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Abstract: In the current article, we examine Lorentzian para-Kenmotsu (shortly, LP-Kenmotsu)
manifolds with regard to the generalized symmetric metric connection ∇G of type (α, β). First, we
obtain the expressions for curvature tensor, Ricci tensor and scalar curvature of an LP-Kenmotsu
manifold with regard to the connection ∇G . Next, we analyze LP-Kenmotsu manifolds equipped with
the connection ∇G that are locally symmetric, Ricci semi-symmetric, and φ-Ricci symmetric and also
demonstrated that in all these situations the manifold is an Einstein one with regard to the connection
∇G . Moreover, we obtain some conclusions about projectively flat, projectively semi-symmetric
and φ-projectively flat LP-Kenmotsu manifolds concerning the connection ∇G along with several
consequences through corollaries. Ultimately, we provide a 5-dimensional LP-Kenmotsu manifold
example to validate the derived expressions.

Keywords: Lorentzian para-Kenmotsu manifolds; generalized symmetric metric connection of type
(α, β); Einstein manifold; projective curvature tensor
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1. Introduction

In 1924, Friedman and Schouten first proposed the notion of a semi-symmetric linear
connection on a differentiable manifold [1]. The geometric significance associated with
such a connection was provided by Bartolotti [2] in 1930. A metric connection known as a
semi-symmetric metric connection with a non-zero torsion on a Riemannian manifold was
first introduced and investigated in 1932 by Hayden [3]. Yano has conducted a thorough
investigation of a semi-symmetric metric connection upon a Riemannian manifold [4].
A quarter-symmetric linear connection on a differentiable manifold was first proposed
by Golab [5] in 1975 as a more generalized form of a semi-symmetric linear connection.
Rastogi [6] carried out a subsequent systematic investigation into the quarter-symmetric
metric connection on a Riemannian manifold. The study on these connections was further
studied by various authors. At this moment we refer to the papers [7–10] and references
therein for the extensive study on these connections.

If the torsion tensor T of a linear connection on a (semi-)Riemannian manifold M is
said to be a generalized symmetric connection, then T is defined as

T (U1, U2) = α{π(U2)U1 − π(U1)U2}+ β{π(U2)φU1 − π(U1)φU2}, (1)

for U1, U2 vector fields on M, where smooth functions are α and β on M. Here, φ de-
notes tensor of type (1, 1) and π is regarded as a 1-form and satisfies π(U1) = g(U1, ν)
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for a vector field ν on M. In addition, if there is a Riemannian metric g in M such that
∇Gg = 0, then the connection is considered to be a generalized symmetric metric connec-
tion (shortly, GSM-connection) of type (α, β); if not, it is non-metric. Many authors have
examined the properties of Riemannian and semi-Riemannian manifolds with this connec-
tion (see [11–13]). The connection in Equation (1) is referred to as a β-quarter-symmetric
connection (resp. α-semi-symmetric connection) if α = 0 (resp. β = 0). Furthermore,
the GSM-connection of type (α, β) simplifies to a semi-symmetric connection and quarter-
symmetric connection, respectively, if we put (α, β) = (1, 0) and (α, β) = (0, 1). As a result,
semi-symmetric and quarter-symmetric connections can be described as generalizations
of generalized symmetric connections. These two connections play an important role in
various geometrical and physical aspects.

On the other side, the analysis of differentiable manifolds using the Lorentzian met-
ric is a natural and interesting topic in differential geometry. In 1989, the idea of nearly
para-contact metric manifolds with the Lorentzian metric, in particular, Lorentzian para-
Sasakian (shortly, LP-Sasakian) manifolds were introduced by Matsumoto [14]. Later,
in 1995, Sinha and Sai Prasad [15] defined a class of almost paracontact metric manifolds
namely para-Kenmotsu manifolds similar to para-Sasakian manifolds. Also, they obtained
important characterizations of para-Kenmotsu manifolds. In 2018, Haseeb and Prasad [16]
defined a class of Lorentzian almost paracontact metric manifolds, namely, Lorentzian para-
Kenmotsu (shortly, LP- Kenmotsu) manifolds. Submanifolds in LP-Kenmotsu manifolds
have been studied by several authors in [17–19] . LP-Kenmotsu manifolds admitting Ricci
solitons have been studied in [20–23]. Many interesting results on LP-Kenmotsu manifolds
have been studied by many geometers (see, [24–26]).

2. Preliminaries

Suppose that M is a n-dimensional differentiable manifold that possesses a contravari-
ant vector field ρ, (1, 1)-tensor field φ, a 1-form θ and Lorentzian metric g that fulfills
the following

φ2U1 = U1 + θ(U1)ρ, θ(ρ) = −1, (2)

g(φU1, φU2) = g(U1, U2) + θ(U1)θ(U2), g(U1, ρ) = θ(U1), (3)

for certain U1, U2 vector fields on M, then such a manifold M(φ, ρ, θ, g) is referred to as
a Lorentzian almost paracontact metric manifold [14]. In this manifold, the following
conditions are satisfied:

φρ = 0, θ(φU1) = 0, Φ(U1, U2) = g(φU1, U2) = Φ(U2, U1), (4)

where Φ is the fundamental two-form.
A Lorentzian almost paracontact metric manifold M is recognized as an LP-Kenmotsu

manifold [16,26], if
(∇U1 φ)U2 = −g(φU1, U2)ρ − θ(U2)φU1 (5)

for U1, U2 vector fields on M. The following are satisfied by the LP-Kenmotsu manifold:

∇U1 ρ = −U1 − θ(U1)ρ, (6)

(∇U1 θ)U2 = −g(U1, U2)− θ(U1)θ(U2), (7)

where ∇ indicates the Levi–Civita connection with regard to the Lorentzian metric g.
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Further, an n-dimensional LP-Kenmotsu manifold follows the relations [16,26]:

g(R(U1, U2)U3, ρ) = θ(R(U1, U2)U3) = g(U2, U3)θ(U1)− g(U1, U3)θ(U2), (8)

R(ρ, U1)U2 = g(U1, U2)ρ − θ(U2)U1, (9)

R(U1, U2)ρ = θ(U2)U1 − θ(U1)U2, (10)

S(U1, ρ) = (n − 1)θ(U1),S(ρ, ρ) = −(n − 1), (11)

S(φU1, φU2) = S(U1, U2) + (n − 1)θ(U1)θ(U2) (12)

for U1, U2, U3 vector fields on M, in which S and R can be viewed as the Ricci tensor and
the curvature tensor of M, respectively.

If the non-vanishing Ricci tensor S of an LP-Kenmotsu manifold M meets the following
relation, then M is a generalized θ-Einstein manifold. The relation is as follows

S(U1, U2) = ag(U1, U2) + bθ(U1)θ(U2) + cg(φU1, U2)

for any U1, U2 vector fields on M and the scalar functions on M are a, b and c. When c = 0,
then M is regarded as an θ-Einstein manifold. Furthermore, M is an Einstein manifold
if b = 0 and c = 0.

3. Relation between the Levi–Civita Connection and GSM-Connection of Type (α, β)

In an LP-Kenmotsu manifold M, assuming that ∇G is a linear connection and ∇ is the
Levi–Civita connection such that

∇G
U1

U2 = ∇U1U2 + U (U1, U2), (13)

for any U1 and U2 vector fields on M. In this instance, U represents a tensor of type
(1, 2), which is acquired in such a way that ∇G indicates a generalized-symmetric metric
connection of ∇ in M as:

U (U1, U2) =
1
2
[T (U1, U2) + T ′(U1, U2) + T ′(U2, U1)], (14)

where T indicated as the torsion tensor of ∇G and

g(T ′(U1, U2), U3) = g(T (U3, U1), U2). (15)

Plugging (1) in (15), we arrive at the following:

T ′(U1, U2) = α{θ(U1)U2 − g(U1, U2)ρ}+ β{θ(U1)φU2 − g(φU1, U2)ρ}. (16)

Substituting (1) and (16) in (14), we obtain

U (U1, U2) = α{θ(U2)U1 − g(U1, U2)ρ}+ β{θ(U2)φU1 − g(φU1, U2)ρ}. (17)

Hence, a generalized symmetric metric connection ∇G of type (α, β) in an LP-Kenmotsu
manifold is defined as

∇G
U1

U2 = ∇U1U2 + α{θ(U2)U1 − g(U1, U2)ρ}+ β{θ(U2)φU1 − g(φU1, U2)ρ}. (18)

Conversely, with the help of (18), the torsion tensor with respect to the connection ∇G

is defined as follows

T (U1, U2) = ∇G
U1

U2 −∇G
U2

U1 − [U1, U2]

= α{θ(U2)U1 − θ(U1)U2}+ β{θ(U2)φU1 − θ(U1)φU2}. (19)
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This shows that the connection ∇G in an LP-Kenmotsu manifold is a generalized symmetric
connection. Also, we have

(∇G
U1

g)(U2, U3) = U1g(U2, U3)− g(∇G
U1

U2, U3)− g(U2,∇G
U1

U3)

= 0. (20)

From (19) and (20), we determine that ∇G is a GSM-connection of type (α, β). This is
recorded as follows:

Corollary 1. Let M be an LP-Kenmotsu manifold, then the relation between Levi–Civita connection
∇ and a GSM-connection ∇G of type (α, β) on M is defined as (18).

The GSM-connection is scaled down to a semi-symmetric metric connection and a
quarter-symmetric metric connection, respectively, if we take (α, β) = (1, 0) and (α, β) = (0, 1),
as shown in the following:

∇G
U1

U2 = ∇U1U2 + θ(U2)U1 − g(U1, U2)ρ (21)

and
∇G

U1
U2 = ∇U1U2 + θ(U2)φU1 − g(φU1, U2)ρ. (22)

Next, from (5), (6) and (18) we have the following:

Lemma 1. In an LP-Kenmotsu manifold M with regard to GSM-connection ∇G of type (α, β), we
have the following relations:

(∇G
U1

φ)U2 = (α + 1){−g(φU1, U2)ρ − θ(U2)φU1}
− β{g(U1, U2)ρ + θ(U2)U1 + 2θ(U1)θ(U2)ρ}, (23)

∇G
U1

ρ = −(α + 1){U1 + θ(U1)ρ} − βφU1, (24)

for any U1, U2 vector fields on M.

4. Curvature Tensor with Regard to GSM-Connection ∇G of Type (α, β)

For an LP-Kenmotsu manifold M, we define its curvature tensor with respect to the
connection ∇G of type (α, β) by

RG(U1, U2)U3 = ∇G
U1
∇G

U2
U3 −∇G

U2
∇G

U1
U3 −∇G

[U1,U2]
U3. (25)

From (18) it follows that

∇G
U1
∇G

U2
U3 = ∇G

U1
∇U2U3 + α[∇G

U1
(θ(U3)U2)−∇G

U1
(g(U2, U3)ρ)]

+ β[∇G
U1
(θ(U3)φU2)−∇G

U1
(g(φU2, U3)ρ)]. (26)

In view of Equations (18), (25) and (26) we obtain the formula for the curvature tensor RG

of the connection ∇G as

RG(U1, U2)U3 = R(U1, U2)U3 + (α2 + 2α)[g(U2, U3)U1 − g(U1, U3)U2]

+ (α2 + α)[g(U2, U3)θ(U1)ρ − g(U1, U3)θ(U2)ρ + θ(U2)θ(U3)U1

− θ(U1)θ(U3)U2] + (α + 1)β[g(φU2, U3)U1 − g(φU1, U3)U2

+ g(U2, U3)φU1 − g(U1, U3)φU2] + (αβ)[g(φU2, U3)θ(U1)ρ

− g(φU1, U3)θ(U2)ρ + θ(U2)θ(U3)φU1 − θ(U1)θ(U3)φU2]

+ β2[g(φU2, U3)φU1 − g(φU1, U3)φU2], (27)
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where
R(U1, U2)U3 = ∇U1∇U2U3 −∇U2∇U1U3 −∇[U1, U2]

U3.

Therefore, Equation (27) represents the relationship between the curvature tensor of M
with regard to GSM-connection ∇G and the Levi–Civita connection ∇ on an LP-Kenmotsu
manifold. Further, U6 is treated as the inner product of (27), we obtain

RG(U1, U2, U3, U6) = R(U1, U2, U3, U6)

+ (α2 + 2α)[g(U2, U3)g(U1, U6)− g(U1, U3)g(U2, U6)]

+ (α2 + α)[g(U2, U3)θ(U1)θ(U6)− g(U1, U3)θ(U2)θ(U6)

+ θ(U2)θ(U3)g(U1, U6)− θ(U1)θ(U3)g(U2, U6)]

+ (α + 1)β[g(φU2, U3)g(U1, U6)− g(φU1, U3)g(U2, U6)

+ g(U2, U3)g(φU1, U6)− g(U1, U3)g(φU2, U6)]

+ (αβ)[g(φU2, U3)θ(U1)θ(U6)− g(φU1, U3)θ(U2)θ(U6)

+ θ(U2)θ(U3)g(φU1, U6)− θ(U1)θ(U3)g(φU2, U6)],

+ β2[g(φU2, U3)g(φU1, U6)− g(φU1, U3)g(φU2, U6)], (28)

whereRG(U1, U2, U3, U6) = g(RG(U1, U2)U3, U6) andR(U1, U2, U3, U6) = g(R(U1, U2)U3, U6).
Contracting (28) upon U1 and U6, we obtain

SG(U2, U3) = S(U2, U3) + [(n − 2)α2 + (2n − 3)α + (α + 1)ψβ − β2]g(U2, U3)

+ [(n − 3)αβ + (n − 2)β + ψβ2]g(φU2, U3)

+ [(n − 2)(α2 + α) + αβψ − β2]θ(U2)θ(U3), (29)

where S and SG are the Ricci tensors of the connection ∇ and ∇G , respectively, on M and
ψ = trace φ. Since in an LP-Kenmotsu manifold, the (1, 1)-tensor field φ is symmetric and
the Ricci tensor S with regard to the connection ∇G is symmetric and also ∇G satisfies the
relation SG(U2, U3) = SG(U3, U2).

From (12) and (29) it follows that

SG(φU2, φU3) = SG(U2, U3) + [(n − 1)(α + 1) + ψβ]θ(U2)θ(U3). (30)

Again, from (29), we have

QGU2 = QU2 + [(n − 2)α2 + (2n − 3)α + (α + 1)ψβ − β2]U2

+ [(n − 3)αβ + (n − 2)β + ψβ2]φU2

+ [(n − 2)(α2 + α) + αβψ − β2]θ(U2)ρ, (31)

where QG and Q are denoted as the Ricci operators on M with regard to the connections
∇G and ∇, respectively. Contracting (29) upon U2 and U3, we have the following

rG = r + (n − 1)(n − 2)α2 + 2(n2 − 2n + 1)α

+ 2(n − 1)(α + 1)βψ + (ψ2 − (n − 1))β2, (32)

where rG and r are denoted as the scalar curvatures on M with regard to the connections
∇G and ∇, respectively.

So, we define the theorem:

Theorem 1. For an n-dimensional LP-Kenmotsu manifold M with regard to GSM-connection ∇G

of type (α, β):
1. The curvature tensor ∇G is given by (27),
2. RG(U1, U2, U3, U6) = −RG(U2, U1, U3, U6),
3. RG(U1, U2, U3, U6) = −RG(U1, U2, U6, U3),
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4. RG(U1, U2, U3, U6) = RG(U2, U1, U6, U3) = RG(U6, U3, U2, U1),
5. RG(U1, U2)U3 +RG(U2, U3)U1 +RG(U3, U1)U2 = 0,
6. The Ricci tensor SG is given by (29),
7. The scalar curvature rG is given by (32).

Particularly, when (α, β) = (1, 0) and (α, β) = (0, 1) are taken into consideration, we
have the following:

Corollary 2. The Ricci tensor SG and curvature tensor RG with regard to the semi-symmetric
metric connection on an LP-Kenmotsu manifold M are displayed as in the following way:

RG(U1, U2)U3 = R(U1, U2)U3 + 3{g(U2, U3)U1 − g(U1, U3)U2}
+ 2{g(U2, U3)θ(U1)ρ − g(U1, U3)θ(U2)ρ

+ θ(U2)θ(U3)U1 − θ(U1)θ(U3)U2}

and
SG(U2, U3) = S(U2, U3) + (n − 5)g(U2, U3) + 2(n − 2)θ(U2)θ(U3).

Corollary 3. The Ricci tensor SG and the curvature tensor RG with regard to the quarter-
symmetric metric connection on an LP-Kenmotsu manifold M is displayed as in the following way:

RG(U1, U2)U3 = R(U1, U2)U3 + g(φU2, U3)U1 − g(φU1, U3)U2

+ g(φU2, U3)φU1 − g(φU1, U3)φU2 + g(U2, U3)φU1 − g(U1, U3)φU2

and

SG(U2, U3) = S(U2, U3) + (ψ − 1)g(U2, U3) + (n − 2 + ψ)g(φU2, U3)− θ(U2)θ(U3).

The following Lemma is presented using (27) and (29).

Lemma 2. Suppose that M is an n-dimensional LP-Kenmotsu manifold with regard to GSM-
connection of type (α, β). Then

θ(RG(U1, U2)U3) = (α + 1)[g(U2, U3)θ(U1)− g(U1, U3)θ(U2)]

+ β[g(φU2, U3)θ(U1)− g(φU1, U3)θ(U2)], (33)

RG(U1, U2)ρ = (α + 1)[θ(U2)U1 − θ(U1)U2]

+ β[θ(U2)φU1 − θ(U1)φU2], (34)

RG(ρ, U2)U3 = (α + 1)[g(U2, U3)ρ − θ(U3)U2]

+ β[g(φU2, U3)ρ − θ(U3)φU2], (35)

SG(U2, ρ) = ((n − 1)(α + 1) + ψβ)θ(U2), (36)

SG(ρ, ρ) = −((n − 1)(α + 1) + ψβ),

QGρ = ((n − 1)(α + 1) + ψβ)ρ (37)

for any U1, U2, U3 vector fields on M.

5. Some Results on LP-Kenmotsu Manifolds with Regard to GSM-Connection ∇G of
Type (α, β)

In this section, we characterize locally symmetric, Ricci semi-symmetric and φ-Ricci
symmetric LP-Kenmotsu manifolds with regard to GSM-connection.
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5.1. Locally Symmetric LP-Kenmotsu Manifold with Regard to ∇G

The study of Riemann symmetric manifolds began with the work of Cartan [27]. Accord-
ing to Cartan [27], a Riemannian manifold M is said to be locally symmetric if the curvature
tensor R satisfies the relation ∇R = 0, where ∇ denotes the Levi–Civita connection on M.
If the curvature tensor R of an LP-Kenmotsu manifold M fulfills the condition ∇R = 0,
where ∇ is the Levi–Civita connection of M, then M is said to be locally symmetric.

Assuming that M is a locally symmetric LP-Kenmotsu manifold with regard to the
connection ∇G , then

(∇G
U1
RG)(U2, U3)U6 = 0, (38)

for any U1, U2, U3, U6 vector fields on M. With a suitable contraction of this equation,
we have

(∇G
U1
SG)(U3, U6) = ∇G

U1
SG(U3, U6)− SG(∇G

U1
U3, U6)− SG(U3,∇G

U1
U6) = 0. (39)

Taking U6 = ρ in (39), we have

∇G
U1
SG(U3, ρ)− SG(∇G

U1
U3, ρ)− SG(U3,∇G

U1
ρ) = 0. (40)

Now using (6), (18) and (36), we obtain from (40) that

(α + 1)SG(U1, U3) + βSG(φU1, U3)

= {(n − 1)(α + 1) + ψβ}[(α + 1)g(U1, U3) + βg(φU1, U3)]. (41)

Substituting U1 by φU1 in the above equation and using (2) and (36) we obtain

SG(φU1, U3) =
β

(α + 1)
[−SG(U1, U3) + ((n − 1)(α + 1) + ψβ)g(U1, U3)]

+ ((n − 1)(α + 1) + ψβ)g(φU1, U3). (42)

Taking account of the above equation in (41) we obtain

SG(U1, U3) = ((n − 1)(α + 1) + ψβ)g(U1, U3), (43)

provided α ̸= −1 and β2 ̸= (α + 1)2. Thus, M is an Einstein manifold with regard to the
connection ∇G . Hence, we obtain the theorem:

Theorem 2. If M is an n-dimensional locally symmetric LP-Kenmotsu manifold with regard to
GSM-connection ∇G of type (α, β), where α ̸= −1 and β2 ̸= (α + 1)2, then M is regarded as an
Einstein one with regard to the connection ∇G .

5.2. Ricci Semi-Symmetric LP-Kenmotsu Manifold with Regard to ∇G

As a generalization of locally symmetric manifolds, many geometers have examined
semi-symmetric manifold and their generalizations. If the curvature tensor R satisfies the
below condition, a (semi-)Riemannian manifold is said to be semi-symmetric

R(U1, U2) · R = 0,

for any U1, U2 vector fields on M. These conditions are found in the works of E. Cartan
and also Shirokov, who were the first to study spaces with a condition ∇R = 0. N.S.
Sinyukov, in 1954, introduced the term semi-symmetric space in his study of geodesic
mappings of semi-symmetric spaces, see [28] and, for example, [29]. Mikeš continued these
investigations, notably in [30]. In this paper, symmetric and semi-symmetric projective
flat spaces are also examined. Among other things, the results indicate the existence
of semi-symmetric spaces that are not symmetric, as demonstrated explicitly in Tagaki’s
work [31]. For instance, the example of a semi-symmetric not locally symmetric Riemannian
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manifold was given by Takagi [31]. While in the Riemmanina case, every homogeneous
semi-symmetric manifold is actually locally symmetric, in the Lorentzian case they are
homogeneous semi-symmetric Lorentzian manifolds which are not locally symmetric. It is
mentioned that Szabo [32] provided a fully intrinsic classification of these spaces.

Also, a (semi-)Riemannian manifold M is referred to as Ricci semi-symmetric, if its
curvature tensor R satisfies the condition

R(U1, U2) · S = 0,

for any U1, U2 vector fields on M, where the Ricci tensor S of type (0, 2) is regarded as a
field of the linear operator on R(U1, U2).

Suppose that M is a Ricci semi-symmetric LP-Kenmotsu manifold with regard to the
connection ∇G . So M2n+1 satisfies the condition

(RG(U1, U2) · SG)(U3, U6) = 0

for any U1, U2, U3, U6 vector fields on M. We obtain

SG(RG(U1, U2)U3, U6) + SG(U3,RG(U1, U2)U6) = 0. (44)

Putting U1 = U3 = ρ in (44), then we arrive at the following

SG(RG(ρ, U2)ρ, U6) + SG(ρ,RG(ρ, U2)U6) = 0. (45)

Using (35) and (36) in (45), we arrive at (41). Further, continuing the proceeding according
to the previous Section 5.1, we obtained at (43). Thus, we obtain the following:

Theorem 3. Suppose that M is an n-dimensional Ricci semi-symmetric LP-Kenmotsu manifold
with regard to GSM-connection ∇̄ of type (α, β) with α ̸= −1 and β2 ̸= (α + 1)2, then the
manifold is an Einstein one with regard to GSM-connection ∇G .

5.3. φ-Ricci Symmetric LP-Kenmotsu Manifold with Regard to ∇G

The concept of local symmetry of Riemannian manifolds has been diminished by
many authors in a variety of ways to a different extent. Takahashi [33] developed the idea
of local φ-symmetry on Sasakian manifolds as a weaker version of local symmetry. If the
following condition is true

φ2(∇U1 Q)U2 = 0

for any vector fields U1, U2 on M, then an LP-Kenmotsu manifold is φ-Ricci symmetric.
Here, Q is treated as the Ricci operator, i.e., g(QU1, U2) = S(U1, U2) for all U1, U2 vector
fields. If U1, U2 are horizontal vector fields, then the manifold is known as locally φ-Ricci
symmetric.

Suppose that M is a φ-Ricci symmetric LP-Kenmotsu manifold with regard to the
connection ∇G . Then, the Ricci operator QG fulfills the condition

φ2(∇G
U1
QG)U2 = 0, (46)

for any U1, U2 vector fields on M, which by using (2) we obtain the following

(∇G
U1
QG)U2 + θ((∇G

U1
QG)(U2))ρ = 0. (47)

The inner product of (47) with U3 is given by

g((∇G
U1
QG)U2, U3) + θ((∇G

U1
QG)(U2))θ(U3) = 0, (48)
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which after simplification takes the form

g(∇G
U1
(QGU2), U3)− SG(∇G

U1
U2, U3) + θ((∇G

U1
QG)(U2))θ(U3) = 0. (49)

Taking U2 = ρ in the above equation and using (24), (36) and (37) we arrive at

(α + 1)[SG(U1, U3)− ((n − 1)(α + 1) + ψβ)g(U1, U3)]

= β[SG(φU1, U3)− ((n − 1)(α + 1) + ψβ)g(φU1, U3)]. (50)

Replacing U1 by φU1 in (50), we obtain

SG(φU1, U3) =
β

(α + 1)
[SG(U1, U3)− ((n − 1)(α + 1) + ψβ)g(U1, U3)]

+ ((n − 1)(α + 1) + ψβ)g(φU1, U3). (51)

Using (51) in (50) we obtain

SG(U1, U3) = ((n − 1)(α + 1) + ψβ)g(U1, U3), (52)

provided α ̸= −1 and β2 ̸= (α + 1)2. That is, the Einstein manifold M with regard to ∇G .
Therefore, we conclude the following theorem:

Theorem 4. Suppose that M is an n-dimensional φ-Ricci symmetric LP-Kenmotsu manifold with
regard to GSM-connection ∇G of type (α, β) with α ̸= −1 and β2 ̸= (α + 1)2, then M is treated
as Einstein one with regard to GSM-connection ∇G .

It is observed from the Theorems 2, 3 and 4 that if the manifold M is locally symmetric
(or, Ricci semi-symmetric, or φ-Ricci symmetric) with regard to the connection ∇G then the
manifold is an Einstein manifold with regard to the connection ∇.

On comparing (43) with (29) we obtain

S(U1, U3) = [(n − 1)− (n − 2)(α2 + α)− αψβ + β2]g(U1, U3)

− [(n − 3)αβ + (n − 2)β + ψβ2]g(φU1, U3)

− [(n − 2)(α2 + α) + αψβ − β2]θ(U1)θ(U3). (53)

This helps us to state the succeeding corollary:

Corollary 4. Suppose that M is an n-dimensional locally symmetric (or Ricci semi-symmetric,
or φ-Ricci symmetric) LP-Kenmotsu manifold with regard to GSM-connection ∇G of type (α, β),
then the expressions are obtained as follows:
(i) M is an θ-Einstein manifold defined as S(U1, U3) = −(n − 3)g(U1, U3)− 2(n − 2)θ(U1)θ(U3)
in regard to the connection ∇G of type (1, 0).
(ii) M is a generalized θ-Einstein manifold given by S(U1, U3) = ng(U1, U3) − (n − 2 +
ψ)g(φU1, U3) + θ(U1)θ(U3) in regard to the connection ∇G of type (0, 1).

6. Projective Curvature Tensor on LP-Kenmotsu Manifold with Regard to
GSM-Connection ∇G of Type (α, β)

Suppose that M is an n-dimensional LP-Kenmotsu manifold with regard to GSM-
connection ∇G . We define the projective curvature tensor PG of type (1, 3) with regard to
the connection ∇G of M as

PG(U1, U2)U3 = RG(U1, U2)U3 −
1

n − 1
[SG(U2, U3)U1 − SG(U1, U3)U2]. (54)

for any U1, U2, U3 vector fields on M, where RG and SG are the curvature tensor and the
Ricci tensor with regard to the connection ∇G , respectively.
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Here, we begin with the following:
Let us assume that M is a projectively flat LP-Kenmotsu manifold with regard to the

connection ∇G . Then the condition

PG(U1, U2)U3 = 0,

holds for any U1, U2, U3 vector fields on M. Then, using the above equation in (54), we
arrive at the following

RG(U1, U2)U3 =
1

n − 1
[SG(U2, U3)U1 − SG(U1, U3)U2]. (55)

Putting U1 = ρ and on applying the inner product with ρ in (55), we obtain

SG(U2, U3) = −(n − 1)θ(RG(ρ, U2)U3)− ((n − 1)(α + 1) + ψβ)θ(U2)θ(U3). (56)

Taking the help of (33) in the above equation, we obtain

SG(U2, U3) = (n − 1)(α + 1)g(U2, U3)− ψβθ(U2)θ(U3) + (n − 1)βg(U2, φU3). (57)

Hence, it leads to the following:

Theorem 5. Suppose that M is an n-dimensional projectively flat LP-Kenmotsu manifold with
regard to GSM-connection ∇G of type (α, β), then M is a generalized θ-Einstein manifold with
regard to GSM-connconnection ∇G .

In particular, if we choose (α, β) = (α, 0) then from (57) we have

SG(U2, U3) = (α + 1)(n − 1)g(U2, U3). (58)

Thus, M is defined as the Einstein manifold with regard to the connection ∇G of type (α, 0).
Therefore, we infer the following:

Corollary 5. Suppose that M is an n-dimensional projectively flat LP-Kenmotsu manifold with
regard to GSM-connection ∇G of type (α, 0), then M is treated as an Einstein one with regard to
GSM-connection ∇G of type (α, 0).

From Lemma 2 and the relation (54), we obtain the following:

θ(PG(U1, U2)U3) = (α + 1)[g(U2, U3)θ(U1)− g(U1, U3)θ(U2)]

+ β[g(φU2, U3)θ(U1)− g(φU1, U3)θ(U2)]

− 1
n − 1

[SG(U2, U3)θ(U1)− SG(U1, U3)θ(U2)], (59)

θ(PG(U1, U2)ρ) = 0, (60)

θ(PG(ρ, U2)U3) =
1

n − 1
SG(U2, U3)

− (α + 1)g(U2, U3)− βg(φU2, U3) +
ψβ

n − 1
θ(U2)θ(U3) (61)

for any U1, U2, U3 vector fields on M.
Consider a projectively semi-symmetric LP-Kenmotsu manifold M that admits a

GSM-connection ∇G . Then, the following the condition holds

RG(U1, U2) · PG = 0, (62)
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for any U1, U2 vector fields on M. In the virtue of (62), we obtain

RG(U1, U2)PG(U4, U5)U3 −PG(RG(U1, U2)U4, U5)U3

−PG(U4,RG(U1, U2)U5)U3 −PG(U4, U5)RG(U1, U2)U3 = 0,

for any U1, U2, U3, U4, U5 vector fields on M. Therefore,

g(RG(U1, U2)PG(U4, U5)U3, ρ)− g(PG(RG(U1, U2)U4, U5)U3, ρ)

− g(PG(U4,RG(U1, U2)U5)U3, ρ)− g(PG(U4, U5)RG(U1, U2)U3, ρ) = 0.

Then by taking U1 = ρ, it follows that

(α + 1)[−PG(U4, U5, U3, U2)− θ(PG(U4, U5)U3)θ(U2)

− g(U2, U4)θ(PG(ρ, U5)U3) + θ(U4)θ(PG(U2, U5)U3)− g(U2, U5)θ(PG(U4, ρ)U3)

+ θ(U5)θ(PG(U4, U2)U3) + θ(U3)θ(PG(U4, U5)U2)] + β[−PG(U4, U5, U3, φU2)

− g(φU2, U4)θ(PG(ρ, U5)U3) + θ(U4)θ(PG(φU2, U5)U3)

− g(φU2, U5)θ(PG(U4, ρ)U3) + θ(U5)θ(PG(U4, φU2)U3)

+ θ(U3)θ(PG(U4, U5)φU2)] = 0. (63)

where PG(U4, U5, U3, U2) = g(PG(U4, U5)U3, U2). Suppose that {e1, e2, . . . . . . , en−1, ρ}
is a local orthonormal basis of vector fields in M. With the help of this, we define
{φe1, φe2, . . . . . . ., φen−1, ρ} as a local orthonormal basis in M. We put U5 = U3 = ei
in (63) and adding with regard to i, we arrive at

(α + 1)
n−1

∑
i=1

[−PG(U4, ei, ei, U2)− θ(PG(U4, ei)ei)θ(U2)− g(U2, U4)θ(PG(ρ, ei)ei)

+ θ(U4)θ(PG(U2, ei)ei)− g(U2, ei)θ(PG(U4, ρ)ei) + θ(ei)θ(PG(U4, U2)ei)

+ θ(ei)θ(PG(U4, ei)U2)] + β
n−1

∑
i=1

[−PG(U4, ei, ei, φU2)− g(φU2, U4)θ(PG(ρ, ei)ei)

+ θ(U4)θ(PG(φU2, ei)ei)− g(φU2, ei)θ(PG(U4, ρ)ei) + θ(ei)θ(PG(U4, φU2)ei)

+ θ(ei)θ(PG(U4, ei)φU2)] = 0. (64)

Using (59) and (60), it can be easily verified that

n−1

∑
i=1

θ(PG(U4, ei)ei) =
1

n − 1
[n((n − 1)(α + 1) + ψβ)− rG ]θ(U4), (65)

n−1

∑
i=1

g(U2, ei)θ(PG(U4, ρ)ei) = θ(PG(U4, ρ)U2), (66)

n−1

∑
i=1

θ(ei)θ(PG(U4, U2)ei) = θ(PG(U4, U5)ρ) = 0, (67)

n−1

∑
i=1

θ(ei)θ(PG(U4, ei)U2) = 2θ(PG(U4, ρ)U2), (68)

n−1

∑
i=1

g(φU2, ei)θ(PG(U4, ρ)ei) = θ(PG(U4, ρ)φU2), (69)

n−1

∑
i=1

θ(ei)θ
(
PG(U4, ei)φU2

)
= 2θ(PG(U4, ρ)φU2). (70)

Using (65) to (70), it follows from (64) that
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(α + 1)
n−1

∑
i=1

[−PG(U4, ei, ei, U2)− g(U2, U4)θ(PG(ρ, ei)ei)] + (α + 1)θ(PG(U4, ρ)U2)

+ β
n−1

∑
i=1

[−PG(U4, ei, ei, φU2)− g(φU2, U4)θ(PG(ρ, ei)ei)] + βθ(PG(U4, ρ)φU2)] = 0. (71)

Again, with the help of (54), we obtain

n−1

∑
i=1

PG(U4, ei, ei, U2) =
1

n − 1
[nSG(U4, U2)− rGg(U4, U2)]

− ψβ

n − 1
[g(U4, U2) + θ(U4)θ(U2)}+ βg(φU2, U4), (72)

n−1

∑
i=1

PG(U4, ei, ei, φU2) =
1

n − 1
[nSG(U4, φU2)− rGg(U4, φU2)]

− ψβ

n − 1
g(φU2, U4) + β[g(θU2, θU4)]. (73)

Taking account of (72) and (73), the Equation (71) reduces to

(α + 1)[−SG(U4, U2) + {(n − 1)(α + 1) + ψβ}g(U4, U2)

+ β[−SG(U4, φU2) + {(n − 1)(α + 1) + ψβ}g(U4, φU2)] = 0. (74)

Replacing U2 by φU2 in (74), we obtain

SG(U4, φU2) = − β

(α + 1)
SG(U4, U2) + {(n − 1)(α + 1) + ψβ}g(U4, φU2)

+
β

(α + 1)
{(n − 1)(α + 1) + ψβ}g(U4, U2). (75)

By taking account of the above in (74), we obtain

SG(U4, U2) = {(n − 1)(α + 1) + ψβ}g(U4, U2), (76)

provided that α ̸= −1 and (α + 1)2 ̸= β2. So, we have the following result:

Theorem 6. Suppose that M is an n-dimensional projectively semi-symmetric LP-Kenmotsu
manifold with regard to GSM-connection ∇G of type (α, β) with α ̸= −1 and β2 ̸= (α + 1)2, then
M is regarded as an Einstein manifold with regard to GSM-connection ∇G .

In particular, if we choose (α, β) = (α, 0) then from (76) we have

SG(U4, U2) = (n − 1)(α + 1)g(U4, U2). (77)

Now, with the help of (77), the Equations (59) and (61) gives that θ(PG(U4, U5)U3) = 0 and
θ(PG(ρ, U4)U5) = 0, respectively. By taking these in the Equation (63), we have

PG(U4, U5, U3, U2) = 0. (78)

Therefore, M is projectively flat with regard to the connection ∇G . Conversely, (78) trivially
implies (62). Hence, we state the following:

Corollary 6. Suppose that M is an n-dimensional LP-Kenmotsu manifold with regard to GSM-
connection ∇G of type (α, 0) with α ̸= 1. Then, it is projectively semi-symmetric if and only if it is
projectively flat.
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Next, let us consider a φ-projectively flat LP-Kenmotsu manifold M that admits a connec-
tion ∇G . Then, the condition

φ2PG(φU1, φU2)φU3 = 0, (79)

holds for any U1, U2, U3 vector fields on M. Then, φ2PG(φU1, φU2)φU3 = 0 holds if and
only if

g(PG(φU1, φU2)φU3, φU6) = 0, (80)

holds for any U1, U2, U3, U6 vector fields on M.
The φ-projectively flat can be defined using (54) and (80) as

g(RG(φU1, φU2)φU3, φU6)

=
1

n − 1

[
SG(φU2, φU3)g(φU1, φU6)− SG(φU1, φU3)g(φU2, φU6)

]
(81)

for any vector fields U1, U2, U3, U6 on M. For the local orthonormal basis {φe1, φe2, . . . , φen−1, ρ}
of vector fields in M, choosing U1 = U6 = ei in (81) and adding with regard to i = 1, 2, . . . n,
we have

n−1

∑
i=1

g(RG(φei, φU2)φU3, φei)

=
1

n − 1

n−1

∑
i=1

[
SG(φU2, φU3)g(φei, φei)− SG(φei, φU3)g(φU2, φei)

]
(82)

for any U2, U3 vector fields on M. So, it can be easily verified using (28) and (30)

n−1

∑
i=1

g(RG(φei, φU2)φU3, φei) = SG(φU2, φU3)

+ (α + 1)g(φU2, φU3) + βg(U2, φU3), (83)
n−1

∑
i=1

g(φei, φei) = n + 1, (84)

n−1

∑
i=1

SG(φU2, φei)g(φei, φU3) = SG(φU2, φU3). (85)

In view of (83)–(85), (82) becomes

SG(φU2, φU3) = (n − 1)[(α + 1)g(φU2, φU3) + βg(U2, φU3)]. (86)

for any U2, U3 vector fields on M. With the assistance of (30), Equation (86) reduces to (57).
Thus, M is a generalized θ-Einstein manifold. Hence, we state the following:

Theorem 7. Suppose that M is an n-dimensional φ-projectively flat LP-Kenmotsu manifold with
regard to GSM-connection ∇G of type (α, β) with α ̸= −1 and β2 ̸= (α + 1)2, then M is a
generalized θ-Einstein manifold with regard to GSM-connconnection ∇G .

In particular, if we choose (α, β) = (α, 0) then using (86) in (81), we obtain

g(RG(φU1, φU2)φU3, φU6) = (α + 1)
[

g(φU2, φU3)g(φU1, φU6)

− g(φU1, φU3)g(φU2, φU6)

]
, (87)
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for any U1, U2, U3, U6 vector fields on M. The converse part is also true. So, we define
the following

Theorem 8. Suppose that M is an n-dimensional LP-Kenmotsu manifold. The φ-projectively flat
M with regard to GSM-connection of type (α, 0) if and only if M fulfills (87).

Finally, we give the following statements:

Corollary 7. Suppose that M is an n-dimensional LP-Kenmotsu manifold. Then, the underlying
statements are equivalent:
(1) M is projectively flat with regard to GSM-connection ∇G of type (α, 0) with α ̸= 1,
(2) M is projectively semi-symmetric with regard to GSM-connection ∇G of type (α, 0) with α ̸= 1,
(3) M is φ-projectively flat with regard to GSM-connection ∇G of type (α, 0) with α ̸= 1,
(4) The curvature tensor with regard to GSM-connection ∇G of type (α, 0) with α ̸= 1 of M is
given by

RG(U1, U2)U3 = (α + 1)[g(U2, U3)U1 − g(U1, U3)U2] (88)

for any U1, U2, U3 vector fields on M.

Proof. Assume that M is an n-dimensional LP-Kenmotsu manifold. From, Corollary 6, it is
stated that (1) and (2) are equivalent, and also (2) implies (3) obviously. Now, we have to
assume that (3) is true. In an LP-Kenmotsu manifold, using (35), we can verify

RG(φ2U1, φ2U2, φ2U3, φ2U6)

= RG(U1, U2, U3, U6)

+ (α + 1)[g(U2, U3)θ(U1)θ(U6)− g(U1, U3)θ(U2)θ(U6)

− g(U2, U6)θ(U1)θ(U3) + g(U1, U6)θ(U2)θ(U3)] (89)

for any vector fields U1, U2, U3, U6 on M. By interchanging U1, U2, U3, U6 to φ2U1, φ2U2,
φ2U3, φ2U6, respectively, in (87) and using (89), we have (88). Hence, the statement (3)
implies (4) satisfies. Next, assuming that the statement (4) is true. On contracting (88),
it follows (77). Using (77) and (88) in (54), we arrive at the statement (1). This ends
the proof.

7. Example of an LP-Kenmotsu Manifold with Regard to the Connection ∇G

Consider a five-dimensional manifold M = {(x1, x2, x3, x4, z) ∈ R5, z ̸= 0}, where
(x1, x2, x3, x4, z) are the standard coordinates in R5. We choose the vector fields,

e1 = z
∂

∂x1
, e2 = z

∂

∂x2
, e3 = z

∂

∂x3
, e4 = z

∂

∂x4
, e5 = z

∂

∂z
= ρ

and which are linearly independent at each point of M. Let g be the Lorentzian metric
defined by

g(ei, ei) = 1 for 1 ≤ i ≤ 4 and g(e5, e5) = −1;

g(ei, ej) = 0 for i ̸= j, 1 ≤ i, j ≤ 5. (90)

We define θ, a 1-form as θ(U1) = g(U1, e5) for any vector field U1 on M and let φ be the
(1, 1)-tensor field defined by

φe1 = −e2, φe2 = −e1, φe3 = −e4, φe4 = −e3, φe5 = 0.
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The linearity property of φ and g yields that

θ(ρ) = g(ρ, ρ) = −1, φ2U1 = U1 + θ(U1)ρ, g(φU1, φU2) = g(U1, U2) + θ(U1)θ(U2),

for any vector fields U1, U2 on M. Thus, for e5 = ρ, the structure (φ, ρ, θ, g) defines a
Lorentzian almost para-contact metric structure on M. Then, we have

[ei, ej] = 0, if i ̸= j, 1 ≤ i, j ≤ 4,

[ei, e5] = −ei, for 1 ≤ i ≤ 4.

By using the well-known Koszul’s formula, we obtain

∇ei ei = −e5, for 1 ≤ i ≤ 4,

∇ei e5 = −ei, for 1 ≤ i ≤ 4,

∇ei ej = 0, for i ̸= j, 1 ≤ i, j ≤ 4. (91)

Also, one can easily verify that ∇U1 ρ = −U1 − θ(U1)ρ and (∇U1 φ)U2 = −g(φU1, U2)ρ −
θ(U2)φU1, for any arbitrary vector field U1 = ∑ U1i ei and U2 = ∑ U2i ei on M. Therefore,
M(φ, ρ, θ, g) is a five-dimensional LP-Kenmotsu manifold.

Now, we can make similar calculations for the connection. Using (18) in the above
equations, we obtain

∇G
e1

e1 = −(α + 1)e5, ∇G
e1

e2 = βe5, ∇G
e1

e3 = 0, ∇G
e1

e4 = 0,∇G
e1

e5 = −(α + 1)e1 + βe2,

∇G
e2

e1 = βe5, ∇G
e2

e2 = −(α + 1)e5, ∇G
e2

e3 = 0, ∇G
e2

e4 = 0, ∇G
e2

e5 = −(α + 1)e2 + βe1,

∇G
e3

e1 = 0, ∇G
e3

e2 = 0, ∇G
e3

e3 = −(α + 1)e5, ∇G
e3

e4 = βe5, ∇G
e3

e5 = −(α + 1)e3 + βe4,

∇G
e4

e1 = 0, ∇G
e4

e2 = 0, ∇G
e4

e3 = βe5, ∇G
e4

e4 = −(α + 1)e5, ∇G
e4

e5 = −(α + 1)e4 + βe3,

∇G
e5

e1 = 0, ∇G
e5

e2 = 0, ∇G
e5

e3 = 0, ∇G
e5

e4 = 0, ∇G
e5

e5 = 0.

The relations presented above remark that (∇G
U1

φ)U2 = (α+1){−g(φU1, U2)ρ− θ(U2)φU1}−
β{g(U1, U2)ρ + θ(U2)U1 + 2θ(U1)θ(U2)ρ} and ∇G

U1
ρ = (α + 1){U1 + θ(U1)ρ} − β{φU1},

for all e5 = ρ. Thus, ∇G is a GSM-connection on M.
We can make calculations of the components of the curvature tensor regarding the

connection ∇G as follows:

RG(e1, e2)e1 = −(α2 + 2α + 1 − β2)e2, RG(e1, e2)e2 = (α2 + 2α + 1 − β2)e1,

RG(e1, e3)e1 = −(α2 + 2α+ 1)e3 +(α+ 1)βe4, RG(e1, e3)e3 = (α2 + 2α+ 1)e1 − (α+ 1)βe2,

RG(e1, e4)e1 = −(α2 + 2α+ 1)e4 +(α+ 1)βe3, RG(e1, e4)e4 = (α2 + 2α+ 1)e1 − (α+ 1)βe2,

RG(e1, e5)e1 = −(α + 1)e5, RG(e1, e5)e5 = −(α + 1)e1 + βe2,

RG(e2, e3)e2 = −(α2 + 2α+ 1)e3 +(α+ 1)βe4, RG(e2, e3)e3 = (α2 + 2α+ 1)e2 − (α+ 1)βe1,

RG(e2, e4)e2 = −(α2 + 2α+ 1)e4 +(α+ 1)βe3, RG(e2, e4)e4 = (α2 + 2α+ 1)e2 − (α+ 1)βe1,

RG(e2, e5)e2 = −(α + 1)e5, RG(e2, e5)e5 = −(α + 1)e2 + βe1,

RG(e3, e4)e3 = −(α2 + 2α + 1 − β2)e4, RG(e3, e4)e4 = (α2 + 2α + 1 − β2)e3,

RG(e3, e5)e3 = −(α + 1)e5, RG(e3, e5)e5 = −(α + 1)e3 + βe4,

RG(e4, e5)e4 = −(α + 1)e5, RG(e4, e5)e5 = −(α + 1)e4 + βe3. (92)
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We calculate the Ricci tensor with regard to the connection ∇G as follows:

SG(ei, ei) = 3α2 + 7α + 4 − β2, for 1 ≤ i ≤ 4,

SG(e5, e5) = −4(α + 1). (93)

Hence, (92) and (93) are verified through the Equations (27) and (29), respectively. More-
over, the scalar regarding the Levi–Civita connection and generalized symmetric metric
connection are r = 20 and rG = 20 + 12α2 + 32α − 4β2, which also verified (32).
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N.B.T.; investigation, D.G.P., N.B.T. and İ.Ü.; writing—original draft preparation, D.G.P., M.V.D. and
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