Rubin’s Rules again to
infer the estimation.

5.3. Simulation Results

To evaluate the traditional methods and our proposed methods, we compare the biases
and the mean squared error (MSE) of the car make coefficient βmake, which are defined as

Bias =
1
n

n

∑
i=1

(β̂make,i − βmake), MSE =
1
n

n

∑
i=1

(β̂make,i − βmake)
2, (11)
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for the simulation size n, which is 1000 in our simulation study. We have six scenarios
focusing on different missing data cases.

Scenario 1 focuses on the response variable, the survival statuses of one-shot devices,
being missing at random. Tables A2–A5 show the bias and mean squared error of β̂B

make
and β̂C

make when the response variable is missing at random. Although mean imputation
generally has lower biases when the one-shot devices have higher reliability, our proposed
methods become more accurate when we have more failure responses. The reason is quite
apparent: the majority of the devices are successful and the mean imputation imputes
the missing response as a success, which is the mode of the response. As a result, the
imputed responses are most likely in favor of the success case and result in worse biases.
When the reliability is high, the multiple imputations with unsupervised learning (MIUL)
are generally better. However, when we consider the mean squared errors of β̂B

make and
β̂C

make, the traditional statistical methods do not have any advantage. The DB.MI performs
better when the product reliability is high, while the K.MI works better when the product
reliability is high.

Scenario 2 considers the survival statuses of one-shot devices being MNAR due to
hidden variables. The simulation results are presented in Tables A6–A9. Considering
the biases, they have similar patterns to the previous scenario. The mean imputation has
smaller biases with low product reliability, while the MIUL algorithm gains an advantage
when product reliability decreases. For MSE, MIUL algorithms generally perform better
and, in addition, K.MI has superior performance when product reliability is low.

Scenario 3 considers the age of one-shot devices being missing at random. The
simulation results are presented in Tables A10–A13. Similar to Scenarios 1 and 2, Mean.I
has the most negligible bias when product reliability is low. However, as the reliability
becomes high, DB.MI’s performance suppresses other methods and HC.MI comes next.
When we look at MSE, DB.MI has the smallest and HC.MI has the second smallest. This
indicates that DB.MI and HC.MI outperforms K.MI when the missing variable is numeric
instead of categorical.

Scenario 4 considers the age of one-shot devices being missing not at random due to
the hidden variable and Tables A14–A17 summarize the results. Here, we have a similar
conclusion as Scenario 3, that Mean.I has a low bias when the reliability is low. DB.MI
works best regarding bias and MSE when the reliability is high and HC.MI is the second
best. Occasionally, MI has less MSE compared to others.

Scenario 5 represents the case when the covariate Region is MAR and the simulation
results are shown in Tables A18–A21. The mean imputation usually has the most insignif-
icant biases when the product reliability is low. However, our proposed MIUL methods
work relatively well for most cases and HC.MI is slightly better than other MIUL methods.

Scenario 6 represents the case when the covariate Region is missing not at random and
we present the results in Tables A22–A25. Again, the Mean.I has the most negligible bias
when the reliability of the one-shot device is low, while MIUL methods, especially HC.MI,
have better performance in bias for low-reliability products. When we look at the MSE,
DB.MI seems the best when the reliability is low to medium, while MI performs pretty well
when the reliability is low.

The simulation shows that MIUL algorithms consistently outperform the traditional
approach, namely the mean imputation, IPW and MI approaches for products. This
tendency is more obvious when the products have a medium or high reliability. This is
because high-reliability products produce fewer failure cases. Then, traditional methods
tend to weight success cases higher and create biases as they cannot observe the latent
variables in the dataset.

With MIUL, the clustering of the observations attempts to “discover” the latent vari-
ables and gives more flexible equations for imputing the missing variable. The target
parameters βB

make and βC
make are estimated accurately with different variables under various

missing mechanisms. Generally speaking, when the survival statuses of one-shot devices
are missing, K.MI is the best; when the ages of one-shot devices are missing, both DB.MI
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and HC.MI work well; when a covariate is missing, HC.MI works well in most cases. This
gives HC.MI the best overall performance among all MIUL algorithms.

To summarize, MIUL algorithms suppress the traditional missing data-handling
methods, especially when the product reliability is medium to high, which is valid for
most one-shot devices. The missing mechanism does not impact their relative performance
much, suggesting that we prefer MIUL most of the time.

6. Applications with the CRSS Data
6.1. CRSS Datasets

In this section, we illustrate the application of the MIUL algorithm on the Crash
Report Sampling System (CRSS) datasets 2016–2020. National Highway Traffic Safety
Administration (NHTSA) developed and implemented CRSS to reduce the motor vehicle
crash experience in the United States [54]. It is an annual survey designed independent of
other NHTSA surveys. It is a valuable instrument for comprehending and analyzing crash
data, yielding vital insights that can be used to enhance road safety. For simplicity reasons,
we ignore the complex sample design and treat the data as independent in this illustration.

6.2. Defining the Airbag Success in CRSS Data

In CRSS, the airbag variable indicates when the airbag deploys or not during the
accident. It does not explicitly imply whether the airbags function correctly. Here, we make
a few modifications to the variable. First, we define the situation when the airbags should
be deployed. It is reasonable to assume that an airbag should be deployed when the driver
or passengers are critically injured. After all, airbags are designed to reduce the severity of
injury. As the airbag sensor is at the front and due to the size of a car, the airbag should be
deployed if the areas are impacted. We also assume the airbag should be deployed if the
car has to be towed after the accident, as the collision is severe. We present the details of
how such a a situation is exactly defined in Appendix B. Then, we can define the airbags
as functioning correctly during the accident if the airbags deploy when they should or
they do not deploy when they should not. Figure 4 presents the airbag success rate by
manufacturing year for different accident years. The success rates are around 95%, which is
reasonable. Each manufacturing year’s airbag success rates are consistent with each other
for different accident years. Thus, we can conclude that such a definition for airbag success
looks reasonable.
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Figure 4. Airbag success rate by manufacturing year for the accidents that happened between 2017
and 2020.
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6.3. Data Analysis

To simplify the modeling process, we use the same model (10) in the simulation
study and we limit our target to comparing the airbag’s reliability of the car makes’ ori-
gins, namely, America, Asia and Europe. Throughout the accident years 2017–2020, the
missing rates are 16.43%, 13.39%, 10.00% and 11.78%, respectively, and they are close to
medium to low missing levels in the simulation study. Excluding the observations with
missing variables, the success rate of the airbags is about 95%, as shown in Figure 4, con-
firming that airbags are highly reliable products. The CRSS generally publishes around
95,000 observations each year. Due to technical and resource limitations, we usually work
on a dataset with sizes smaller than CRSS. In our illustration, we only sample 1000 (small),
2000 (medium) and 4000 (large) from the CRSS dataset. Then, we repeat this process
1000 times and record the estimates of the log hazard rate of airbags in Asian and European
cars relative to American cars. There are two reasons for the sub-sampling. First, as the
sample size increases, while there are some hidden variables that we cannot observe, the
biases would increase as sample size increases which can be observed in the simulation
study above. Therefore, we sample observations from large datasets and see if the estimate
averages vary for different sample sizes. Second, it would allow a more straightforward
confidence interval calculation using the bootstrap method while fewer computational
resources are required. It also resembles the standard airbag tests of particular makes and
models, as the sample sizes rarely exceed 4000. We report the means, standard errors (SEs)
and the 95% confidence intervals (lower limit, CI.L and upper limit, CI.U) in Tables 1 and 2.

Table 1 presents the estimates of βAsian
make under various imputation methods. The

estimates are consistent for various sample sizes, indicating that a sample size of 2000 to
4000 should be enough for the parameter estimation. All the β̂Asian

make are most likely around
zero. Therefore, we can safely claim that the airbag motility of Asian brands is pretty much
similar to that of American ones.

Next, we present the estimates of β
European
make in Table 2. The estimates increase when the

sample size increases for traditional methods, while the estimates from the proposed MIUL
methods remain relatively stable. This suggests that the MIUL methods are more robust to
the sample sizes. The CIs of β̂

European
make do not cover the zero under K.MI when the sample size

is large for accident years 2019 and 2020 with the corresponding Wald statistics 0.503
0.231 = 2.175

(p-value= 0.030) and 0.529
0.253 = 2.095 (p-value= 0.036). Since K.MI usually has the most

negligible bias and MSE, especially when the sample size and product reliability are high
with medium to low missing levels, the quality of airbags of European manufacturers is
likely significantly worse than the American ones, requiring further investigation.

Table 1. The mean, standard error (SE), 95% confidence interval lower and upper limits (CI.L, CI.U)
estimates of βAsian

make under various imputation methods with bootstrap samples of 1000 (Sml), 2000
(Med) and 4000 (Lrg).

Methods
Year Size Stat Mean.I IPW MI K.MI DB.MI HC.MI

2017 Sml Mean −0.00520 −0.00883 −0.01023 0.00636 −0.01036 −0.01041
SE 0.35721 0.35774 0.35517 0.32478 0.35749 0.35748

CI.L −0.73138 −0.74240 −0.74146 −0.65902 −0.73862 −0.73884
CI.U 0.70197 0.68470 0.69647 0.62163 0.68764 0.68775

Med Mean 0.01484 0.01049 0.00930 0.01770 0.01030 0.01026
SE 0.23614 0.24019 0.23639 0.22898 0.23549 0.23552

CI.L −0.45937 −0.47115 −0.46515 −0.43956 −0.46083 −0.46396
CI.U 0.46983 0.46826 0.45999 0.44759 0.46399 0.46300

Lrg Mean 0.02493 0.02057 0.01909 0.02714 0.02097 0.02092
SE 0.16560 0.16903 0.16707 0.16564 0.16536 0.16541

CI.L −0.29847 −0.31457 −0.31544 −0.31185 −0.31176 −0.31219
CI.U 0.33600 0.33924 0.33859 0.34427 0.33320 0.33312
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Table 1. Cont.

Methods
Year Size Stat Mean.I IPW MI K.MI DB.MI HC.MI

2018 Sml Mean 0.01970 0.02723 0.01685 0.02073 0.01631 0.01623
SE 0.33288 0.33681 0.33263 0.30876 0.33149 0.33135

CI.L −0.63370 −0.62636 −0.63507 −0.57207 −0.63620 −0.63582
CI.U 0.65528 0.67321 0.66805 0.58658 0.64048 0.64060

Med Mean 0.03063 0.03812 0.03144 0.03497 0.02886 0.02874
SE 0.23144 0.23279 0.22925 0.22562 0.23077 0.23081

CI.L −0.41830 −0.40815 −0.42225 −0.41337 −0.41929 −0.41835
CI.U 0.48970 0.49713 0.48528 0.47663 0.47902 0.47678

Lrg Mean 0.01974 0.02741 0.01967 0.02583 0.01745 0.01735
SE 0.16032 0.16143 0.15951 0.15919 0.15976 0.15975

CI.L −0.30033 −0.29550 −0.30266 −0.30400 −0.30021 −0.30070
CI.U 0.32769 0.34210 0.31599 0.33177 0.32383 0.32292

2019 Sml Mean 0.02322 0.02289 0.02726 0.02150 0.02531 0.02537
SE 0.30592 0.30570 0.30348 0.29186 0.30543 0.30532

CI.L −0.56986 −0.57100 −0.57995 −0.54529 −0.56919 −0.56984
CI.U 0.60067 0.60591 0.61962 0.58495 0.60904 0.60940

Med Mean 0.03005 0.02988 0.03560 0.03289 0.03252 0.03247
SE 0.22268 0.22280 0.22270 0.21788 0.22174 0.22169

CI.L −0.41365 −0.41014 −0.39257 −0.40485 −0.39461 −0.39340
CI.U 0.45068 0.44856 0.46157 0.44709 0.45015 0.45006

Lrg Mean 0.03713 0.03695 0.04328 0.04274 0.03957 0.03952
SE 0.14095 0.14145 0.14193 0.14064 0.14053 0.14055

CI.L −0.23866 −0.25076 −0.23560 −0.22885 −0.23287 −0.23235
CI.U 0.31660 0.31528 0.32764 0.32541 0.32208 0.32310

2020 Sml Mean −0.05207 −0.05195 −0.04961 −0.04693 −0.04882 −0.04900
SE 0.32679 0.32686 0.32499 0.31155 0.32559 0.32565

CI.L −0.75252 −0.75609 −0.72875 −0.71641 −0.73368 −0.73715
CI.U 0.62621 0.61703 0.58905 0.55351 0.60640 0.61026

Med Mean −0.05094 −0.05105 −0.04930 −0.04889 −0.04853 −0.04860
SE 0.23119 0.23157 0.23300 0.22611 0.23053 0.23046

CI.L −0.49147 −0.49482 −0.50387 −0.47786 −0.48809 −0.48786
CI.U 0.39535 0.40019 0.40279 0.40522 0.39801 0.39755

Lrg Mean −0.06173 −0.06173 −0.06056 −0.05789 −0.05855 −0.05867
SE 0.15746 0.15778 0.15726 0.15485 0.15631 0.15630

CI.L −0.40157 −0.40060 −0.39700 −0.39529 −0.38936 −0.38874
CI.U 0.25195 0.25543 0.24474 0.23698 0.24169 0.23980

Table 2. The mean, standard error (SE), 95% confidence interval lower and upper limits (CI.L, CI.U)
estimates of β

European
make under various imputation methods with bootstrap samples of 1000 (Sml), 2000

(Med) and 4000 (Lrg)

Methods
Year Size Stat Mean.I IPW MI K.MI DB.MI HC.MI

2017 Sml Mean −0.02011 −0.03289 0.31172 0.70079 0.17739 0.17519
SE 1.80428 1.86420 1.14748 0.56135 1.46658 1.46665

CL.L −8.06343 −8.22431 −1.48400 −0.39785 −1.84854 −1.84319
CL.U 1.42867 1.53936 1.54589 1.62922 1.49423 1.48724

Med Mean 0.36758 0.38603 0.49093 0.67242 0.44369 0.44238
SE 0.53164 0.59659 0.43307 0.37890 0.43006 0.43005

CL.L −0.64688 −0.86281 −0.41189 −0.12741 −0.46466 −0.48352
CL.U 1.20380 1.25691 1.25447 1.34870 1.17280 1.17846

Lrg Mean 0.38532 0.41606 0.48753 0.60236 0.45673 0.45434
SE 0.29940 0.34218 0.28816 0.27733 0.28529 0.28575

CL.L −0.24345 −0.32304 −0.13967 −0.01447 −0.15739 −0.15425
CL.U 0.90793 1.03841 0.97901 1.08562 0.95691 0.95491
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Table 2. Cont.

Methods
Year Size Stat Mean.I IPW MI K.MI DB.MI HC.MI

2018 Sml Mean 0.16647 0.15027 0.35415 0.62988 0.25679 0.25582
SE 1.34332 1.37701 0.92730 0.58264 1.13752 1.13778

CL.L −1.36720 −1.77539 −1.06060 −0.48064 −1.17999 −1.22472
CL.U 1.38871 1.41256 1.41676 1.52952 1.36457 1.36863

Med Mean 0.36699 0.36244 0.45730 0.60685 0.41407 0.41211
SE 0.41562 0.43450 0.40177 0.36590 0.39731 0.39717

CL.L −0.47720 −0.51849 −0.41055 −0.11368 −0.42388 −0.41376
CL.U 1.07151 1.07604 1.15827 1.29320 1.10838 1.10896

Lrg Mean 0.37497 0.37219 0.45642 0.54508 0.41874 0.41656
SE 0.28811 0.30315 0.27793 0.26883 0.27054 0.27107

CL.L −0.24697 −0.29888 −0.16556 −0.04139 −0.18245 −0.18405
CL.U 0.86209 0.89625 0.94845 1.01856 0.89849 0.90448

2019 Sml Mean 0.12799 0.14751 0.31003 0.59799 0.23611 0.23435
SE 1.12483 1.14024 0.89727 0.50208 0.97898 0.97823

CL.L −1.28459 −1.37239 −1.07873 −0.47576 −1.17632 −1.18715
CL.U 1.24107 1.27065 1.30010 1.43291 1.24504 1.24685

Med Mean 0.25313 0.27137 0.36703 0.51753 0.33018 0.32845
SE 0.40623 0.41212 0.37021 0.34687 0.36915 0.36883

CL.L −0.62547 −0.55190 −0.41421 −0.19964 −0.43137 −0.42785
CL.U 0.93457 0.94905 1.01682 1.14174 0.97396 0.97342

Lrg Mean 0.30675 0.32608 0.41438 0.50307 0.38252 0.37995
SE 0.24617 0.24904 0.23975 0.23126 0.23244 0.23235

CL.L −0.21820 −0.18353 −0.07694 0.02680 −0.08056 −0.08262
CL.U 0.75815 0.79900 0.85556 0.90354 0.79991 0.80472

2020 Sml Mean 0.14460 0.16218 0.36551 0.64016 0.28710 0.28645
SE 1.07676 1.08771 0.73292 0.56255 0.82508 0.82700

CL.L −1.23825 −1.31103 −0.84157 −0.40260 −0.96034 −1.03690
CL.U 1.31753 1.31334 1.37122 1.51630 1.27246 1.29429

Med Mean 0.27679 0.29828 0.40339 0.57873 0.36809 0.36792
SE 0.41222 0.41826 0.38554 0.36151 0.37847 0.37922

CL.L −0.61672 −0.55402 −0.40512 −0.14819 −0.46587 −0.47197
CL.U 0.97036 0.99896 1.03570 1.20528 1.02671 1.01124

Lrg Mean 0.30138 0.32174 0.41495 0.52914 0.38813 0.38716
SE 0.27387 0.27711 0.25597 0.25260 0.24996 0.24982

CL.L −0.28459 −0.27273 −0.14651 0.01791 −0.11541 −0.12547
CL.U 0.78358 0.81176 0.88905 0.98116 0.83944 0.83161

7. Conclusions and Discussions

Retrospective studies are important in reliability analysis as they measure the actual
lifetimes of the one-shot devices under the actual users’ conditions. They can detect if
the one-shot devices are designed and manufactured correctly and give early warnings if
there are some systematic defaults in one-shot devices. This is crucial as most safety and
life-saving products are one-shot devices. Early detection of potential flaws can save a lot
of lives and casualties. In this study, we have proposed a retrospective way to analyze the
reliability of one-shot devices through publicly available data.

Different from the usual reliability experiment, those datasets are not collected in a
controlled environment, and therefore missing observations are inevitable. The traditional
statistical methods may not handle the missing data properly since the observations may
not be missing at random. With hidden variables, like parking locations and maintenance
habits, those methods may not work well as the model cannot be specified correctly.

When machine learning algorithms are applied to impute the missing data, unsuper-
vised learning may be useful to impute the missing observations. Still, it is not intuitive
how the imputation can be carried out. Our study proposed an innovative way for missing
data imputation using unsupervised learning, and it works reasonably well when hidden
variables are present in the dataset under a missing-not-at-random assumption. With an
accurate imputation strategy, retrospective studies on one-shot devices become possible.

Using a simulation study, we have shown that the MIUL methods perform superior to
the traditional methods in the context of one-shot device reliability evaluation. We illustrate
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the methods using the CRSS datasets provided by NHTSA. Under a definition of airbag
success, we find out that the airbags made by European cars may be significantly worse
than those made by American manufacturers.

The CRSS datasets are collected through a complex survey design, which this research
ignores for simplicity reasons. Therefore, in future studies, we could incorporate the survey
design structure in the MIUL, enhancing the estimation accuracy. We could also extend
the unsupervised learning part to more advanced algorithms like auto-encoder, and the
self-organizing map, which may provide more precise results. It would also be interesting
to see their estimation performance when the one-shot devices have Weibull and gamma
lifetimes with frailty, which are more realistic than the exponential distribution.

This manuscript also provides a potential way to detect possible manufacturing issues
with one-shot devices using public data. It would be interesting to regularly track the
number of airbag failures and report on any defective models. One method is to monitor
failures using control charts. Control charts are commonly used in quality control to
identify underlying problems in industrial processes; see [55–57]. Modifying control charts
for public datasets would be an intriguing issue worthy of more investigation.
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Appendix A. Details of Simulation Settings

Appendix A.1. One-Shot Device Model Setting

The reliability function of one-shot devices given covariate xxxi:

R(t|xxx) = Pr(T > t|xxx) = exp(−tλactual(xxx))

The actual hazard rates of one-shot devices:

λactual(xxx) = exp(β0 + βmake + βregion + βpark),

where β0 = −6,−5 and −4 represent high, medium and low reliability of the one-shot de-
vices, respectively, (βB

make, βC
make) = (−0.4,−0.8), (βMW

region, βS
region, βW

region) = (−0.6, 0.4, 0.8)
and βpark = 0.6.

The probability of parking outside is

Pr(Park = Out|xxx) = 0.2 + 0.2 ∗ IRural + 0.2 ∗ IWest − 0.1 ∗ ISedan + 0.2 ∗ IAlcohol ,

where the meanings of indicators are IRural , Pr(IRural = 1) = 23.5%, the car is in a rural area,
IWest, Pr(IWest = 1) = 16.9%, the car is in the West region, ISedan, Pr(ISedan = 1) = 47.5%,
the car is a Sedan, IAlcohol , Pr(IAlcohol = 1) = 6%, the driver is an alcohol drinker. We also
assume that the driver’s age following gamma distribution with shape and rate parameters

https://www.nhtsa.gov/crash-data-systems/crash-report-sampling-system
https://www.nhtsa.gov/crash-data-systems/crash-report-sampling-system
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is (α, β) = (20.01, 0.83), respectively, if the cars are parked outdoors or (α, β) = (12.04, 0.24)
otherwise. Finally, Car_Age, the car age at the time of the accident, follows the following
multinomial distribution.

Table A1. The distribution of car age at the time of the accident in the simulation study.

Car_Age 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5
Prob. 0.36% 5.02% 7.65% 7.39% 7.42% 7.22% 4.94% 4.44% 4.08% 3.95% 4.11% 4.31% 4.61% 4.88% 4.64% 4.24% 3.79%

Car_Age 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 28.5 29.5 30.5 31.5 32.5 33.5
Prob. 3.37% 2.87% 2.36% 1.93% 1.56% 1.18% 0.88% 0.66% 0.47% 0.33% 0.28% 0.21% 0.16% 0.13% 0.11% 0.07% 0.06%

Car_Age 34.5 35.5 36.5 37.5 38.5 39.5 40.5 41.5 42.5 43.5 44.5 45.5 46.5 47.5 48.5 49.5 50+
Prob. 0.06% 0.04% 0.03% 0.02% 0.03% 0.02% 0.02% 0.02% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

Appendix A.2. The Missing Mechanism for Different Scenarios

Scenario 1 in Section 5 stands for the survival statuses of one-shot devices being MAR,

Pr(IMissi = 1) = α0 + 0.05 ∗ IOther + 0.01 ∗ log(Car_Age),

where α0 = 0.05, 0.1 and 0.2 represent low, medium and high missing levels, respectively,
and the variable IOther, Pr(IOther = 1) = 32.7% indicates that the car is not a Sedan nor a
Utility Vehicle.

Scenario 2 in Section 5 stands for the survival statuses of one-shot devices being MNAR,

Pr(IMissi = 1) = α0 + 0.05 ∗ IOther + 0.01 ∗ log(Car_Age) + 0.1 ∗ IOut,

where α0 = 0.05, 0.1 and 0.2 represent low, medium and high missing levels, respectively,
and the indicator IOther = 1 if the car is not a Sedan nor a utility vehicle and IOut = 1 if the
car is parked outdoors.

Scenario 3 in Section 5 stands for the Car_Age being MAR,

Pr(IMissi = 1) = α0 + 0.01 ∗ ISouth + 0.05 ∗ IRural ,

where α0 = 0.05, 0.1 and 0.2 represent low, medium and high missing levels, respectively,
and the indicators, ISouth, Pr(ISouth = 1) = 53.6%, the accident location in the South region
and IRural the car is in a rural area.

Scenario 4 in Section 5 stands for the Car_Age being MNAR,

Pr(IMissi = 1) = α0 + 0.01 ∗ ISouth + 0.05 ∗ IRural + 0.1 ∗ IOut,

where α0 = 0.05, 0.1 and 0.2 represent low, medium and high missing levels, respectively,
and the indicators ISouth = 1 if the accident is located in the South region, IRural = 1 if the
accident location is in a rural area and IOut = 1 if the car is parked outdoors.

Scenario 5 in Section 5 stands for the Region being MAR,

Pr(IMissi = 1) = α0 + 0.05 ∗ IRural ,

where α0 = 0.05, 0.1 and 0.2 represent low, medium and high missing levels, respectively,
and the indicator IRural = 1 means the car is in a rural area.

Scenario 6 in Section 5 stands for the Region being MNAR,

Pr(IMissi = 1) = α0 + 0.01 ∗ ISouth + 0.05 ∗ IRural + 0.1 ∗ IOut,

where α0 = 0.05, 0.1 and 0.2 represent low, medium, and high missing levels, respectively,
and the meanings of indicators are ISouth = 1 if the accident location is in the South region,
IRural = 1 if the car is in a rural area and IOut = 1 if the car is parked outdoors.
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Appendix B. Details of the Real Data Analysis

For each year, the CRSS publishes more than 20 datasets, including PERSON.CSV,
which contains motorists’ and passengers’ data, VEHICLE.CSV, which contains the data of
the vehicles involved in the accidents and VEVENT.CSV, which contains the harmful and
non-harmful events for the vehicles; see [2]. We focus on these three data files for real
data analysis.

We define the variable AirBag_Should to indicate the situations in which the airbags
should deploy which satisfy at least one of the following conditions:

1. If there are any motorists or passengers severely injured or dead (INJ_SEV in categories
3 or 4);

2. If the area of impact on the vehicle is not at the back (AOI1 in categories 1–5 or 7–12);
3. if the car has to be towed ( TOWED = 1).

The variable AirBag_Deploy is an indicator concerning whether there is any airbag de-
ployed during the accident and the variable AirBag_Success indicates whether AirBag_Deploy
is equal to AirBag_Should. It shows if the airbags work probably on a vehicle during an accident.

Then, we treat AirBag_Success as the one-shot device status, δi, and the vehicle age
(accident year minus car model year) as the one-shot device’s observed time ti. The rest
of the covariates, xxxi, are the origins of the car makes (America, Europe or Asia), accident
region (Northeast, Midwest, South, West) and if it happens in the urban areas (urban or
rural), the vehicle body type (Sedans, Sport Utility Vehicle and others) and the driver’s age
at the accident.

Then, we sample 1000, 2000 or 4000 observations from the dataset to mimic the
situation in which smaller data are collected in practice. Then, we apply the traditional
missing data-handling methods and our proposed method, MIUL.

The R code, which modifies the CRSS datasets, is posted on GitHub: https://github.
com/hso-OU/OneShotMIUL/blob/main/MLOnshotDataAnalysisV2.R accessed on 20
June 2023. The dataset created, CRSSData.RData, is uploaded to Kaggle: https://www.kaggle.
com/datasets/honyiuso/airbagcrss/data accessed on 20 June 2023.

Appendix C. Tables of Simulation Results

Table A2. Bias of β̂B
make when the response variable is missing at random. Bold values represent the

best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml −0.0227 −0.0229 −0.0272 −0.0359 −0.0385 −0.0386
Med −0.0263 −0.0267 −0.0311 −0.0494 −0.0440 −0.0462
Lrg −0.0245 −0.0250 −0.0271 −0.0687 −0.0404 −0.0451

Med Sml −0.0225 −0.0225 −0.0252 −0.0284 −0.0325 −0.0306
Med −0.0279 −0.0281 −0.0315 −0.0388 −0.0375 −0.0393
Lrg 0.0001 0.0001 −0.0046 −0.0253 −0.0118 −0.0157

Low Sml −0.0233 −0.0238 −0.0258 −0.0284 −0.0301 −0.0290
Med −0.0235 −0.0236 −0.0253 −0.0297 −0.0296 −0.0304
Lrg −0.0188 −0.0184 −0.0225 −0.0325 −0.0255 −0.0273

Med Hig Sml −0.0017 −0.0022 −0.0064 −0.0417 −0.0215 −0.0268
Med 0.0151 0.0143 0.0147 −0.0596 −0.0070 −0.0213
Lrg 0.0408 0.0418 0.0285 −0.0982 0.0177 −0.0079

Med Sml −0.0125 −0.0128 −0.0131 −0.0295 −0.0248 −0.0271
Med 0.0072 0.0072 0.0034 −0.0323 −0.0017 −0.0148
Lrg 0.0594 0.0594 0.0525 −0.0266 0.0356 0.0232

Low Sml −0.0068 −0.0071 −0.0084 −0.0196 −0.0149 −0.0155
Med 0.0216 0.0216 0.0187 −0.0040 0.0136 0.0089
Lrg 0.0360 0.0362 0.0341 −0.0196 0.0252 0.0131

https://github.com/hso-OU/OneShotMIUL/blob/main/MLOnshotDataAnalysisV2.R
https://github.com/hso-OU/OneShotMIUL/blob/main/MLOnshotDataAnalysisV2.R
https://www.kaggle.com/datasets/honyiuso/airbagcrss/data
https://www.kaggle.com/datasets/honyiuso/airbagcrss/data
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Table A2. Cont.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Hig Hig Sml 0.0280 0.0273 0.0218 −0.0876 0.0008 −0.0229
Med 0.0966 0.0965 0.0747 −0.1276 0.0566 0.0208
Lrg 0.4869 0.4870 0.3553 −0.1799 0.2995 0.2463

Med Sml 0.0218 0.0218 0.0183 −0.0411 0.0098 −0.0061
Med 0.0919 0.0915 0.0884 −0.0431 0.0691 0.0522
Lrg 0.3949 0.3941 0.3289 −0.0285 0.3023 0.2683

Low Sml 0.0185 0.0186 0.0165 −0.0194 0.0094 0.0015
Med 0.0670 0.0670 0.0622 −0.0186 0.0547 0.0406
Lrg 0.3280 0.3289 0.2902 0.0756 0.2836 0.2698

Table A3. Bias of β̂C
make when the response variable is missing at random. Bold values represent the

best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml −0.0057 −0.0056 −0.0070 −0.0140 −0.0175 −0.0185
Med −0.0077 −0.0080 −0.0096 −0.0209 −0.0218 −0.0224
Lrg −0.0047 −0.0049 −0.0027 −0.0318 −0.0149 −0.0185

Med Sml −0.0068 −0.0067 −0.0077 −0.0100 −0.0143 −0.0132
Med −0.0179 −0.0182 −0.0199 −0.0241 −0.0245 −0.0270
Lrg 0.0099 0.0103 0.0075 −0.0058 0.0007 −0.0024

Low Sml −0.0070 −0.0073 −0.0076 −0.0106 −0.0120 −0.0111
Med −0.0070 −0.0072 −0.0076 −0.0103 −0.0117 −0.0123
Lrg −0.0020 −0.0013 −0.0035 −0.0094 −0.0062 −0.0069

Med Hig Sml 0.0046 0.0042 0.0024 −0.0235 −0.0170 −0.0192
Med 0.0211 0.0205 0.0228 −0.0306 −0.0024 −0.0121
Lrg 0.0425 0.0439 0.0355 −0.0550 0.0181 0.0008

Med Sml −0.0079 −0.0081 −0.0075 −0.0187 −0.0213 −0.0221
Med 0.0221 0.0221 0.0211 −0.0065 0.0109 0.0024
Lrg 0.0608 0.0613 0.0555 −0.0028 0.0367 0.0279

Low Sml −0.0005 −0.0007 −0.0005 −0.0096 −0.0090 −0.0090
Med 0.0243 0.0239 0.0231 0.0060 0.0155 0.0125
Lrg 0.0416 0.0417 0.0408 −0.0001 0.0318 0.0213

Hig Hig Sml 0.0284 0.0276 0.0257 −0.0552 −0.0027 −0.0183
Med 0.0775 0.0773 0.0646 −0.0859 0.0361 0.0083
Lrg 0.4698 0.4697 0.3459 −0.0927 0.2805 0.2407

Med Sml 0.0256 0.0255 0.0230 −0.0217 0.0122 0.0000
Med 0.0901 0.0901 0.0916 −0.0090 0.0657 0.0553
Lrg 0.3859 0.3854 0.3255 0.0213 0.2906 0.2670

Low Sml 0.0134 0.0136 0.0116 −0.0144 0.0030 −0.0035
Med 0.0671 0.0671 0.0641 0.0025 0.0535 0.0424
Lrg 0.3302 0.3312 0.2951 0.1150 0.2883 0.2764

Table A4. Mean squared error of β̂B
make when the response variable is missing at random. Bold values

represent the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml 0.0166 0.0166 0.0174 0.0177 0.0170 0.0179
Med 0.0344 0.0345 0.0357 0.0359 0.0341 0.0358
Lrg 0.0630 0.0633 0.0654 0.0653 0.0616 0.0642

Med Sml 0.0142 0.0142 0.0146 0.0147 0.0144 0.0144
Med 0.0273 0.0272 0.0280 0.0278 0.0275 0.0275
Lrg 0.0608 0.0606 0.0628 0.0583 0.0589 0.0599

Low Sml 0.0140 0.0139 0.0142 0.0145 0.0140 0.0143
Med 0.0305 0.0306 0.0308 0.0311 0.0305 0.0311
Lrg 0.0517 0.0519 0.0517 0.0518 0.0512 0.0518
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Table A4. Cont.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Med Hig Sml 0.0396 0.0395 0.0411 0.0403 0.0364 0.0383
Med 0.0786 0.0786 0.0808 0.0710 0.0711 0.0722
Lrg 0.1664 0.1665 0.1648 0.1255 0.1473 0.1486

Med Sml 0.0318 0.0319 0.0332 0.0317 0.0310 0.0318
Med 0.0699 0.0704 0.0695 0.0648 0.0665 0.0662
Lrg 0.2305 0.2317 0.2306 0.1284 0.1578 0.2156

Low Sml 0.0301 0.0301 0.0303 0.0294 0.0291 0.0294
Med 0.0686 0.0689 0.0687 0.0649 0.0665 0.0671
Lrg 0.1486 0.1492 0.1497 0.1268 0.1418 0.1408

Hig Hig Sml 0.1048 0.1047 0.1088 0.0880 0.0906 0.0917
Med 0.2947 0.2946 0.2702 0.1527 0.2079 0.2103
Lrg 3.6690 3.6716 2.3723 0.4207 1.7349 1.8630

Med Sml 0.0855 0.0858 0.0876 0.0792 0.0805 0.0805
Med 0.2686 0.2691 0.2654 0.1714 0.2272 0.2320
Lrg 2.9573 2.9600 2.2744 0.6249 1.9409 1.9558

Low Sml 0.0837 0.0835 0.0843 0.0776 0.0806 0.0818
Med 0.1916 0.1928 0.1905 0.1542 0.1782 0.1782
Lrg 2.0587 2.0610 1.6831 0.8159 1.6829 1.7118

Table A5. Mean squared error of β̂B
make when the response variable is missing not at random. Bold

values represent the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml 0.0175 0.0175 0.0181 0.0179 0.0169 0.0177
Med 0.0340 0.0340 0.0350 0.0342 0.0325 0.0341
Lrg 0.0656 0.0659 0.0683 0.0641 0.0627 0.0653

Med Sml 0.0147 0.0148 0.0152 0.0149 0.0145 0.0147
Med 0.0284 0.0283 0.0293 0.0281 0.0281 0.0284
Lrg 0.0618 0.0616 0.0638 0.0580 0.0601 0.0602

Low Sml 0.0144 0.0144 0.0146 0.0147 0.0142 0.0147
Med 0.0300 0.0300 0.0299 0.0301 0.0295 0.0302
Lrg 0.0542 0.0543 0.0540 0.0534 0.0530 0.0543

Med Hig Sml 0.0426 0.0425 0.0435 0.0414 0.0393 0.0406
Med 0.0826 0.0823 0.0846 0.0722 0.0739 0.0747
Lrg 0.1821 0.1822 0.1809 0.1285 0.1580 0.1634

Med Sml 0.0334 0.0334 0.0349 0.0334 0.0318 0.0333
Med 0.0730 0.0734 0.0726 0.0663 0.0690 0.0689
Lrg 0.2394 0.2403 0.2403 0.1383 0.1678 0.2231

Low Sml 0.0312 0.0313 0.0316 0.0307 0.0299 0.0308
Med 0.0693 0.0696 0.0700 0.0656 0.0669 0.0674
Lrg 0.1558 0.1563 0.1559 0.1322 0.1475 0.1469

Hig Hig Sml 0.1138 0.1137 0.1187 0.0918 0.0995 0.0997
Med 0.2884 0.2884 0.2676 0.1443 0.2026 0.2119
Lrg 3.6988 3.7023 2.4099 0.4005 1.7617 1.8864

Med Sml 0.0952 0.0955 0.0965 0.0862 0.0881 0.0889
Med 0.2747 0.2754 0.2750 0.1761 0.2298 0.2366
Lrg 2.9395 2.9415 2.2649 0.6245 1.9271 1.9404

Low Sml 0.0875 0.0874 0.0873 0.0820 0.0836 0.0853
Med 0.2065 0.2075 0.2078 0.1686 0.1922 0.1918
Lrg 2.0502 2.0525 1.6797 0.8199 1.6807 1.7181

Table A6. Bias of β̂B
make when the response variable is missing not at random. Bold values represent

the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml −0.0184 −0.0196 −0.0255 −0.0359 −0.0392 −0.0371
Med −0.0198 −0.0218 −0.0265 −0.0500 −0.0411 −0.0428
Lrg −0.0181 −0.0196 −0.0256 −0.0725 −0.0373 −0.0494
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Table A6. Cont.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Med Sml −0.0225 −0.0238 −0.0275 −0.0328 −0.0358 −0.0338
Med −0.0252 −0.0262 −0.0303 −0.0416 −0.0387 −0.0374
Lrg 0.0005 −0.0004 −0.0023 −0.0298 −0.0162 −0.0166

Low Sml −0.0216 −0.0228 −0.0256 −0.0295 −0.0317 −0.0296
Med −0.0206 −0.0214 −0.0242 −0.0317 −0.0313 −0.0305
Lrg −0.0136 −0.0148 −0.0176 −0.0337 −0.0238 −0.0257

Med Hig Sml 0.0031 0.0028 −0.0032 −0.0410 −0.0171 −0.0269
Med 0.0214 0.0208 0.0146 −0.0686 −0.0052 −0.0247
Lrg 0.0601 0.0611 0.0408 −0.1146 0.0232 −0.0097

Med Sml −0.0059 −0.0066 −0.0069 −0.0315 −0.0192 −0.0218
Med 0.0116 0.0109 0.0044 −0.0374 −0.0016 −0.0170
Lrg 0.0721 0.0711 0.0635 −0.0290 0.0507 0.0296

Low Sml −0.0033 −0.0046 −0.0057 −0.0211 −0.0130 −0.0165
Med 0.0236 0.0230 0.0186 −0.0146 0.0120 0.0053
Lrg 0.0419 0.0415 0.0349 −0.0275 0.0240 0.0150

Hig Hig Sml 0.0358 0.0349 0.0245 −0.0996 0.0054 −0.0231
Med 0.1227 0.1229 0.0965 −0.1489 0.0680 0.0281
Lrg 0.5194 0.5175 0.3956 −0.2238 0.3316 0.2786

Med Sml 0.0277 0.0271 0.0194 −0.0475 0.0089 −0.0132
Med 0.0888 0.0877 0.0777 −0.0722 0.0620 0.0349
Lrg 0.4695 0.4695 0.3848 −0.0871 0.3268 0.2880

Low Sml 0.0166 0.0166 0.0159 −0.0332 0.0037 −0.0094
Med 0.0800 0.0793 0.0705 −0.0236 0.0583 0.0399
Lrg 0.3470 0.3496 0.3154 0.0241 0.2812 0.2654

Table A7. Bias of β̂C
make when the response variable is missing not at random. Bold values represent

the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml −0.0047 −0.0050 −0.0073 −0.0153 −0.0204 −0.0186
Med −0.0037 −0.0048 −0.0052 −0.0221 −0.0195 −0.0192
Lrg 0.0057 0.0050 0.0051 −0.0302 −0.0087 −0.0164

Med Sml −0.0072 −0.0079 −0.0090 −0.0134 −0.0169 −0.0147
Med −0.0157 −0.0160 −0.0167 −0.0251 −0.0260 −0.0243
Lrg 0.0093 0.0089 0.0075 −0.0088 −0.0014 −0.0035

Low Sml −0.0064 −0.0069 −0.0080 −0.0114 −0.0143 −0.0123
Med −0.0077 −0.0079 −0.0087 −0.0142 −0.0153 −0.0142
Lrg 0.0012 0.0007 −0.0012 −0.0110 −0.0055 −0.0081

Med Hig Sml 0.0083 0.0083 0.0056 −0.0224 −0.0137 −0.0193
Med 0.0290 0.0286 0.0247 −0.0366 −0.0001 −0.0130
Lrg 0.0618 0.0626 0.0490 −0.0651 0.0248 0.0006

Med Sml −0.0022 −0.0028 −0.0018 −0.0201 −0.0165 −0.0167
Med 0.0259 0.0259 0.0213 −0.0070 0.0136 −0.0003
Lrg 0.0690 0.0686 0.0656 −0.0012 0.0475 0.0329

Low Sml 0.0017 0.0006 0.0008 −0.0106 −0.0080 −0.0098
Med 0.0268 0.0266 0.0236 0.0002 0.0149 0.0133
Lrg 0.0455 0.0452 0.0412 −0.0047 0.0268 0.0209

Hig Hig Sml 0.0364 0.0351 0.0284 −0.0620 0.0000 −0.0173
Med 0.1028 0.1030 0.0829 −0.1029 0.0464 0.0170
Lrg 0.5150 0.5140 0.4107 −0.1145 0.3310 0.2895

Med Sml 0.0301 0.0297 0.0251 −0.0257 0.0076 −0.0080
Med 0.0904 0.0906 0.0831 −0.0297 0.0633 0.0418
Lrg 0.4556 0.4576 0.3814 −0.0299 0.3200 0.2834

Low Sml 0.0092 0.0091 0.0102 −0.0265 −0.0052 −0.0153
Med 0.0769 0.0768 0.0709 0.0012 0.0542 0.0429
Lrg 0.3490 0.3523 0.3242 0.0799 0.2845 0.2755
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Table A8. Mean squared error of β̂B
make when the covariate variable is missing not at random. Bold

values represent the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml 0.0175 0.0175 0.0183 0.0185 0.0177 0.0184
Med 0.0358 0.0359 0.0376 0.0359 0.0352 0.0368
Lrg 0.0698 0.0706 0.0716 0.0674 0.0682 0.0691

Med Sml 0.0153 0.0153 0.0159 0.0160 0.0158 0.0158
Med 0.0284 0.0285 0.0299 0.0297 0.0289 0.0292
Lrg 0.0637 0.0637 0.0641 0.0615 0.0611 0.0638

Low Sml 0.0140 0.0140 0.0142 0.0148 0.0146 0.0145
Med 0.0310 0.0311 0.0320 0.0315 0.0307 0.0315
Lrg 0.0567 0.0567 0.0583 0.0547 0.0551 0.0550

Med Hig Sml 0.0432 0.0430 0.0448 0.0411 0.0397 0.0414
Med 0.0854 0.0852 0.0889 0.0752 0.0778 0.0750
Lrg 0.3405 0.3445 0.2925 0.1530 0.2312 0.2076

Med Sml 0.0327 0.0328 0.0334 0.0327 0.0321 0.0325
Med 0.0700 0.0700 0.0722 0.0652 0.0667 0.0651
Lrg 0.1792 0.1794 0.1825 0.1357 0.1593 0.1521

Low Sml 0.0324 0.0322 0.0334 0.0325 0.0314 0.0317
Med 0.0749 0.0755 0.0747 0.0692 0.0701 0.0730
Lrg 0.1548 0.1548 0.1525 0.1308 0.1430 0.1450

Hig Hig Sml 0.1152 0.1153 0.1153 0.0972 0.0971 0.0999
Med 0.5020 0.5045 0.3965 0.1729 0.2859 0.3570
Lrg 3.6951 3.7095 2.3974 0.3427 1.8047 1.9310

Med Sml 0.0901 0.0900 0.0916 0.0789 0.0819 0.0810
Med 0.2182 0.2185 0.2118 0.1526 0.1914 0.1796
Lrg 3.5867 3.5971 2.6571 0.4558 2.1484 2.0664

Low Sml 0.0854 0.0855 0.0866 0.0790 0.0814 0.0819
Med 0.2030 0.2026 0.2006 0.1558 0.1793 0.1801
Lrg 2.3210 2.3310 2.0643 0.7520 1.7086 1.7976

Table A9. Mean squared error of β̂C
make when the response variable is missing not at random. Bold

values represent the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml 0.0182 0.0182 0.0189 0.0187 0.0175 0.0184
Med 0.0364 0.0365 0.0385 0.0354 0.0350 0.0367
Lrg 0.0715 0.0720 0.0727 0.0657 0.0673 0.0685

Med Sml 0.0149 0.0149 0.0153 0.0150 0.0147 0.0149
Med 0.0303 0.0302 0.0313 0.0308 0.0296 0.0303
Lrg 0.0688 0.0684 0.0689 0.0645 0.0652 0.0679

Low Sml 0.0151 0.0150 0.0149 0.0155 0.0151 0.0152
Med 0.0305 0.0305 0.0310 0.0305 0.0297 0.0309
Lrg 0.0607 0.0606 0.0622 0.0585 0.0579 0.0588

Med Hig Sml 0.0440 0.0439 0.0460 0.0410 0.0396 0.0418
Med 0.0927 0.0923 0.0954 0.0758 0.0827 0.0800
Lrg 0.3527 0.3564 0.3072 0.1518 0.2463 0.2183

Med Sml 0.0352 0.0352 0.0363 0.0348 0.0339 0.0345
Med 0.0750 0.0748 0.0777 0.0688 0.0696 0.0694
Lrg 0.1922 0.1922 0.1978 0.1461 0.1696 0.1669

Low Sml 0.0336 0.0335 0.0344 0.0334 0.0323 0.0327
Med 0.0751 0.0755 0.0752 0.0694 0.0696 0.0738
Lrg 0.1583 0.1580 0.1570 0.1335 0.1456 0.1498

Hig Hig Sml 0.1229 0.1230 0.1229 0.0982 0.1035 0.1069
Med 0.5040 0.5076 0.3997 0.1653 0.2901 0.3615
Lrg 3.7086 3.7212 2.4320 0.3239 1.8169 1.9330

Med Sml 0.0982 0.0981 0.1001 0.0848 0.0889 0.0881
Med 0.2304 0.2309 0.2265 0.1562 0.1997 0.1911
Lrg 3.5898 3.6052 2.6613 0.4513 2.1473 2.0800

Low Sml 0.0911 0.0911 0.0940 0.0841 0.0869 0.0879
Med 0.2169 0.2167 0.2159 0.1671 0.1909 0.1941
Lrg 2.2912 2.3042 2.0378 0.7515 1.6862 1.7798
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Table A10. Bias of β̂B
make when Car_Age is missing at random. Bold values represent the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml −0.0088 −0.0088 −0.0095 −0.0088 −0.0135 −0.0123
Med −0.0097 −0.0101 −0.0085 −0.0097 −0.0129 −0.0135
Lrg 0.0027 0.0027 −0.0059 −0.0051 −0.0099 −0.0095

Med Sml −0.0074 −0.0075 −0.0090 −0.0089 −0.0107 −0.0113
Med −0.0121 −0.0122 −0.0173 −0.0168 −0.0196 −0.0192
Lrg 0.0070 0.0071 0.0006 0.0025 0.0004 −0.0004

Low Sml −0.0053 −0.0055 −0.0064 −0.0068 −0.0080 −0.0077
Med −0.0056 −0.0060 −0.0067 −0.0071 −0.0081 −0.0077
Lrg −0.0039 −0.0048 −0.0014 −0.0013 −0.0024 −0.0020

Med Hig Sml 0.0079 0.0080 0.0005 0.0008 −0.0011 −0.0011
Med 0.0232 0.0231 0.0176 0.0189 0.0163 0.0164
Lrg 0.0351 0.0336 0.0172 0.0180 0.0151 0.0143

Med Sml −0.0070 −0.0072 −0.0069 −0.0066 −0.0078 −0.0075
Med 0.0193 0.0193 0.0180 0.0186 0.0163 0.0169
Lrg 0.0579 0.0581 0.0507 0.0509 0.0496 0.0488

Low Sml 0.0011 0.0011 −0.0003 −0.0002 −0.0005 −0.0006
Med 0.0230 0.0231 0.0227 0.0229 0.0224 0.0224
Lrg 0.0393 0.0389 0.0355 0.0361 0.0349 0.0349

Hig Hig Sml 0.0332 0.0330 0.0240 0.0250 0.0237 0.0236
Med 0.0736 0.0737 0.0602 0.0615 0.0586 0.0588
Lrg 0.4492 0.4517 0.2497 0.2498 0.2471 0.2477

Med Sml 0.0184 0.0185 0.0180 0.0182 0.0177 0.0177
Med 0.0824 0.0821 0.0717 0.0727 0.0707 0.0711
Lrg 0.3139 0.3147 0.2787 0.2790 0.2772 0.2785

Low Sml 0.0135 0.0138 0.0095 0.0097 0.0093 0.0096
Med 0.0757 0.0757 0.0623 0.0628 0.0621 0.0625
Lrg 0.3052 0.3055 0.2712 0.2713 0.2707 0.2703

Table A11. Bias of β̂C
make when the Car_Age is missing at random. Bold values represent the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml 0.0164 0.0163 0.0131 0.0131 0.0135 0.0136
Med 0.0336 0.0338 0.0271 0.0271 0.0267 0.0271
Lrg 0.0664 0.0661 0.0511 0.0507 0.0502 0.0505

Med Sml 0.0145 0.0145 0.0130 0.0131 0.0133 0.0132
Med 0.0256 0.0255 0.0228 0.0228 0.0230 0.0231
Lrg 0.0587 0.0585 0.0508 0.0510 0.0500 0.0505

Low Sml 0.0130 0.0129 0.0124 0.0124 0.0125 0.0125
Med 0.0287 0.0285 0.0268 0.0268 0.0268 0.0267
Lrg 0.0497 0.0497 0.0467 0.0466 0.0467 0.0467

Med Hig Sml 0.0372 0.0372 0.0296 0.0294 0.0294 0.0292
Med 0.0736 0.0737 0.0579 0.0580 0.0574 0.0577
Lrg 0.1588 0.1579 0.1192 0.1190 0.1195 0.1190

Med Sml 0.0314 0.0314 0.0277 0.0277 0.0275 0.0275
Med 0.0650 0.0648 0.0602 0.0601 0.0597 0.0599
Lrg 0.1417 0.1425 0.1278 0.1280 0.1272 0.1271

Low Sml 0.0304 0.0305 0.0275 0.0276 0.0276 0.0275
Med 0.0672 0.0670 0.0633 0.0636 0.0633 0.0633
Lrg 0.1387 0.1385 0.1273 0.1278 0.1270 0.1271

Hig Hig Sml 0.0993 0.0997 0.0747 0.0750 0.0745 0.0747
Med 0.3044 0.3057 0.2353 0.2352 0.2339 0.2341
Lrg 3.2773 3.2961 1.4935 1.4906 1.4861 1.4905

Med Sml 0.0814 0.0817 0.0697 0.0695 0.0693 0.0693
Med 0.1948 0.1937 0.1695 0.1697 0.1693 0.1692
Lrg 2.3989 2.4021 2.0547 2.0512 2.0458 2.0457

Low Sml 0.0822 0.0823 0.0729 0.0729 0.0730 0.0728
Med 0.1860 0.1862 0.1678 0.1678 0.1674 0.1674
Lrg 1.9062 1.9011 1.6304 1.6306 1.6281 1.6278
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Table A12. Mean squared error of β̂B
make when Car_Age is missing at random. Bold values represent

the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml 0.0164 0.0163 0.0131 0.0131 0.0135 0.0136
Med 0.0336 0.0338 0.0271 0.0271 0.0267 0.0271
Lrg 0.0664 0.0661 0.0511 0.0507 0.0502 0.0505

Med Sml 0.0145 0.0145 0.0130 0.0131 0.0133 0.0132
Med 0.0256 0.0255 0.0228 0.0228 0.0230 0.0231
Lrg 0.0587 0.0585 0.0508 0.0510 0.0500 0.0505

Low Sml 0.0130 0.0129 0.0124 0.0124 0.0125 0.0125
Med 0.0287 0.0285 0.0268 0.0268 0.0268 0.0267
Lrg 0.0497 0.0497 0.0467 0.0466 0.0467 0.0467

Med Hig Sml 0.0372 0.0372 0.0296 0.0294 0.0294 0.0292
Med 0.0736 0.0737 0.0579 0.0580 0.0574 0.0577
Lrg 0.1588 0.1579 0.1192 0.1190 0.1195 0.1190

Med Sml 0.0314 0.0314 0.0277 0.0277 0.0275 0.0275
Med 0.0650 0.0648 0.0602 0.0601 0.0597 0.0599
Lrg 0.1417 0.1425 0.1278 0.1280 0.1272 0.1271

Low Sml 0.0304 0.0305 0.0275 0.0276 0.0276 0.0275
Med 0.0672 0.0670 0.0633 0.0636 0.0633 0.0633
Lrg 0.1387 0.1385 0.1273 0.1278 0.1270 0.1271

Hig Hig Sml 0.0993 0.0997 0.0747 0.0750 0.0745 0.0747
Med 0.3044 0.3057 0.2353 0.2352 0.2339 0.2341
Lrg 3.2773 3.2961 1.4935 1.4906 1.4861 1.4905

Med Sml 0.0814 0.0817 0.0697 0.0695 0.0693 0.0693
Med 0.1948 0.1937 0.1695 0.1697 0.1693 0.1692
Lrg 2.3989 2.4021 2.0547 2.0512 2.0458 2.0457

Low Sml 0.0822 0.0823 0.0729 0.0729 0.0730 0.0728
Med 0.1860 0.1862 0.1678 0.1678 0.1674 0.1674
Lrg 1.9062 1.9011 1.6304 1.6306 1.6281 1.6278

Table A13. Mean squared error of β̂C
make when Car_Age is missing at random. Bold values represent

the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml 0.0167 0.0167 0.0133 0.0133 0.0131 0.0132
Med 0.0324 0.0325 0.0259 0.0258 0.0251 0.0256
Lrg 0.0660 0.0659 0.0511 0.0516 0.0504 0.0509

Med Sml 0.0145 0.0145 0.0130 0.0130 0.0129 0.0128
Med 0.0269 0.0268 0.0236 0.0237 0.0236 0.0236
Lrg 0.0589 0.0587 0.0518 0.0522 0.0514 0.0520

Low Sml 0.0136 0.0136 0.0131 0.0131 0.0131 0.0130
Med 0.0285 0.0284 0.0263 0.0263 0.0262 0.0261
Lrg 0.0533 0.0531 0.0496 0.0497 0.0495 0.0497

Med Hig Sml 0.0387 0.0387 0.0316 0.0317 0.0315 0.0315
Med 0.0760 0.0761 0.0608 0.0609 0.0601 0.0607
Lrg 0.1745 0.1738 0.1304 0.1307 0.1303 0.1299

Med Sml 0.0336 0.0337 0.0292 0.0292 0.0290 0.0290
Med 0.0694 0.0692 0.0638 0.0640 0.0636 0.0638
Lrg 0.1540 0.1544 0.1387 0.1390 0.1383 0.1384

Low Sml 0.0323 0.0324 0.0289 0.0290 0.0289 0.0289
Med 0.0694 0.0692 0.0645 0.0646 0.0643 0.0643
Lrg 0.1426 0.1425 0.1303 0.1311 0.1300 0.1300

Hig Hig Sml 0.1087 0.1090 0.0811 0.0814 0.0810 0.0809
Med 0.2988 0.3003 0.2308 0.2308 0.2293 0.2298
Lrg 3.2300 3.2501 1.4881 1.4870 1.4832 1.4833

Med Sml 0.0886 0.0890 0.0769 0.0770 0.0766 0.0768
Med 0.2025 0.2015 0.1759 0.1764 0.1756 0.1756
Lrg 2.3960 2.4005 2.0551 2.0513 2.0465 2.0463

Low Sml 0.0852 0.0852 0.0763 0.0763 0.0764 0.0761
Med 0.1972 0.1980 0.1809 0.1808 0.1805 0.1805
Lrg 1.9007 1.8979 1.6243 1.6234 1.6215 1.6214
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Table A14. Bias of β̂B
make when Car_Age is missing not at random. Bold values represent the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml −0.0218 −0.0251 −0.0255 −0.0260 −0.0375 −0.0367
Med −0.0273 −0.0308 −0.0286 −0.0291 −0.0392 −0.0392
Lrg −0.0204 −0.0244 −0.0301 −0.0304 −0.0381 −0.0369

Med Sml −0.0199 −0.0226 −0.0251 −0.0257 −0.0323 −0.0320
Med −0.0236 −0.0262 −0.0295 −0.0302 −0.0360 −0.0357
Lrg −0.0027 −0.0068 −0.0126 −0.0119 −0.0182 −0.0174

Low Sml −0.0206 −0.0232 −0.0243 −0.0250 −0.0288 −0.0284
Med −0.0186 −0.0213 −0.0240 −0.0243 −0.0275 −0.0277
Lrg −0.0165 −0.0202 −0.0193 −0.0184 −0.0225 −0.0226

Med Hig Sml −0.0026 −0.0037 −0.0094 −0.0081 −0.0128 −0.0130
Med 0.0242 0.0217 0.0082 0.0094 0.0054 0.0045
Lrg 0.0325 0.0292 0.0165 0.0180 0.0122 0.0125

Med Sml −0.0091 −0.0110 −0.0124 −0.0116 −0.0142 −0.0140
Med 0.0123 0.0111 0.0017 0.0025 −0.0011 −0.0005
Lrg 0.0642 0.0612 0.0489 0.0497 0.0457 0.0459

Low Sml −0.0066 −0.0086 −0.0091 −0.0086 −0.0101 −0.0098
Med 0.0207 0.0194 0.0167 0.0176 0.0153 0.0162
Lrg 0.0352 0.0322 0.0292 0.0305 0.0281 0.0279

Hig Hig Sml 0.0317 0.0306 0.0203 0.0218 0.0180 0.0182
Med 0.1006 0.0984 0.0750 0.0753 0.0735 0.0726
Lrg 0.4817 0.4820 0.2513 0.2541 0.2493 0.2504

Med Sml 0.0229 0.0224 0.0147 0.0148 0.0137 0.0139
Med 0.0973 0.0959 0.0719 0.0735 0.0715 0.0714
Lrg 0.4476 0.4495 0.2896 0.2903 0.2874 0.2881

Low Sml 0.0156 0.0153 0.0133 0.0136 0.0134 0.0134
Med 0.0720 0.0703 0.0609 0.0613 0.0597 0.0600
Lrg 0.3140 0.3170 0.2676 0.2695 0.2674 0.2672

Table A15. Bias of β̂C
make when Car_Age is missing not at random. Bold values represent the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml −0.0095 −0.0110 −0.0103 −0.0095 −0.0142 −0.0137
Med −0.0130 −0.0144 −0.0097 −0.0096 −0.0138 −0.0135
Lrg −0.0013 −0.0035 −0.0060 −0.0068 −0.0092 −0.0085

Med Sml −0.0049 −0.0062 −0.0084 −0.0083 −0.0112 −0.0107
Med −0.0134 −0.0143 −0.0174 −0.0177 −0.0195 −0.0196
Lrg 0.0062 0.0046 −0.0014 −0.0011 −0.0042 −0.0035

Low Sml −0.0039 −0.0049 −0.0071 −0.0075 −0.0088 −0.0090
Med −0.0048 −0.0056 −0.0079 −0.0080 −0.0094 −0.0094
Lrg −0.0025 −0.0045 −0.0027 −0.0017 −0.0034 −0.0033

Med Hig Sml 0.0003 0.0003 −0.0021 −0.0007 −0.0026 −0.0033
Med 0.0295 0.0278 0.0157 0.0163 0.0146 0.0135
Lrg 0.0283 0.0261 0.0200 0.0206 0.0185 0.0188

Med Sml −0.0046 −0.0057 −0.0074 −0.0068 −0.0081 −0.0075
Med 0.0249 0.0244 0.0177 0.0185 0.0169 0.0167
Lrg 0.0622 0.0608 0.0506 0.0510 0.0485 0.0488

Low Sml −0.0001 −0.0010 −0.0014 −0.0010 −0.0015 −0.0012
Med 0.0244 0.0243 0.0218 0.0224 0.0211 0.0217
Lrg 0.0421 0.0404 0.0351 0.0356 0.0345 0.0344

Hig Hig Sml 0.0339 0.0332 0.0233 0.0243 0.0219 0.0223
Med 0.0794 0.0780 0.0587 0.0598 0.0586 0.0576
Lrg 0.4818 0.4833 0.2473 0.2492 0.2462 0.2469

Med Sml 0.0272 0.0271 0.0177 0.0181 0.0176 0.0174
Med 0.0932 0.0922 0.0718 0.0729 0.0717 0.0719
Lrg 0.4359 0.4392 0.2777 0.2777 0.2760 0.2767

Low Sml 0.0109 0.0112 0.0102 0.0103 0.0104 0.0102
Med 0.0713 0.0705 0.0616 0.0620 0.0611 0.0614
Lrg 0.3170 0.3207 0.2716 0.2725 0.2710 0.2708
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Table A16. Mean squared error of β̂B
make when Car_Age is missing not at random. Bold values

represent the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml 0.0158 0.0159 0.0133 0.0131 0.0137 0.0137
Med 0.0331 0.0332 0.0264 0.0262 0.0266 0.0268
Lrg 0.0673 0.0673 0.0489 0.0493 0.0489 0.0479

Med Sml 0.0153 0.0153 0.0130 0.0130 0.0132 0.0132
Med 0.0278 0.0278 0.0234 0.0234 0.0234 0.0234
Lrg 0.0606 0.0603 0.0513 0.0512 0.0507 0.0509

Low Sml 0.0136 0.0135 0.0125 0.0126 0.0129 0.0127
Med 0.0296 0.0294 0.0268 0.0266 0.0267 0.0265
Lrg 0.0530 0.0532 0.0468 0.0471 0.0464 0.0466

Med Hig Sml 0.0390 0.0389 0.0294 0.0294 0.0292 0.0292
Med 0.0787 0.0781 0.0599 0.0594 0.0592 0.0592
Lrg 0.1697 0.1686 0.1201 0.1195 0.1180 0.1187

Med Sml 0.0333 0.0332 0.0275 0.0276 0.0275 0.0274
Med 0.0735 0.0730 0.0598 0.0593 0.0593 0.0594
Lrg 0.1707 0.1705 0.1277 0.1277 0.1270 0.1275

Low Sml 0.0305 0.0305 0.0277 0.0277 0.0277 0.0277
Med 0.0692 0.0692 0.0633 0.0634 0.0631 0.0633
Lrg 0.1439 0.1429 0.1267 0.1271 0.1267 0.1269

Hig Hig Sml 0.1055 0.1048 0.0759 0.0758 0.0757 0.0756
Med 0.3113 0.3117 0.2344 0.2334 0.2330 0.2340
Lrg 3.5278 3.5578 1.4887 1.4911 1.4824 1.4866

Med Sml 0.0897 0.0898 0.0698 0.0698 0.0694 0.0696
Med 0.3240 0.3264 0.1697 0.1704 0.1695 0.1695
Lrg 3.3592 3.3801 2.0526 2.0500 2.0474 2.0448

Low Sml 0.0836 0.0835 0.0734 0.0735 0.0735 0.0735
Med 0.1892 0.1887 0.1673 0.1675 0.1672 0.1671
Lrg 2.0090 2.0207 1.6320 1.6313 1.6305 1.6307

Table A17. Mean squared error of β̂C
make when Car_Age is missing not at random. Bold values

represent the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml 0.0159 0.0159 0.0134 0.0133 0.0134 0.0133
Med 0.0326 0.0326 0.0256 0.0255 0.0251 0.0253
Lrg 0.0686 0.0683 0.0502 0.0505 0.0499 0.0487

Med Sml 0.0152 0.0151 0.0129 0.0128 0.0128 0.0129
Med 0.0292 0.0290 0.0241 0.0240 0.0238 0.0237
Lrg 0.0609 0.0606 0.0525 0.0520 0.0522 0.0521

Low Sml 0.0143 0.0141 0.0133 0.0133 0.0134 0.0133
Med 0.0290 0.0288 0.0262 0.0260 0.0261 0.0260
Lrg 0.0559 0.0560 0.0501 0.0503 0.0493 0.0497

Med Hig Sml 0.0409 0.0407 0.0317 0.0318 0.0316 0.0317
Med 0.0845 0.0841 0.0630 0.0625 0.0623 0.0621
Lrg 0.1861 0.1859 0.1304 0.1306 0.1284 0.1293

Med Sml 0.0349 0.0347 0.0293 0.0294 0.0292 0.0291
Med 0.0777 0.0772 0.0635 0.0633 0.0631 0.0632
Lrg 0.1769 0.1755 0.1386 0.1380 0.1385 0.1385

Low Sml 0.0327 0.0329 0.0290 0.0290 0.0289 0.0289
Med 0.0698 0.0697 0.0645 0.0647 0.0645 0.0646
Lrg 0.1507 0.1496 0.1304 0.1307 0.1302 0.1299

Hig Hig Sml 0.1125 0.1119 0.0818 0.0816 0.0817 0.0816
Med 0.3075 0.3081 0.2301 0.2297 0.2291 0.2305
Lrg 3.4957 3.5303 1.4867 1.4878 1.4766 1.4827

Med Sml 0.0984 0.0983 0.0769 0.0771 0.0768 0.0769
Med 0.3257 0.3281 0.1753 0.1758 0.1751 0.1751
Lrg 3.3488 3.3750 2.0510 2.0471 2.0465 2.0436

Low Sml 0.0865 0.0863 0.0766 0.0768 0.0767 0.0767
Med 0.2045 0.2044 0.1806 0.1810 0.1804 0.1806
Lrg 2.0213 2.0345 1.6259 1.6250 1.6242 1.6235
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Table A18. Bias of β̂B
make when Region is missing at random. Bold values represent the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml −0.0213 −0.0218 −0.0245 −0.0235 −0.0300 −0.0303
Med −0.0233 −0.0237 −0.0269 −0.0261 −0.0322 −0.0324
Lrg −0.0232 −0.0235 −0.0278 −0.0274 −0.0329 −0.0340

Med Sml −0.0245 −0.0249 −0.0250 −0.0244 −0.0281 −0.0280
Med −0.0286 −0.0289 −0.0287 −0.0283 −0.0317 −0.0319
Lrg −0.0073 −0.0086 −0.0082 −0.0081 −0.0114 −0.0124

Low Sml −0.0233 −0.0236 −0.0240 −0.0236 −0.0258 −0.0258
Med −0.0216 −0.0219 −0.0226 −0.0222 −0.0242 −0.0244
Lrg −0.0153 −0.0158 −0.0178 −0.0176 −0.0194 −0.0194

Med Hig Sml −0.0018 −0.0020 −0.0074 −0.0068 −0.0092 −0.0095
Med 0.0271 0.0269 0.0100 0.0106 0.0084 0.0076
Lrg 0.0327 0.0326 0.0174 0.0167 0.0150 0.0138

Med Sml −0.0102 −0.0104 −0.0108 −0.0105 −0.0121 −0.0123
Med 0.0057 0.0050 0.0020 0.0023 0.0007 0.0005
Lrg 0.0555 0.0548 0.0497 0.0497 0.0481 0.0478

Low Sml −0.0080 −0.0082 −0.0080 −0.0079 −0.0086 −0.0087
Med 0.0203 0.0201 0.0181 0.0182 0.0172 0.0173
Lrg 0.0372 0.0361 0.0306 0.0303 0.0300 0.0293

Hig Hig Sml 0.0227 0.0225 0.0211 0.0213 0.0202 0.0201
Med 0.0926 0.0915 0.0757 0.0754 0.0747 0.0743
Lrg 0.4200 0.4224 0.2515 0.2511 0.2517 0.2508

Med Sml 0.0207 0.0209 0.0151 0.0152 0.0147 0.0147
Med 0.0801 0.0798 0.0720 0.0720 0.0713 0.0716
Lrg 0.3601 0.3594 0.2913 0.2910 0.2916 0.2913

Low Sml 0.0181 0.0185 0.0131 0.0132 0.0129 0.0130
Med 0.0712 0.0709 0.0623 0.0622 0.0618 0.0620
Lrg 0.2806 0.2789 0.2684 0.2683 0.2688 0.2682

Table A19. Bias of β̂C
make when Region is missing at random. Bold values represent the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml −0.0062 −0.0065 −0.0083 −0.0082 −0.0105 −0.0108
Med −0.0064 −0.0065 −0.0078 −0.0082 −0.0101 −0.0104
Lrg 0.0017 0.0016 −0.0044 −0.0046 −0.0069 −0.0076

Med Sml −0.0092 −0.0094 −0.0085 −0.0084 −0.0095 −0.0095
Med −0.0186 −0.0187 −0.0174 −0.0173 −0.0183 −0.0184
Lrg 0.0023 0.0014 0.0018 0.0016 0.0005 −0.0004

Low Sml −0.0058 −0.0060 −0.0070 −0.0069 −0.0078 −0.0078
Med −0.0062 −0.0063 −0.0069 −0.0067 −0.0076 −0.0075
Lrg 0.0014 0.0010 −0.0017 −0.0018 −0.0025 −0.0023

Med Hig Sml 0.0023 0.0023 −0.0005 −0.0004 −0.0009 −0.0012
Med 0.0311 0.0310 0.0163 0.0164 0.0160 0.0153
Lrg 0.0338 0.0335 0.0200 0.0184 0.0192 0.0179

Med Sml −0.0057 −0.0060 −0.0060 −0.0058 −0.0066 −0.0067
Med 0.0189 0.0183 0.0177 0.0177 0.0173 0.0170
Lrg 0.0552 0.0548 0.0493 0.0491 0.0487 0.0484

Low Sml 4 × 10−4 4 × 10−4 −4 × 10−4 −4 × 10−4 −5 × 10−4 −7 × 10−4

Med 0.0231 0.0228 0.0225 0.0223 0.0221 0.0223
Lrg 0.0407 0.0399 0.0353 0.0347 0.0352 0.0343

Hig Hig Sml 0.0258 0.0257 0.0235 0.0239 0.0232 0.0232
Med 0.0758 0.0747 0.0607 0.0601 0.0604 0.0600
Lrg 0.4127 0.4162 0.2464 0.2458 0.2470 0.2462

Med Sml 0.0217 0.0220 0.0183 0.0184 0.0180 0.0182
Med 0.0794 0.0796 0.0721 0.0721 0.0718 0.0719
Lrg 0.3410 0.3416 0.2777 0.2772 0.2786 0.2782

Low Sml 0.0145 0.0149 0.0094 0.0095 0.0093 0.0093
Med 0.0725 0.0721 0.0624 0.0621 0.0620 0.0622
Lrg 0.2858 0.2849 0.2713 0.2713 0.2720 0.2714
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Table A20. Mean squared error of β̂B
make when Region is missing at random. Bold values represent the

best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml 0.0155 0.0156 0.0126 0.0125 0.0127 0.0127
Med 0.0332 0.0332 0.0263 0.0263 0.0262 0.0262
Lrg 0.0610 0.0609 0.0485 0.0486 0.0484 0.0484

Med Sml 0.0146 0.0146 0.0129 0.0128 0.0129 0.0129
Med 0.0251 0.0252 0.0230 0.0229 0.0229 0.0229
Lrg 0.0561 0.0561 0.0504 0.0504 0.0502 0.0502

Low Sml 0.0133 0.0133 0.0124 0.0124 0.0125 0.0125
Med 0.0276 0.0275 0.0266 0.0266 0.0267 0.0267
Lrg 0.0495 0.0496 0.0463 0.0462 0.0462 0.0462

Med Hig Sml 0.0365 0.0364 0.0293 0.0293 0.0291 0.0291
Med 0.0875 0.0879 0.0582 0.0583 0.0578 0.0580
Lrg 0.1586 0.1587 0.1180 0.1186 0.1175 0.1174

Med Sml 0.0314 0.0313 0.0274 0.0274 0.0273 0.0274
Med 0.0694 0.0690 0.0595 0.0596 0.0593 0.0592
Lrg 0.1434 0.1443 0.1276 0.1278 0.1274 0.1273

Low Sml 0.0290 0.0291 0.0276 0.0276 0.0275 0.0275
Med 0.0667 0.0667 0.0633 0.0634 0.0633 0.0632
Lrg 0.1404 0.1402 0.1268 0.1270 0.1264 0.1265

Hig Hig Sml 0.1004 0.1001 0.0749 0.0752 0.0748 0.0749
Med 0.3542 0.3532 0.2340 0.2348 0.2349 0.2354
Lrg 3.0461 3.0672 1.4855 1.4851 1.4978 1.4996

Med Sml 0.0814 0.0815 0.0698 0.0698 0.0697 0.0697
Med 0.1978 0.1973 0.1700 0.1700 0.1695 0.1694
Lrg 2.6731 2.6765 2.0533 2.0567 2.0653 2.0650

Low Sml 0.0806 0.0809 0.0732 0.0732 0.0731 0.0730
Med 0.1812 0.1813 0.1681 0.1681 0.1678 0.1679
Lrg 1.7210 1.7156 1.6306 1.6311 1.6350 1.6328

Table A21. Mean squared error of β̂C
make when Region is missing at random. Bold values represent the

best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml 0.0160 0.0161 0.0130 0.0130 0.0129 0.0129
Med 0.0329 0.0329 0.0251 0.0252 0.0249 0.0248
Lrg 0.0646 0.0643 0.0497 0.0498 0.0491 0.0492

Med Sml 0.0147 0.0147 0.0126 0.0126 0.0126 0.0126
Med 0.0264 0.0265 0.0236 0.0235 0.0233 0.0233
Lrg 0.0581 0.0579 0.0521 0.0522 0.0518 0.0517

Low Sml 0.0140 0.0140 0.0131 0.0131 0.0131 0.0131
Med 0.0275 0.0274 0.0262 0.0262 0.0262 0.0262
Lrg 0.0538 0.0536 0.0495 0.0495 0.0494 0.0494

Med Hig Sml 0.0395 0.0394 0.0315 0.0316 0.0313 0.0313
Med 0.0899 0.0904 0.0615 0.0615 0.0611 0.0612
Lrg 0.1685 0.1684 0.1285 0.1289 0.1283 0.1282

Med Sml 0.0333 0.0332 0.0291 0.0291 0.0291 0.0291
Med 0.0732 0.0729 0.0636 0.0637 0.0633 0.0633
Lrg 0.1559 0.1564 0.1384 0.1384 0.1381 0.1381

Low Sml 0.0304 0.0305 0.0289 0.0290 0.0289 0.0290
Med 0.0675 0.0677 0.0644 0.0645 0.0645 0.0644
Lrg 0.1450 0.1450 0.1303 0.1304 0.1300 0.1300

Hig Hig Sml 0.1097 0.1094 0.0807 0.0811 0.0807 0.0808
Med 0.3447 0.3435 0.2295 0.2301 0.2304 0.2309
Lrg 3.0495 3.0697 1.4834 1.4833 1.4959 1.4974

Med Sml 0.0893 0.0894 0.0772 0.0772 0.0772 0.0772
Med 0.2021 0.2015 0.1758 0.1758 0.1754 0.1750
Lrg 2.6473 2.6494 2.0516 2.0547 2.0649 2.0637

Low Sml 0.0840 0.0841 0.0765 0.0765 0.0764 0.0764
Med 0.1956 0.1957 0.1813 0.1812 0.1808 0.1809
Lrg 1.7120 1.7068 1.6237 1.6247 1.6289 1.6262
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Table A22. Bias of β̂B
make when Region is missing not at random. Bold values represent the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml −0.0218 −0.0256 −0.0261 −0.0252 −0.0318 −0.0318
Med −0.0273 −0.0313 −0.0269 −0.0263 −0.0324 −0.0333
Lrg −0.0204 −0.0250 −0.0273 −0.0277 −0.0330 −0.0340

Med Sml −0.0199 −0.0231 −0.0252 −0.0247 −0.0287 −0.0288
Med −0.0236 −0.0265 −0.0280 −0.0279 −0.0316 −0.0322
Lrg −0.0027 −0.0073 −0.0100 −0.0097 −0.0135 −0.0142

Low Sml −0.0206 −0.0236 −0.0240 −0.0237 −0.0262 −0.0262
Med −0.0186 −0.0218 −0.0228 −0.0223 −0.0246 −0.0251
Lrg −0.0165 −0.0205 −0.0178 −0.0173 −0.0196 −0.0202

Med Hig Sml −0.0026 −0.0040 −0.0073 −0.0066 −0.0092 −0.0095
Med 0.0242 0.0216 0.0106 0.0113 0.0083 0.0076
Lrg 0.0325 0.0296 0.0163 0.0165 0.0142 0.0132

Med Sml −0.0091 −0.0110 −0.0114 −0.0109 −0.0126 −0.0128
Med 0.0123 0.0109 0.0021 0.0017 0.0005 0.0003
Lrg 0.0642 0.0610 0.0502 0.0499 0.0491 0.0480

Low Sml −0.0066 −0.0089 −0.0081 −0.0079 −0.0089 −0.0090
Med 0.0207 0.0192 0.0181 0.0181 0.0169 0.0171
Lrg 0.0352 0.0321 0.0291 0.0289 0.0284 0.0278

Hig Hig Sml 0.0317 0.0307 0.0213 0.0215 0.0202 0.0201
Med 0.1006 0.0985 0.0757 0.0753 0.0741 0.0741
Lrg 0.4817 0.4825 0.2503 0.2499 0.2512 0.2497

Med Sml 0.0229 0.0223 0.0152 0.0152 0.0144 0.0144
Med 0.0973 0.0967 0.0734 0.0732 0.0721 0.0724
Lrg 0.4476 0.4489 0.2902 0.2905 0.2913 0.2908

Low Sml 0.0156 0.0150 0.0129 0.0133 0.0128 0.0125
Med 0.0720 0.0707 0.0619 0.0617 0.0616 0.0614
Lrg 0.3140 0.3174 0.2675 0.2674 0.2680 0.2671

Table A23. Bias of β̂C
make when Region is missing not at random. Bold values represent the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml −0.0095 −0.0112 −0.0093 −0.0094 −0.0116 −0.0116
Med −0.0130 −0.0147 −0.0081 −0.0083 −0.0101 −0.0110
Lrg −0.0013 −0.0040 −0.0051 −0.0067 −0.0074 −0.0082

Med Sml −0.0049 −0.0063 −0.0079 −0.0079 −0.0093 −0.0094
Med −0.0134 −0.0144 −0.0163 −0.0168 −0.0177 −0.0183
Lrg 0.0062 0.0042 0.0005 0.0003 −0.0010 −0.0017

Low Sml −0.0039 −0.0051 −0.0067 −0.0067 −0.0077 −0.0076
Med −0.0048 −0.0059 −0.0070 −0.0069 −0.0075 −0.0080
Lrg −0.0025 −0.0045 −0.0018 −0.0014 −0.0023 −0.0030

Med Hig Sml 0.0003 0.0001 −0.0002 −0.0001 −0.0007 −0.0011
Med 0.0295 0.0277 0.0174 0.0175 0.0166 0.0159
Lrg 0.0283 0.0266 0.0197 0.0189 0.0191 0.0183

Med Sml −0.0046 −0.0056 −0.0063 −0.0063 −0.0068 −0.0070
Med 0.0249 0.0244 0.0182 0.0173 0.0175 0.0173
Lrg 0.0622 0.0608 0.0504 0.0501 0.0503 0.0493

Low Sml −0.0001 −0.0012 −0.0004 −0.0003 −0.0005 −0.0007
Med 0.0244 0.0243 0.0226 0.0224 0.0219 0.0220
Lrg 0.0421 0.0404 0.0339 0.0335 0.0341 0.0335

Hig Hig Sml 0.0339 0.0333 0.0236 0.0236 0.0229 0.0230
Med 0.0794 0.0782 0.0604 0.0598 0.0599 0.0599
Lrg 0.4818 0.4841 0.2457 0.2446 0.2466 0.2451

Med Sml 0.0272 0.0271 0.0184 0.0183 0.0178 0.0179
Med 0.0932 0.0932 0.0736 0.0732 0.0724 0.0729
Lrg 0.4359 0.4391 0.2781 0.2784 0.2794 0.2787

Low Sml 0.0109 0.0109 0.0093 0.0094 0.0092 0.0091
Med 0.0713 0.0709 0.0623 0.0621 0.0623 0.0620
Lrg 0.3170 0.3209 0.2714 0.2711 0.2717 0.2711



Mathematics 2024, 12, 2884 31 of 33

Table A24. Mean squared error of β̂B
make when Region is missing not at random. Bold values represent

the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml 0.0158 0.0160 0.0128 0.0127 0.0130 0.0129
Med 0.0331 0.0333 0.0264 0.0263 0.0263 0.0264
Lrg 0.0673 0.0672 0.0487 0.0493 0.0485 0.0486

Med Sml 0.0153 0.0153 0.0128 0.0128 0.0129 0.0129
Med 0.0278 0.0278 0.0228 0.0230 0.0229 0.0229
Lrg 0.0606 0.0600 0.0505 0.0506 0.0501 0.0503

Low Sml 0.0136 0.0135 0.0124 0.0125 0.0125 0.0125
Med 0.0296 0.0293 0.0267 0.0267 0.0267 0.0267
Lrg 0.0530 0.0529 0.0467 0.0466 0.0465 0.0465

Med Hig Sml 0.0390 0.0389 0.0292 0.0291 0.0290 0.0289
Med 0.0787 0.0785 0.0584 0.0586 0.0580 0.0580
Lrg 0.1697 0.1690 0.1177 0.1181 0.1171 0.1171

Med Sml 0.0333 0.0331 0.0275 0.0275 0.0274 0.0274
Med 0.0735 0.0730 0.0596 0.0596 0.0593 0.0593
Lrg 0.1707 0.1705 0.1279 0.1279 0.1273 0.1275

Low Sml 0.0305 0.0305 0.0274 0.0275 0.0274 0.0274
Med 0.0692 0.0692 0.0637 0.0636 0.0634 0.0634
Lrg 0.1439 0.1425 0.1271 0.1270 0.1267 0.1268

Hig Hig Sml 0.1055 0.1049 0.0750 0.0749 0.0748 0.0748
Med 0.3113 0.3117 0.2345 0.2356 0.2350 0.2354
Lrg 3.5278 3.5611 1.4778 1.4811 1.5035 1.4995

Med Sml 0.0897 0.0899 0.0698 0.0700 0.0698 0.0698
Med 0.3240 0.3269 0.1697 0.1697 0.1693 0.1695
Lrg 3.3592 3.3825 2.0527 2.0552 2.0690 2.0670

Low Sml 0.0836 0.0834 0.0732 0.0733 0.0732 0.0732
Med 0.1892 0.1888 0.1678 0.1679 0.1676 0.1675
Lrg 2.0090 2.0216 1.6296 1.6348 1.6385 1.6370

Table A25. Mean squared error of β̂C
make when Region is missing not at random. Bold values represent

the best result.

Methods
Relb. Miss. Size Mean.I IPW MI K.MI DB.MI HC.MI

Low Hig Sml 0.0159 0.0159 0.0131 0.0131 0.0129 0.0129
Med 0.0326 0.0326 0.0255 0.0254 0.0251 0.0251
Lrg 0.0686 0.0682 0.0497 0.0499 0.0491 0.0493

Med Sml 0.0152 0.0151 0.0127 0.0127 0.0125 0.0125
Med 0.0292 0.0290 0.0237 0.0238 0.0236 0.0235
Lrg 0.0609 0.0603 0.0519 0.0520 0.0514 0.0515

Low Sml 0.0143 0.0141 0.0131 0.0131 0.0131 0.0131
Med 0.0290 0.0287 0.0263 0.0262 0.0262 0.0261
Lrg 0.0559 0.0558 0.0499 0.0500 0.0496 0.0497

Med Hig Sml 0.0409 0.0407 0.0314 0.0314 0.0312 0.0311
Med 0.0845 0.0844 0.0612 0.0613 0.0608 0.0608
Lrg 0.1861 0.1860 0.1295 0.1297 0.1286 0.1286

Med Sml 0.0349 0.0347 0.0291 0.0291 0.0290 0.0290
Med 0.0777 0.0773 0.0637 0.0636 0.0632 0.0632
Lrg 0.1769 0.1757 0.1384 0.1385 0.1377 0.1378

Low Sml 0.0327 0.0329 0.0289 0.0289 0.0288 0.0288
Med 0.0698 0.0698 0.0648 0.0649 0.0646 0.0646
Lrg 0.1507 0.1490 0.1306 0.1304 0.1301 0.1302

Hig Hig Sml 0.1125 0.1119 0.0809 0.0809 0.0807 0.0808
Med 0.3075 0.3080 0.2298 0.2309 0.2304 0.2307
Lrg 3.4957 3.5334 1.4725 1.4762 1.4996 1.4955

Med Sml 0.0984 0.0984 0.0773 0.0775 0.0772 0.0772
Med 0.3257 0.3288 0.1755 0.1755 0.1753 0.1755
Lrg 3.3488 3.3775 2.0493 2.0521 2.0666 2.0649

Low Sml 0.0865 0.0862 0.0765 0.0767 0.0766 0.0766
Med 0.2045 0.2045 0.1808 0.1810 0.1805 0.1805
Lrg 2.0213 2.0350 1.6247 1.6292 1.6328 1.6328
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