
Citation: Cunha, G.N.; Faraci, F.;

Silva, K. Three Weak Solutions for a

Critical Non-Local Problem with

Strong Singularity in High Dimension.

Mathematics 2024, 12, 2910. https://

doi.org/10.3390/math12182910

Academic Editor: Huaizhong Zhao

Received: 22 August 2024

Revised: 11 September 2024

Accepted: 12 September 2024

Published: 18 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Three Weak Solutions for a Critical Non-Local Problem with
Strong Singularity in High Dimension
Gabriel Neves Cunha 1 , Francesca Faraci 2,* and Kaye Silva 1

1 Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia 74001-970, Brazil;
gabriel.neves@discente.ufg.br (G.N.C.); kayesilva@ufg.br (K.S.)

2 Department of Mathematics and Computer Sciences, University of Catania, 95125 Catania, Italy
* Correspondence: francesca.faraci@unict.it

Abstract: In this paper, we deal with a strongly singular problem involving a non-local operator, a
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1. Introduction

In the present paper, we study a non-local two-parameter problem of the follow-
ing type:

(P)


−
(

a + b
∫

Ω
|∇u|2dx

)
∆u = µ

s(x)
uγ

+ |u|2⋆−2u + λ f (x, u) in Ω

u > 0 in Ω
u = 0 on ∂Ω.

We assume that Ω is a bounded domain in RN with smooth boundary ∂Ω (N ≥ 4),

s : Ω 7→ [0,+∞] is in L(2⋆)
′
(Ω), and f : Ω ×R 7→ [0,+∞] is a Carathèodory function not

identically zero and satisfying f (x, 0) = 0 a.e. in Ω. Moreover, a, b > 0, γ > 1, and λ, µ > 0
are real parameters. As usual, we denote by 2⋆ := 2N

N−2 the Sobolev critical exponent and
by (2⋆)

′
= 2⋆

2⋆−1 its conjugate.
The peculiarity of the above problem is the combination of a Kirchhoff-type operator,

which is responsible for the non-local nature of the problem, of a strong singular term,
a critical nonlinearity, and a subcritical perturbation. The existence or multiplicity of
solutions to Kirchhoff-type problems with critical terms is frequently studied by mountain
pass arguments combined with the Lions concentration-compactness principle, both when
N < 4 (see [1–3]) and in the higher dimensions (N ≥ 4) (see [4–7]). Note that, in order to
employ the concentration-compactness principle, a and b need to satisfy suitable constraints.
Moreover, in high dimensions, the effect of a non-local operator, combined with a critical
nonlinearity, forces the energy functional to be coercive, and the interplay between the
Kirchhoff and the critical term allows us to establish some variational properties that will
be crucial to our arguments (see [8]).

After the pioneering work of [9], the interest in singular problems has been increasing
over the years; existence and multiplicity results have been obtained, both for the weak
singular case (i.e., γ < 1) and for the strong singular case (i.e., γ ≥ 1). Indeed, due to the
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presence of the singular term, when γ < 1, problem (P) is variational, and it is possible
to associate with (P) an energy functional Eλ,µ which, although not differentiable, has
useful properties in the natural Sobolev space H1

0(Ω). On the contrary, in the case γ ≥ 1, in
general, the energy functional Eλ,µ is no longer defined on the whole H1

0(Ω). In the seminal
work of [10], it is proved that, even in the semilinear case, the pure singular problem is
not expected to possess solutions in H1

0(Ω) for γ ≥ 3. However, if the singular term is
multiplied by a suitable positive weight, one can still obtain solutions in H1

0(Ω) via sub-
and super-solution techniques (see [11]).

The presence of a non-local term, in the context of singular problems, makes the
analysis more challenging, since it becomes quite difficult to establish any sort of compar-
ison principle (which is one of the main tools to produce solutions in the presence of a
strong singularity).

In the present work, we study the interaction between a non-local, a critical, and a
singular term to investigate the existence of multiple solutions for (P) in H1

0(Ω). Note
that, if a and b are big enough and λ = 0, problem (P) has precisely one solution, which
corresponds to the unique global minimizer of E0,µ (see Remark 3). The presence of a
perturbation breaks this uniqueness property, and the existence of three weak solutions is
obtained for big λs and small µs. The study of existence of three solutions for singular prob-
lems driven by the p-Laplace operator has been developed in [12] in the low-dimensional
case and in [13] for any dimension. Later, in [14], an equivalence-type result was obtained
in the setting of Orlicz spaces for the non-local case.

In the present work, we extend the results of [13] to a more general problem: with
respect to [13], the presence of a non-local operator and a critical term requires some extra
variational properties. Thus, even if the underlying idea is the same, our multiplicity result
is not straightforward. Employing the results of [8], we are still able to prove that the
energy functional Eλ,µ associated with (P) is sequentially weakly lower semicontinuous
and that its derivative satisfies some form of compactness property.

We will prove the existence of two local minimizers via topological arguments. The
idea is to show that the functional Eλ,0 for λ > 0 is large enough, has two local minimizers,
and that the topology of Eλ,0, after being perturbed by the singular term, changes little
enough so that Eλ,µ still has two local minimizers in H1

0(Ω), as long as the parameter µ > 0
is small enough. The existence of a third solution follows at once by employing a suitable
version of the mountain pass theorem for Szulkin functionals.

Let us first present the definition of weak solution in our framework (see [11]).

Definition 1. A weak solution for (P) is a function u ∈ H1
0(Ω) such that

(i) u > 0 almost everywhere in Ω,
(ii) su−γϕ ∈ L1(Ω) ∀ ϕ ∈ H1

0(Ω),
(iii) ∀ϕ ∈ H1

0(Ω); there holds(
a + b

∫
Ω
|∇u|2dx

) ∫
Ω
∇u∇ϕdx − µ

∫
Ω

su−γϕdx −
∫

Ω
u2⋆−1ϕdx − λ

∫
Ω

f (x, u)ϕdx = 0.

In the subsequent work, we will assume the following:

( f1) there exist c1, c2 > 0, q ∈ (2, 2⋆), such that 0 ≤ f (x, t) ≤ c1 + c2tq−1 for a.e. x ∈ Ω,
t ≥ 0;

( f2) limt→0+
f (x,t)

t = 0 uniformly in Ω;

(s1) there exists u ∈ C1
0(Ω), with u > 0, such that su−γ ∈ L(2⋆)

′
(Ω).

Let F : Ω × [0,+∞] → R be a primitive of f , i.e.,

F(x, t) =
∫ t

0
f (x, s)ds.

Also put f (x, t) = 0 for all t ≤ 0.
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In order to state our main result, let us introduce some useful notation. We endow

H1
0(Ω) with the classical norm ∥ · ∥ :=

(∫
Ω |∇ · |2dx

) 1
2 and Lp(Ω) with the standard

Lebesgue norm ∥ · ∥p :=
(∫

Ω | · |p
) 1

p , p ≤ 2⋆. Let u+ := max{u, 0} and u− := max{−u, 0}.
Denote by S0 the embedding constant of H1

0(Ω) ↪→ L2⋆(Ω), i.e.,

S0 = sup
u∈H1

0 (Ω)\{0}

∥u∥2⋆
2⋆

∥u∥2⋆ .

Now, define the constants

C1(N) :=


4(N − 4)

N−4
2

S− N−2
2

0 N
N−2

2

if N > 4

S0 if N = 4

,

C2(N) :=


2(N − 4)

N−4
2

S− N−2
2

0

1[
(N−2)2

N+2

] N−2
2

if N > 4

3S0 if N = 4.

The above constants were introduced in [8], where some useful variational properties of
the energy functional involving a Kirchhoff and a critical term were proved.

The following result is the main purpose of this work.

Theorem 1. Assume conditions ( f1), ( f2), and (s1), and put

λ⋆ = inf

{
a
2∥u∥2 + b

4∥u∥4 − 1
2⋆ ∥u+∥2⋆

2⋆∫
Ω F(x, u+(x)) dx

: u ∈ H1
0(Ω),

∫
Ω

F(x, u+(x)) dx > 0

}
. (1)

Then, the following holds true.

(i) If a
N−4

2 b > C1(N) then, for each λ > λ⋆, there exists µ⋆ = µ⋆(λ) > 0 such that, for all
0 < µ < µ⋆, problem (P) has at least two weak solutions.

(ii) If a
N−4

2 b > C2(N) then, for each λ > λ⋆, there exists µ⋆ = µ⋆(λ) > 0 such that, for all
0 < µ < µ⋆, problem (P) has at least three weak solutions.

Remark 1. Note that C2(N) > C1(N) for N ≥ 4.

2. Abstract Results

We now state the preparatory results upon which the proof of Theorem 1 is based.
Define S : Ω ×R 7→ [−∞,+∞] by

S(x, t) =


1

γ − 1
s(x)t1−γ, if x ∈ Ω and t > 0,

+∞, if x ∈ Ω and t ≤ 0.

The singular operator Ψ : H1
0(Ω) → [−∞,+∞] is given by

Ψ(u) =


∫

Ω
S(x, u)dx, if S(x, u) ∈ L1(Ω),

+∞, if S(x, u) ̸∈ L1(Ω).

(2)

Also, we define a functional Φλ : H1
0(Ω) 7→ R by

Φλ(u) :=
1
2

a∥u∥2 + b
1
4
∥u∥4 − 1

2⋆
∥u+∥2⋆

2⋆ − λ
∫

Ω
F(x, u+(x))dx.
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Finally, we can introduce the extended energy functional Eλ,µ : H1
0(Ω) 7→ [−∞,+∞] by

Eλ,µ(u) := Φλ(u) + µΨ(u).

Lemma 1. Assume a
N−4

2 b ≥ C1(N). Then, the functional Φ0 is sequentially weakly lower
semicontinuous.

The proof is the same as in Lemma 2.1 of [8]. Here, we indicate the main steps
for completeness.

Proof. Let {un} ⊂ H1
0(Ω) such that un ⇀ u ∈ H1

0(Ω) (thus, {un} is bounded). Let us
define an auxiliary functional Γ : H1

0(Ω) 7→ R by

Γ(u) =
1
2

a∥u∥2 +
1
4

b∥u∥4 − 1
2⋆

∥u∥2⋆
2⋆ .

Simple computations and the Brezis–Lieb lemma give us the relations

∥un∥2 − ∥u∥2 = ∥un − u∥2 + on(1),

∥un∥4 − ∥u∥4 ≥ ∥un − u∥4 + on(1),

∥un∥2⋆
2⋆ − ∥u∥2⋆

2⋆ = ∥un − u∥2⋆
2⋆ + on(1).

Combining the relations above, we obtain

Γ(un)− Γ(u) ≥ ∥un − u∥2
(

1
2 a + 1

4 b∥un − u∥2 − S0
2⋆ ∥un − u∥2⋆−2

)
+ on(1).

Define, for N ≥ 4, the convex function g : [0,+∞[ 7→ R given by

g(t) ≡
(

a
2
+

b
4

t2 − S0

2⋆
t2⋆−2

)
.

For N > 4, g attains its minimum at

t0 =

(
2(2⋆ − 2)

2⋆
S0

b

) 1
4−2⋆

,

and simple computations show that

g(t0) ≥ 0 ⇐⇒ a
N−4

2 b ≥ C1(N).

For N = 4 (in this case, 2⋆ = 4), we rewrite g(t) ≡
(

a
2 + (b − S0)

t2

4

)
, which attains its

minimum value a
2 at t0 = 0 for b ≥ S0.

Therefore, for N ≥ 4, if a
N−4

2 b ≥ C1(N), it holds that

lim inf
n→+∞

[Γ(un)− Γ(u)] ≥ lim inf
n→+∞

[
∥un − u∥2g(t0)

]
≥ 0.

To finish the proof, it is enough to note that

Φ0(u) ≡ Γ(u) +
1
2⋆

∥u−∥2⋆
2⋆ .

Corollary 1. Assume a
N−4

2 b ≥ C1(N) and ( f1). Then, for each λ > 0, the functional Φλ is
sequentially weakly lower semicontinuous.
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Lemma 2. Assume the following: either N = 4 and a
N−4

2 b ≥ C1(N), or N > 4 and a, b > 0 are
arbitrary. Then, the functional Φ0 is coercive.

Proof. Indeed,

Φ0(u) ≥ 1
2

a∥u∥2 + b
1
4
∥u∥4 − 1

2⋆
∥u∥2⋆

2⋆

≥ 1
2

a∥u∥2 + b
1
4
∥u∥4 − S0

1
2⋆

∥u∥2⋆ .

Therefore, for 2⋆ < 4 (when N > 4), the claim is true for all a, b > 0; if 2⋆ = 4 (when N = 4),
the conclusion follows only for b ≥ S0.

Corollary 2. Under the same conditions as in Lemma 2, the energy functional Eλ,µ is coercive for
all λ, µ ≥ 0.

We denote by W the class of functionals Φ : X → R having the following property:

(W) if {un}n∈N is a sequence in X such that un ⇀ u (weakly) and

lim inf
n

Φ(un) ≤ Φ(u);

then, it has a sub-sequence strongly converging to u.

Proposition 1. Assume a
N−4

2 b > C1(N). Then, Φ0 ∈ W .

Proof. Let {un}n∈N be a sequence in H1
0(Ω) such that un ⇀ u and lim infn Φ0(un) ≤ Φ0(u).

By Lemma 1, lim infn Φ0(un) = Φ0(u). Thus, recalling that

Γ(u) = Φ0(u)−
1
2⋆

∥u−∥2⋆
2⋆ ,

by the weak lower semicontinuity of the norm, we deduce that

lim inf
n→∞

Γ(un) ≤ Φ0(u)−
1
2⋆

∥u−∥2⋆
2⋆ = Γ(u). (3)

From the proof of Lemma 1, we observe that

Γ(un)− Γ(u) ≥ ∥un − u∥2g(t0) + on(1),

and thus
lim inf
n→+∞

[Γ(un)− Γ(u)] ≥ lim inf
n→+∞

[
∥un − u∥2g(t0)

]
.

Now, if a
N−4

2 b > C1(N), one has g(t0) > 0, and the claim follows by (3).

The following result will be crucial in the subsequent work.

Theorem 2 ([15]). Let X be a reflexive and separable real Banach space, and let I, J : X → R be
two sequentially weakly lower semicontinuous functionals with I ∈ W . Assume that

lim
∥u∥→∞

I(u) + J(u) = +∞.

Then, any strict local minimizer of I + J in the strong topology is the same in the weak topology.

Corollary 3. Assume a
N−4

2 b > C1(N) and ( f1), ( f2). Then, 0 is a local minimizer of Φλ in the
weak topology.
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Proof. We apply Theorem 2 choosing I = Φ0, and J is defined by J(u) = −λ
∫

Ω F(x, u+(x)) dx.
By Lemma 1 and assumption ( f1), I and J are sequentially weakly lower semicontinu-
ous, and Proposition 1 ensures that I ∈ W . The coercivity of I + J = Φλ follows by
Lemma 2 (for µ = 0). By ( f2), 0 is a local minimizer of Φλ in the strong topology, and the
claim follows.

The singular term prevents the application of the classical critical point theory for C1

functionals. We will need the following.

Definition 2 ([16]). Let X be a real Banach space, Φ ∈ C1(X), and Ψ : X 7→ R∪ {+∞} proper,
convex and lower semicontinuous. Then, I = Φ + Ψ is referred to as the Szulkin functional.
Moreover, a point u ∈ X is said to be critical for the Szulkin functional I if u ∈ domΨ(u) = {u ∈
X : Ψ(u) < +∞} and

⟨Φ′(u), v − u⟩+ Ψ(v)− Ψ(u) ≥ 0 for all v ∈ X.

It is well-known that a local minimum of I is a critical point of I.

Lemma 3 ([13], Lemma 3.1). Assume (s1). Then,

int(C1
0(Ω)+) ⊂ dom(Ψ)

where int(C1
0(Ω)+) denotes the interior in the ordered Banach space C1

0(Ω) of the positive cone

C1
0(Ω)+ = {u ∈ C1

0(Ω) : u(x) ≥ 0 ∀ x ∈ Ω}.

Remark 2. The energy functional Eλ,µ associated with problem (P) is a Szulkin functional. Indeed,
Φλ is of class C1(H1

0(Ω)), while Ψ, defined as in (2), is a convex and lower semicontinuous (l.s.c.)
functional. Moreover, it is proper from the previous result.

Definition 3. We say that the operator T : X 7→ X⋆ satisfies the (S)+ condition if the following is
true: let {un}n≥1 ⊂ X such that un ⇀ u ∈ X and

lim sup
n→+∞

⟨T(un), un − u⟩ ≤ 0.

Then, un 7→ u ∈ X.

Proposition 2. Assume a
N−4

2 b > C2(N). Then, the operator Φ
′
0 satisfies the (S)+ condition.

Proof. Let n ≥ 1 and t ∈ [0, 1]. A straightforward calculation shows that

Φ
′′
0(tu + (1 − t)un)(un − u)(un − u) ≥

a∥un − u∥2 + b∥tu + (1 − t)un∥2∥un − u∥2 − (2⋆ − 1)S0∥(tu + (1 − t)un)+∥
4

N−2 ∥un − u∥2 ≥

a∥un − u∥2 + b∥tu + (1 − t)un∥2∥un − u∥2 − (2⋆ − 1)S0∥tu + (1 − t)un∥
4

N−2 ∥un − u∥2 =[
a + b∥tu + (1 − t)un∥2 − (2⋆ − 1)S0∥tu + (1 − t)un∥

4
N−2

]
∥un − u∥2.

Now, define the auxiliary function

g(t) ≡ a + bt2 − N + 2
N − 2

S0t
4

N−2 .

If N > 4, g attains its minimum at

t0 =

[
S0

2(N + 2)
b(N − 2)2

] N−2
2(N−4)

,
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and g(t0) > 0 if and only if

ab
2

N−4 >

[
N − 4

2

][
2(N + 2)
(N − 2)2 S0

] N−2
N−4

.

If N = 4,
g(t) = a + (b − 3S0)t2,

and if b > 3S0, g(t) ≥ a. Subsequently, if a
N−4

2 b > C2(N), there exists a constant C > 0
such that

Φ
′′
0(tu + (1 − t)un)(un − u)(un − u) ≥ C∥un − u∥2.

Let {un} be a sequence such that un ⇀ u and

lim sup
n→+∞

〈
Φ0

′(un), un − u
〉
≤ 0.

Then,
lim sup
n→+∞

〈
Φ0

′(u), un − u
〉
= 0,

and so

0 ≥ lim sup
n→+∞

〈
Φ0

′(un), un − u
〉
= lim sup

n→+∞

〈
Φ

′
0(un)− Φ

′
0(u), un − u

〉
= lim sup

n→+∞

∫ 1

0
Φ

′′
0(tu + (1 − t)un)(un − u)(un − u)dt

≥ lim sup
n→+∞

C∥un − u∥2.

Thus, we conclude that
lim

n→+∞
∥un − u∥2 = 0;

that is our claim.

From Proposition 2, it follows that:

Corollary 4. Assume a
N−4

2 b > C2(N) and ( f1). Then, the operator Φ
′
λ satisfies the (S)+ condition.

Remark 3. Proposition 2 also shows that Φ′
0 is strongly monotone; thus, in particular, Φ0 is

strictly convex.

Definition 4. Let I = Φ + Ψ be a Szulkin functional defined on a Banach space X. We say that I
satisfies the Palais–Smale condition if, for any sequence {un}n≥1 ⊂ X and {ϵn}n≥1 ⊂ R+ such
that I(un) 7→ c ∈ R, ϵn 7→ 0, and〈

Φ
′
(un), v − un

〉
+ Ψ(v)− Ψ(un) ≥ −ϵn∥v − un∥

for all n ≥ 1 and for all v ∈ X, {un}n≥1 possesses a strongly convergent sub-sequence.

Proposition 3. Assume a
N−4

2 b > C2(N), ( f1). Then, the energy functional Eλ,µ satisfies the
Palais–Smale condition.

Proof. Let {un}n≥1 be a sequence such that {Eλ,µ(un)} converges to some c ∈ R, and let
{ϵn}n≥1 be a sequence of positive real numbers such that ϵn 7→ 0. Since Eλ,µ is coercive
by Corollary 2, un ⇀ u ∈ H1

0(Ω) up to a sub-sequence. Moreover, we note that Eλ,µ
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is sequentially weakly lower semicontinuous, and thus Eλ,µ(u) < +∞. Subsequently,
u ∈ dom(Ψ). Setting v = u in the inequality in Definition 4, we obtain〈

Φ
′
λ(un), un − u

〉
≤ µΨ(u)− µΨ(un) + ϵn∥u − un∥.

Now, since Ψ is sequentially weakly lower semicontinuous, there holds

lim sup
n→+∞

〈
Φ

′
λ(un), un − u

〉
≤ lim sup

n→+∞
(µΨ(u)− µΨ(un) + ϵn∥u − un∥)

= µ lim sup
n→+∞

(Ψ(u)− Ψ(un))

≤ 0.

From Corollary 4, Φ
′
λ is of type (S)+, and thus un 7→ u strongly in H1

0(Ω).

Proposition 4. Any critical point u ∈ H1
0(Ω) of Eλ,µ (in the sense of Szulkin) is a weak solution

for problem (P).

Proof. By Definition 2, for all v ∈ H1
0(Ω), there holds〈

Φ′
λ(u), v − u

〉
+ µ(Ψ(v)− Ψ(u)) ≥ 0. (4)

Since u ∈ dom(Ψ), by the definition of S, it is clear that u > 0 almost everywhere in Ω. Let
φ ∈ H1

0(Ω), φ ≥ 0, and v := u + ϵφ in (4).
Then,(

a + b∥u∥2
) ∫

Ω
⟨∇u,∇φ⟩dx −

∫
Ω

u2⋆−1 φdx − λ
∫

Ω
f (x, u)φdx ≥ µ

∫
Ω

S(x, u)− S(x, u + ϵφ)

ϵ
dx.

Taking ϵ 7→ 0 and applying Fatou’s Lemma, we obtain that

s(x)u−γ φ ∈ L1(Ω)

and(
a + b∥u∥2

) ∫
Ω
⟨∇u,∇φ⟩dx −

∫
Ω

u2⋆−1 φdx − λ
∫

Ω
f (x, u)φdx ≥ µ

∫
Ω

s(x)u−γ φdx. (5)

Let v := (1 − ϵ)u, with ϵ ∈ (0, 1), in (4).
Then,(

a + b∥u∥2
) ∫

Ω
⟨∇u,∇u⟩dx −

∫
Ω

u2⋆dx − λ
∫

Ω
f (x, u)udx − µ

∫
Ω

S(x, (1 − ϵ)u)− S(x, u)
ϵ

dx ≤ 0. (6)

Applying the mean value theorem for functions of a real variable, there exists τ = τ(ϵ) ∈
(0, ϵ) such that (6) can be rewritten as(

a + b∥u∥2
) ∫

Ω
⟨∇u,∇u⟩dx −

∫
Ω

u2⋆−1udx − λ
∫

Ω
f (x, u)udx − µ(1 − τ(ϵ))−γ

∫
Ω

s(x)u1−γdx ≤ 0.

Taking ϵ 7→ 0, we obtain(
a + b∥u∥2

) ∫
Ω
⟨∇u,∇u⟩dx −

∫
Ω

u2⋆dx − λ
∫

Ω
f (x, u)udx − µ

∫
Ω

s(x)u1−γdx ≤ 0.

Therefore, by (5), we deduce that(
a + b∥u∥2

) ∫
Ω
⟨∇u,∇u⟩dx −

∫
Ω

u2⋆dx − λ
∫

Ω
f (x, u)udx − µ

∫
Ω

s(x)u1−γdx = 0.

Now, take any φ ∈ H1
0(Ω) to test (5) with the function

v := (u + ϵφ)+
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and obtain(
a + b∥u∥2

) ∫
Ω
⟨∇u,∇(u + ϵφ)⟩dx −

∫
Ω

u2⋆−1(u + ϵφ)dx − λ
∫

Ω
f (x, u)(u + ϵφ)dx

− µ
∫

Ω
s(x)u−γ(u + ϵφ)dx −

(
a + b∥u∥2

) ∫
{u+ϵφ<0}

⟨∇u,∇(u + ϵφ)⟩dx

+
∫
{u+ϵφ<0}

u2⋆−1(u + ϵφ)dx + λ
∫
{u+ϵφ<0}

f (x, u)(u + ϵφ)dx + µ
∫
{u+ϵφ<0}

s(x)u−γ(u + ϵφ)dx ≥ 0.

From the inequality above, we have

=0︷ ︸︸ ︷(
a + b∥u∥2

) ∫
Ω
|∇u|2dx −

∫
Ω

u2⋆dx − λ
∫

Ω
f (x, u)udx − µ

∫
Ω

s(x)u1−γdx +

ϵ

[(
a + b∥u∥2

) ∫
Ω
⟨∇u,∇φ⟩dx −

∫
Ω

u2⋆−1 φdx − λ
∫

Ω
f (x, u)φdx − µ

∫
Ω

s(x)u−γ φdx
]
+

≤0︷ ︸︸ ︷
−
(

a + b∥u∥2
) ∫

{u+ϵφ<0}
|∇u|2dx −ϵ

(
a + b∥u∥2

) ∫
{u+ϵφ<0}

⟨∇u,∇φ⟩dx+

≤0︷ ︸︸ ︷∫
{u+ϵφ<0}

u2⋆−1(u + ϵφ)dx + λ
∫
{u+ϵφ<0}

f (x, u)(u + ϵφ)dx + µ
∫
{u+ϵφ<0}

s(x)u−γ(u + ϵφ)dx ≥ 0.

In other words,(
a + b∥u∥2

) ∫
Ω
⟨∇u,∇φ⟩dx −

∫
Ω

u2⋆−1 φdx − λ
∫

Ω
f (x, u)φdx − µ

∫
Ω

s(x)u−γ φdx

−
(

a + b∥u∥2
) ∫

{u+ϵφ<0}
⟨∇u,∇φ⟩dx ≥ 0.

Taking the limit as ϵ 7→ 0, we conclude that(
a + b∥u∥2

) ∫
Ω
⟨∇u,∇φ⟩dx −

∫
Ω

u2⋆−1 φdx − λ
∫

Ω
f (x, u)φdx − µ

∫
Ω

s(x)u−γ φdx ≥ 0,

and, by the arbitrariness of φ, we conclude that(
a + b∥u∥2

) ∫
Ω
⟨∇u,∇φ⟩dx −

∫
Ω

u2⋆−1 φdx − λ
∫

Ω
f (x, u)φdx − µ

∫
Ω

s(x)u−γ φdx = 0;

that is, u is a weak solution to (P).

Lemma 4. Under condition ( f1), all critical points u ∈ H1
0(Ω) of Φλ belong to int(C1

0(Ω)+).

Proof. Assume u as in the statement and note first that u ≥ 0. Put k =
(
a + b∥u∥2). Thus,

we can write {
−∆u = a(x)(1 + u(x)) in Ω
u = 0 in ∂Ω,

(7)

where

a(x) :=
1
k
· u(x)2⋆−1 + λ f (x, (u(x))

1 + u(x)
.

Let us prove that a(x) ∈ L
N
2 (Ω).
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In fact, by ( f1), denoting by c a constant whose value may vary from line to line,
there holds(

1
k
· u(x)2⋆−1 + λ f (x, (u(x))

1 + u(x)

) N
2

≤ c

(
u(x)2⋆−1 + c(1 + u(x)q−1)

1 + u(x)

) N
2

≤ c(1 + u(x)2⋆) ∈ L1(Ω).

Therefore, by the Brezis–Kato arguments (see, for instance, Lemma B.3 of [17]), u ∈ Lp(Ω)
for all p > 1. This proves that the right-hand side of (7) belongs to Lp(Ω) for all 1 <
p < +∞, which in turn allows us to use the Calderón–Zigmund inequalities to prove that
u ∈ W2,p

0 (Ω) for all 1 < p < +∞. Finally, the Sobolev immersions imply that u ∈ C1,α(Ω)
for some α ∈ (0, 1). From Theorem 1 in [18], we conclude that u > 0 a.e. in Ω.

We conclude this section recalling the following topological result, which will be useful
in the subsequent work. Its proof will be used in the proof of our main result and, for this
reason, we provide it here.

Proposition 5 ([13], Proposition 2.2). Let X be a Hausdorff topological space. Let {Kn}n≥1 ⊂ X
be a decreasing sequence of compact subsets such that

⋂
n≥1 Kn is the disjoint union of non-empty

compact sets Si (i = 1, 2). Then, for some n ≥ 1, the set Kn is the disjoint union of non-empty
compact sets Ci (i = 1, 2), where Si ⊂ Ci (i = 1, 2).

Proof. Since X is Hausdorff and Si is compact, there are disjoint open sets Oi (i = 1, 2) so
that Si ⊂ Oi (i = 1, 2). Moreover,

K1 ⊂
[

X\
∞⋂

n=1

Kn

]⋃[ ∞⋂
n=1

Kn

]

=

[
∞⋃

n=1
(X\Kn)

]⋃[ 2⋃
i=1

Si

]

⊆
[

∞⋃
n=1

(X\Kn)

]
2⋃

i=1

Oi.

By the compactness of K1, there is a finite index set J such that

K1 ⊂

⋃
n∈J

(X\Kn)

 2⋃
i=1

Oi.

Since the set sequence {X\Kn}n≥1 is increasing, for n = max J, there holds

Kn ⊂ K1 ⊂ (X\Kn)
2⋃

i=1

Oi.

In other words,

Kn ⊂
2⋃

i=1

Oi. (8)

Define

Ci := Kn ∩Oi f or i = 1, 2. (9)

Relations (8) and (9) tell us that Ci (i = 1, 2) are disjoint and compact. It is also clear that
Si ⊂ Ci (i = 1, 2).
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3. Main Result

Now we are in a position to prove Theorem 1. First, we prove the existence of two
local minimizers for the energy functional associated with problem (P). The proof follows
as in [13], Theorem 1.1 (see also [19]).

Lemma 5. Assume a
N−4

2 b > C1(N). Under conditions ( f1), ( f2), and (s1), the energy functional
Eλ,µ has at least two local minimizers.

Proof. From assumption ( f2), it follows that 0 ∈ H1
0(Ω) is a strict local minimizer of Φλ in

the strong topology. Consequently, 0 is also a strict local minimizer in the weak topology
from Corollary 3.

In other words, there is a weak neighborhood of zero O ⊂ H1
0(Ω) such that

Φλ(u) > 0 ∀u ∈ O\{0}. Thus,

Φ−1
λ ([ −∞, 0]) =

∞⋂
n≥1

Φ−1
λ

([
−∞,

1
n

])
= {0} ∪

(
Φ−1

λ ([−∞, 0])\O
)

.

By the definition of λ⋆, for λ > λ⋆, infu∈H1
0 (Ω) Φλ < 0, and thus Φ−1

λ ([−∞, 0])\O ̸= ∅.
Note that the sublevel sets of Φλ are weakly compact and metrizable (thus sequentially
weakly compact) with respect to the weak topology. By Proposition 5, for some n ≥ 1,
there exist weakly compact and sequentially weakly compact disjoint sets Ci (i = 1, 2) with
{0} ⊂ C1 and Φ−1

λ ([−∞, 0])\O ⊂ C2, such that

Φ−1
λ

([
−∞,

1
n

])
= C1 ∪ C2.

Since Φλ + µΨ is sequentially weakly lower semicontinuous and Ci (i = 1, 2) are
sequentially weakly compact, we obtain the existence of ui ∈ Ci (i = 1, 2) such that

inf
Ci
(Φλ + µΨ) = Φλ(ui) + µΨ(ui).

We wish to prove that, for i = 1, 2, there holds

ui ∈ O′
i := {u ∈ Oi : Φλ(u) <

1
n
},

where Oi (i = 1, 2) come from the proof of Proposition 5. Notice also that O′
i ⊂ Ci (i = 1, 2).

The Oi values are weakly open and therefore strongly open, and Φλ is strongly
continuous. Therefore, the O′

i values are strongly open. Let us prove that

dom(Ψ) ∩O′
i ̸= ∅.

Indeed, by Lemma 3, it is enough to prove that

int(C1
0(Ω)) ∩O′

i ̸= ∅.

Since 0 ∈ O′
1, then there exists a positive number ε such that B(0, ε) ⊂ O′

1. Then,
dom(Ψ) ∩O′

1 ̸= ∅.
On the other hand, by the coercivity and the sequential weak lower semicontinuity of

Φλ, there exists u0 ∈ O′
2 as a global minimizer of Φλ. Thus, u0 is a critical point of Φλ, and

by Lemma 4, u0 ∈ int(C1
0(Ω)+); thus, dom(Ψ) ∩O′

2 ̸= ∅.
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Then, we may define in R the constant

mi := inf
dom(Ψ)∩O′

i

Ψ − minCi Ψ
1
n − Φλ

i = 1, 2.

Take µ⋆ > 0 such that
1

µ⋆
> max{mi : i = 1, 2}.

Therefore, for all 0 < µ < µ⋆, there are yi ∈ dom(Ψ) ∩O′
i such that

µΨ(yi) + Φλ(yi) < µ min
Ci

Ψ +
1
n

.

Thus, we may find u1 ∈ dom(Ψ) ∩ C1, u2 ∈ dom(Ψ) ∩ C2 s.t.:

min
Ci

(Φλ + µΨ) = Φλ(ui) + µΨ(ui), i = 1, 2.

We wish to prove that ui ∈ O′
i , i = 1, 2. Assume by contradiction that, for some i ∈ {1, 2},

it holds that ui ̸∈ O′
i . This means that Φλ(ui) ≥ 1

n .
Then,

inf
O′

i

(Φλ + µΨ) ≥ inf
Ci
(Φλ + µΨ)

= Φλ(ui) + µΨ(ui)

≥ 1
n
+ µ min

Ci
Ψ

> µΨ(yi) + Φλ(yi),

which is a contradiction.

Proof. (1) By Lemma 5, the energy functional Eλ,µ has at least two local minimizers.
Proposition 1.1 of [16] guarantees that local minimizers are critical points in the sense of
Szulkin, and from Proposition 4, the claim follows.

(2) From Proposition (3), the energy functional Eλ,µ satisfies the Palais–Smale condi-
tion. Since C2(N) > C1(N), Eλ,µ has two local minimizers and given Corollary 3.3 of [16],
the thesis is proved.
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