On the Solutions of Linear Systems over Additively Idempotent Semirings
Abstract
:1. Introduction
2. Materials and Methods
- 1.
- is a solution of the system (i.e., );
- 2.
- If is any other solution of the system, then .
3. Results
3.1. The Maximal Solution of a Linear System
3.2. Linear Systems on Tropical Semirings
- 1.
- .
- 2.
- .
- 1.
- , ,
- 2.
- such that .
- 1.
- .
- 2.
- such that
- 1.
- ;
- 2.
- such that .
- 1.
- Take to be empty for every .
- 2.
- Examine for , and if , then add i to .
4. Discussion
Value | Row | |
7 | ||
3 | ||
2 | ||
7 | ||
6 |
Columns | |
Value | Row | |
30 | ||
4 | ||
74 |
Columns | |
Cryptographic Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Golan, J.S. Semirings and Their Applications; Kluwer Academic Publishers: Dordrecht, Netherlands, 1999. [Google Scholar]
- Vandiver, H.S. Note on a simple type of algebra in which the cancellation law of addition does not hold. Bull. Am. Math. Soc. 1934, 40, 914–920. [Google Scholar] [CrossRef]
- Cuninghame-Green, R. Minimax Algebra. In Lecture Notes in Economics and Mathematical Systems; Springer: Berlin, Germany; New York, NY, USA, 1979; Volume 166, p. 258. [Google Scholar]
- Kleene, S.C. Representation of events in nerve nets and finite automata. In Automata Studies; Annals of Mathematics Studies; Princeton University Press: Princeton, NJ, USA, 1956; Volume 34, pp. 3–41. [Google Scholar]
- Klement, E.P.; Mesiar, R.; Pap, E. Triangular Norms; Springer: Dordrecht, The Netherlands, 2013; Volume 8. [Google Scholar]
- Di Nola, A.; Gerla, B. Algebras of Lukasiewicz’s logic and their semiring reducts. In Idempotent Mathematics and Mathematical Physics; Contemporary Mathematics; The American Mathematical Society: Providence, RI, USA, 2005; Volume 377, pp. 131–144. [Google Scholar]
- Di Nola, A.; Lettieri, A.; Perfilieva, I.; Novák, V. Algebraic analysis of fuzzy systems. Fuzzy Sets Syst. 2007, 158, 1–22. [Google Scholar] [CrossRef]
- Di Nola, A.; Russo, C. Semiring and semimodule issues in MV-algebras. Commun. Algebra 2013, 41, 1017–1048. [Google Scholar] [CrossRef]
- Krivulin, N. Idempotent Algebra Methods for Problems in Modeling and Analysis of Complex Systems; St. Petersburg University: St. Petersburg, Russia, 2009. [Google Scholar]
- Litvinov, G.L.; Maslov, V.P.; Rodionov, A.Y.; Sobolevski, A.N. Universal algorithms, mathematics of semirings and parallel computations. In Coping with Complexity: Model Reduction and Data Analysis; Lecture Notes in Engineering and Computer Science; Springer: Berlin, Germany, 2011; Volume 75, pp. 63–89. [Google Scholar]
- Simon, I. Limited subsets of a free monoid. In Proceedings of the 19th Annual Symposium on Foundations of Computer Science, Ann Arbor, MI, USA, 16–18 October 1978; IEEE: Long Beach, CA, USA, 1978; pp. 143–150. [Google Scholar]
- Floyd, R.W. Algorithm 97: Shortest path. Commun. ACM 1962, 5, 345. [Google Scholar] [CrossRef]
- Viro, O. Dequantization of real algebraic geometry on logarithmic paper. In European Congress of Mathematics; Casacuberta, C., Miró-Roig, R.M., Verdera, J., Xambó-Descamps, S., Eds.; Birkhauser Basel: Basel, Switzerland, 2001; pp. 135–146. [Google Scholar]
- Develin, M.; Santos, F.; Sturmfels, B. On the rank of a tropical matrix. In Combinatorial and Computational Geometry; Publications of the Math Sciences Research Institute; Cambridge Univercity Press: Cambridge, UK, 2005; Volume 52, pp. 213–242. [Google Scholar]
- Grigoriev, D. Complexity of solving tropical linear systems. Comput. Complex. 2013, 22, 71–88. [Google Scholar] [CrossRef]
- Davydow, A. New algorithms for solving tropical linear systems. Algebra i Anal. 2016, 28, 1–19. [Google Scholar] [CrossRef]
- Olia, F.; Ghalandarzadeh, S.; Amiraslani, A.; Jamshidvand, S. Solving linear systems over tropical semirings through normalization method and its applications. J. Algebra Appl. 2021, 20, 2150159. [Google Scholar] [CrossRef]
- Noel, V.; Grigoriev, D.; Vakulenko, S.; Radulescu, O. Tropical geometries and dynamics of biochemical networks application to hybrid cell cycle models. In Electronic Notes in Theoretical Computer Science, Proceedings of the 2nd International Workshop on Static Analysis and Systems Biology (SASB 2011), Venice, Italy, 13 September 2011; Elsevier Science B.V.: Amsterdam, The Netherlands, 2012; Volume 284, pp. 75–91. [Google Scholar]
- Noel, V.; Grigoriev, D.; Vakulenko, S.; Radulescu, O. Hybrid Models of the Cell Cycle Molecular Machinery. In International Workshop on Hybrid Systems Biology Newcastle. 2012. Available online: https://api.semanticscholar.org/CorpusID:12521148 (accessed on 9 August 2024).
- Gavalec, M.; Nĕmcová, Z.; Storage, S. Tropical linear algebra with the Lukasiewicz T-norm. Fuzzy Sets Syst. 2015, 276, 131–148. [Google Scholar] [CrossRef]
- Maze, G.; Monico, C.; Rosenthal, J. Public key cryptography based on semi- group actions. Adv. Math. Commun. 2007, 1, 489–507. [Google Scholar] [CrossRef]
- Durcheva, M.; Danilchenko, K. Secure Key Exchange in Tropical Cryptography: Leveraging Efficiency with Advanced Block Matrix Protocols. Mathematics 2024, 12, 1429. [Google Scholar] [CrossRef]
- Clifford, A.H.; Preston, G.B. The Algebraic Theory of Semigroups; American Mathematical Society: Providence, RI, USA, 1961; p. 34. [Google Scholar]
- Jamshidvand, S.; Ghalandarzadeh, S.; Amiraslani, A.; Olia, F. On the maximal solution of a linear system over tropical semirings. Math. Sci. 2020, 14, 147–157. [Google Scholar] [CrossRef]
- Otero Sánchez, A.; López Ramos, J.A. Cryptanalysis of a key exchange protocol based on a congruence-simple semiring action. J. Algebra Appl. 2024, 2024, 2550229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otero Sánchez, Á.; Camazón Portela, D.; López-Ramos, J.A. On the Solutions of Linear Systems over Additively Idempotent Semirings. Mathematics 2024, 12, 2904. https://doi.org/10.3390/math12182904
Otero Sánchez Á, Camazón Portela D, López-Ramos JA. On the Solutions of Linear Systems over Additively Idempotent Semirings. Mathematics. 2024; 12(18):2904. https://doi.org/10.3390/math12182904
Chicago/Turabian StyleOtero Sánchez, Álvaro, Daniel Camazón Portela, and Juan Antonio López-Ramos. 2024. "On the Solutions of Linear Systems over Additively Idempotent Semirings" Mathematics 12, no. 18: 2904. https://doi.org/10.3390/math12182904
APA StyleOtero Sánchez, Á., Camazón Portela, D., & López-Ramos, J. A. (2024). On the Solutions of Linear Systems over Additively Idempotent Semirings. Mathematics, 12(18), 2904. https://doi.org/10.3390/math12182904