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Abstract: In the current study, we compute some upper bounds for the remainder term of Boole’s
quadrature rule involving convex mappings. First, we build a new identity for first-order differen-
tiable mapping, an auxiliary result to establish our required estimates. We provide several upper
bounds by utilizing the identity, convexity property, and bounded property of mappings and some
well-known inequalities. Moreover, based on our primary findings, we deliver applications to the
means, quadrature rule, special mappings, and non-linear analysis by developing a novel iterative
scheme with cubic order of convergence. To the best of our knowledge, the current study is the first
attempt to derive upper bounds for Boole’s scheme involving convex mappings.

Keywords: Boole’s rule; convex mapping; iterative methods; inequality; quadrature rule; basins
of attraction

MSC: 26A51; 26D10; 26D15; 65H05

1. Introduction and Preliminaries

Analysis based on convex sets and mappings defined over them is a crucial branch of
mathematics with a large number of applications in various domains of applied sciences.
Its impact on the growth of the theory of inequalities is very significant. Several funda-
mental inequalities can be developed by implementing the notion of convexity and its
generalized versions. Moreover, error inequalities like Ostrowski’s inequality, Simpson’s
inequality, Newton’s inequality, Milne’s inequality, and Maclaurin’s inequality are investi-
gated through different approaches to establish the upper bounds for the remainder terms.
It is a well-known fact that by lowering the order of derivatives and involving convex
mappings, upper bounds of error inequalities of classical quadrature rules can be achieved.
The tight bounds for these kinds of integral inequalities can also be obtained by increasing
the order of derivatives.

First, we report the notion of convex mapping.

Definition 1. Let C C R. Any mapping S : C — R is said to be convex if
S((l — Pl)%l +p1%2) < (1 —pl)S(%1) +p18(%2), Vi, 50 € C, o1 € [0, 1].

Now, we recall the well-known double inequality established by Hermite and Hadamard
independently by making use of the convex mapping and described as follows:
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Let S : [», s3] — R be a convex mapping, then

%+ 3 1 3 S(5) + S(53)
S(EER) £ L [ an < S 550

This inequality is necessary and sufficient for the convexity of a mapping, and it is utilized
as a criterion to check the concavity of a mapping. This computes the bounds for the
convex mapping, and its left and right estimations provide us with bounds for midpoint
and trapezoidal rules, respectively.

Now, we mention the error inequality of Simpson’s quadrature rules and state it as
follows:

Theorem 1 ([1]). If S : [, s3] — R is four-times continuously differentiable on (32, »z3),
and ||SW||e = SUP., ¢ () |SW| < oo, then

1 < 1
N N C)) — )

3

In 2004, Ujevic [2] investigated the sharp inequalities of Simpson’s and Ostrowski’s
type. In 2005, Liu et al. [3] developed the Simpson’s type inequality for nth order differ-
entiable mappings. In 2009, Alomari et al. [4] presented the generalization of Simpson’s
type inequalities using the s-convexity of the mappings. In [5], Sarikaya et al. explored the
Simpson’s type inequalities involving the s-convexity. For more information, see [6-10].
Ostrowski’s type inequalities were comprehensively discussed in [11]. In [12], the authors
studied the novel Ostrowski’s inequality and its applications to Simpson rule and linear
combination special means. In 2000, Hanna et al. [13] devoted their efforts to deriving
the two-dimensional Ostrowski inequality through the utilization of the three-point rule.
In 2002, Anastassiou [14] derived the univariate Ostrowski’s type inequalities and Mont-
gomery identities for nth-order differentiable mappings. In [15], Cortez et al. examined the
new advancements in Ostrowski-type inequalities in fractal space and applications. In [16],
Alomari and Dragomir impressively discussed the error estimates of various Newton—Cotes
schemes together with applications. In [17], Alomari established new parametric equations
and developed several upper bounds for Newton—Cotes procedures by means of function
of bounded variation.

Now, we mention Boole’s inequality, which is explored in the following;:

Theorem 2 ([18]). If S : [s,33] — R is six-times continuously differentiable on (s, »z3),
and ||SO)||o = SUP., ¢ () |S©)| < oo, then

4 4 w3 —

6
16|

The principal aim of the current investigation is to explore Boole’s inequality involving
convex mappings. It is commonly known that to derive the error terms of Boole’s rule,
a mapping should be six-times differentiable, and we provide the method of determining
the remainder of Boole’s rule for first-order differentiable. To attain the desired outcomes,
we structured our article into four main parts. In the initial part of the study, we give the
background and facts about the problem formulation. In the next part, we establish a new
equality for first-order differentiable mappings named Boole’s identity. This will play a
critical role in the development of Boole’s type inequalities. The identity together with the
convexity of the mappings and some classical inequalities are utilized to achieve Boole’s
type inequalities. In the third portion of the study, we provide implications of our primary
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findings for the theory of means, numerical integration, special mappings, and a novel
iterative method with an order of convergence of four to compute the zeros of non-linear
equations. Lastly, we outline the simulations conducted to validate our outcomes.

2. Upper Bounds for Boole’s Inequality

In this section, we present our primary findings. The space of integrable mappings is
denoted by L[5, ss3].

Lemma 1. Suppose that S : (5, >3] — R is a differentiable mapping and 8" € L[, 523, then

1
3 — %

= (o3 — ) l/o}l (Pl - 970>3’((1 —p1)>+p155)do1 + (/1; <Pl - ;’(9))3’((1 —p1) + p1253)dpr

B(5, 53) —

/%3 S(%1>d%1

3
1 51 1 83
+ /; (Pl _ 9())8’((1 — pl)%+p1%3)dp1 + /i (p1 — 90)8/((1 —pl)%+p1%3)dp1] , 1)

where p1 € [0,1] and

B(, 53) = % [75(%) +328(3%I%3> +128<”+2”3> +328<%+43%3> +78(%3)}

Proof. Consider the right side of (1),
I:(%3—%)[11+12+13+I4], (2)

where

1

i 7
L = /04 <Pl - 90>5/((1 — p1) %+ p133)dpy

() ] e

Bt
4

n3 —

1

2 39
L = /]2 (Pl - 90)3/((1 —p1)% + p1553)dp
4

= 1 g n+ ﬁ 3+ 523 B 1 >
_%3—%[903( 2 )+1808( 4 ﬂ (%3%)2./%8(u)du.

3
1 51
I = /14 (Pl - 90)‘9,((1 — p1)% + p123)dp1
2

_ 1 6 (xtm 33 o [(x+3m\] 1 s
_%3—%[908( 2 >+1808< 4 )] (%3_%)2/”2%3 S(u)du.

And

1 83
Iy = /; (Pl - 90>5'((1 — p1) + p123)dp1
4

1 7 31 %"_3%3 1 3
3050+ i () - G frn St

4
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Now, by substituting the values of I3, I, I3, and I4 in I, we achieve our desired result. [

Now, we conclude the first bound for Boole’s rule.

Theorem 3. Suppose all the assumptions of Lemma 1 are satisfied. If |S'| is a convex mapping,

then
3
/ S(on)ds | <

%3_% »

239(se3 —

() - 181 (60) 4 1S ).

Proof. Using the modulus property, Lemma 1, and then taking the advantage of the
convexity of |S’|, we have

‘B(%,}g) - /%35(%1)@(1

< (o3 — ») [/04 p1— 970‘|3/((1 - p1)

3
4
+/l
2
1

< (33 — ) l/()4 p1— 970‘[(1 —o)|S" ()] + 1S (53) ]

L
= (5 %) [ [ (=) 1001 Gl il Gl + [ (1= )10 () +0115 o

39
9
+

I

+/9° <0 —m) [(1 = p1)|S" (50)| + 1|8’ (53)[]dp1 + ng? (m - ;) [(1 = p1)[S' (30)| + p1]S' (53)[]dp1

1
2 39
"o — 90‘|5/((1 — p1) %+ p1323)|dpy

51 1| 8
1= 5o |IS (1= p1) + pr2%3) |dpr +/3 1 - 90‘IS’((1 —pl)%+m%3)ldm]
4

23\[(1—m>|s'< )|+ 1S (55) l1dor

Pl_% [(1_‘)1)‘51(%”+Pl\5'(%3)|]dp1+/;

o1 - 23\[(1 — oIS ()| +p1|5'<%3>}dp1]

1
2

(5 01 ) L= p0IS G + 01l G s + gg<91 3 )L =0IS G + 01l )

o+ /Q% (23 - Pl) (1= 01)IS" (5)] + p1|S" (33) [1dp1 + 1 <Pl 83) (1= p1)|S ()| + 1] S (33) [1dp1 |

4
After simple computations, we achieve our desired result. [

Now, we give another bound for Boole’s rule by utilizing the power’s mean inequality.

Theorem 4. Suppose all the assumptions of Lemma 1 are satisfied. If | S’ |7 is a convex mapping, then

%1 Cl%l

‘B(% 3) p—

1

1157 \ "7 / 130,523 3209 i
< (53— S' G+ 22 1S (52)]1
< (o = ) [(64,800) (8,748,000| G+ 1503, 500 1 ()] )

137 >1q< 4127 1019 i
+

/ q
7200 31,000 C AN 162,000'8(”3”)

1-1 1
V009 gy 4127
(7200) (162 000 "+ 350 500 1 (%)l

_1
1157 q 3209 130,523
) ( ” q+5,(%3)|q)

_I_

==

+ 64,800 ]'

!
1,093, 500|8 ()] 8,748,000
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qg>1

Proof. Using the modulus property, Lemma 1, and the power means inequality and then
taking advantage of the convexity of |S’|, we have

’B(%,m) S /”35(%1)@1

%3_% 4

1

S(%s—%)[/(f

i 51, ., 1

+/% Pl_go’|8 ((1—Pl)%JFPl%a)|dP1Jr/i

T A S

< (o3 — ) </0 p1—90‘dm> (/O
IR

+ /‘11 Pl_%dpl /‘11

1 51 1= 1

+ /% Pl—%df’l /%

1 83 1*% -1

4‘(/‘31 pl_%’dpl) (/i

%

< (o3 — x) (/0

1

2

(),

3

4

(4

1

+(/

7 1
p1 = 5|/ ((1 =1+ prosdpn + [
1

39
01 — 90‘IS’((l —p1)7+p1553)|dps

83
p1— 90‘|5/((1 - Pl)%+Pl%3)|dP1]

1
7 q
p1— 90‘|5/((1 _Pl)%+P1%3)|qu1>

1
39| )
1~ 50 |S"((1 = p1) 5+ p153)|7dp1

1
51 1
P1— 90‘|3/((1 - Pl)%+P1%3)|qu1>

1
83 J
p1— 90‘IS’((l —p1)%+pm3)|qdp1> ]

7 = i
_7la /
o)
TR 5
01 90 01 . %
51 i
01— 90 dpq /;
1

83 S n
P1— %’dpl) (/i

After simple computations, we achieve our desired result.

p1— % (1= p1)|S ()| +915/(%3)|q]d101> ‘7

o1~ oo |[(1 = p1)IS' () +pls’<m>mdm>

=

p1— % (1= p1)|S"(59)|7 +913'(%3)|q]d91> ‘7

ql‘

O

1~ g (1= p1)IS AN + 18 () e

=

Next, we construct a new estimate of Boole’s inequality.

Theorem 5. Suppose all the assumptions of Lemma 1 are satisfied. If |S’|7 is a convex mapping, then

1 3
‘B(%,%g) o _%/% S(21)dn

)P + BN (7, AT
< (- %) [( AT 17) ) (32|8 I+ 551 (%3)|q)

4+ 4 (11)14p
- ( (60) 7 (1+ p) )

==

(515Gl + 518Gl )

44r L PN /3, 5 !
Tty ) (50l gis )
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(14)17 + (31)1+7 /1 , 7 '
+( (180)1+7(1 + p) ) (325 GOl + 3519 (%3)q> ]

Proof. Using the modulus property, Lemma 1, and Holder’s inequality and then taking
advantage of the convexity of |8 ! |, we have

/%3 S(5a)ds

3 — A Jx
1

< (5~ ) [/O“ o1 |18 = g+ ol + [
o
< (s~ ) [(/0 P g dm>’l’</f 50 —Pl)%+p1%3)|qdpl>
Az
)
(flp-sw)’
s(m—%)[(/ol o

’B(%, 3) —

39
p1— 90‘|5/((1 —p1) 2+ p1223)|doy

1 83| .,
71~ 50 |S"((1 — p1) 2+ p1223)|dpy

51
p1— 90’\5/((1 —p1) %+ p1323)|dpy +ﬁ
4

1
q

q
|5/ 1—p1)x+ P1%3)|qu1>

1
q

Mm

|S'((1 - Pl)%+P1%3)|qu1>

01—

(f
[
(]

1
q
p1— S’ ((1—P1)%+P1%3)|qdpl) ]

1
q

p1— dm) p (/0'4[(1 —p1)|S" ()] +p18’(%3)|q]dm>

+(/12 p1— 39 dP1>p</12[(1P1)|S’(%)|q+p18’(%3)|‘7]dp1>q

: </14 ol 1) | </14“1 —P)IS Gl +p18’<%3>|q1dm>q
P % %

+</1 p- oo dPl) (/ (1= pD)IS" ()| + 1S (53) ﬂ]dm) ]

After simple computations, we achieve our desired result. [

Now, we develop a new counterpart for the remainder of Boole’s quadrature rules
involving Young’s inequality.

Theorem 6. Suppose all the assumptions of Lemma 1 are satisfied. If |S’|7 is a convex mapping, then

1 3
’B(%,%g) - %3_%/% S(oa)ds

(14)1+P + (31)1+p 41+p + (11)1+p 1 . /
(180)1*Pp(1+p)  (60)1+Pp(1+ p) + 1S G+ 18 Ge) 7],

< 20a - )|
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Proof. Using the modulus property, Lemma 1, and Young’s inequality and then taking the
advantage of the convexity of |S’|, we have

/%3 S(3a1)dsn

%3_% 4

’B(% »3) —

1

S(%a%)[/(; p1—
o]

1 , .
< (53— 3¢ [f04|p1 _p970| dor | Jo' I15'((1 —Pl)q%+P1%3)|qu1

39
p1— 90’IS’((1 — p1)2 + p133)|do1

7 .l
90‘|5/((1 — 1)+ p1223)|dpy + /12
s

51 1 83
p1— 90’|3/((1 —p1)>+ p1553)|dp1 + /3 o1 — 90’|5’((1 - Pl)%+Pl%3)|d91]
1

1 1
Jilor— 21 dps J{18'((1 = pr)3 + pr23) ['dpr

+

p q
oy~ 3P dor  fi1S((1- 1d
Jiler=s5) dor [ IS'((1 = p1)3« + p1243)|dpy
+ = 4 2

q

[ilor =817 dor  [118'((1 = p1)se+ pr2ss) 7dpy

+ +
q
1
< (s 5oy | D0l =50/ dpy L 1= IS Gl + 1] () 7)oy

p q

1
Jile: - &l"den JE 10 = p1)IS o)1+ 1S () ke
q

3 p 3
Jiler =3 dor [ = p1)IS'G2) 17 + 1|8 (345) 1)y
+ 2 + 2
p q
1 1
+fg o1 — 83| dpy N S5l =p1)[S' G + p11S" (523) 1] dpos
p .
After simple computations, we achieve our desired result. [
Theorem 7. Suppose all the assumptions of Lemma 1 are satisfied. If |S’| is a convex mapping, then
s 239M (3¢5 — 5¢)
_ < A )
B(sz, 513) P /% S(n)don | < 3540 ,
where |f'| < M, M > 0.
Proof. Using the modulus property, Lemma 1, and then taking the advantage of the
convexity of |§’| and bounded property of |S’|, we have
3
’B(%, »n3) — o %/ S(31)dsn

1

S(%es—%)[/(; p1—

39
p1— 90’|5'((1 — p1)2 + p133)|dp1

7 l
90‘|5'((1 —p1) %+ p1323)|dp1 + /12
1
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51 1
1= 5o S/ =1y )i +

3
1
<),
2
1
i 7
s(%s—%)[/o4 o1 — 90‘[(1—91 |8 (3)| + o118 (503) dm+/
3
1
<),
2
< : 4 S'((1 d :
< G| [ |or = 5p 18 (= pr)oe + proeyldon + |
3
1
g
%
—M(%g—%)l/o

83
p1 — 90’|S’((1 - Pl)%+P1%3)|dP1]

39
p1 = 5[ = p0IS G + 118 Gl

pl_% Kl_‘01)|Sl(%)|+P1|8/(%3)|]dp1+/§

p1— 33‘[(1 —p1)|S' ()| +P13/(%3)|]dp1]

39
p1— 90‘IS’((1 — p1)% + p133)|dps

51 1 83
P15 |S"((1 = p1) 2 + p1223)|dp1 +/3 p1— 90’|5'((1 - Pl)%+Pl%3)|dP1]
4

7 2
101—90‘dpl+/1

p1— dp1 + /

39 1
o1 — %’dm +/%

After simple computations, we achieve our desired result. [J

p1— ’dm]

3. Applications
3.1. Applications to Means

Here, we provide novel applications of our primary findings to linear combinations of
means. Let us revisit some well-known binary means of any two non-negative numbers.
L A3 ) = 272

. _ Wyxtwyir
2. Aw(w1,w2,%,%3) = Z1=T2273

w1 +wp

}%,n €Z—-{0,—1}.

%3n+1_%n+1

3. En(x) = {W

Proposition 1. Suppose that all the assumptions of Theorem 3 are admitted, then we have

1
%[1414(% s3"") 4+ 32A0 (52, 523;3,1) + 32A% (3¢, 523, 1,3) + 12A" (32, 53) — L (3¢, 523)]

239(3e3 — )

<
- 6480

{|n%”71\ + |n%3”*1|}.
Proof. The proof follows directly by applying S(3¢1) = »1",n > 2 in Theorem 3. [

Proposition 2. Suppose that all the assumptions of Theorem 4 are admitted, then we have

’ 5 4A(", 53") + B2A™ (52, 52333, 1) + B2A" (52, 52331, 3) + 12A" (52, 53) — £ (a, 3¢3)]

90

1

1157 \'"1 / 130,523 IR CRRMPRTAL
64,800 8,748,000 1,093,500 "%
1-1 1
4127 g 1019 T
) (32,400'”” "+ 162,000 |

1-1 1
11019 g, 4127 NG
+( 200) (162,000'”% "+ 552,000 |

1-1 1
1157> ,,< 3209 . 130,523| n1|q>q],

< (b3 — x)

_|_

1\ 62,800 093,500 " 8,748,000 %
where g > 0.

Proof. The proof follows directly by applying S(21) = »",n > 2 in Theorem 3. [
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L

X

p1(8,8
n—1

B =0
3

Ny

»

)

(”11'-&-1 - %11')

90

Remark 1. We can obtain several new error estimates between special means by considering
Theorem 5 to Theorem 7.

3.2. Error Bounds

In the current portion of the study, we establish error bounds for the composite Boole’s
quadrature schemes for first-order differentiable mappings.

Consider a partition @ : 22 = 519 < 2617 < 2215 < ... < 317 < 217541 < 301, = 3 Of
the interval [, 53|, where [3¢1;, 711, 1] is any arbitrary subset of [5, 53]. Leth = 11,1 — 711

[75(%11.) +3ZS<M) +328<%1i+3%1i+1) + 125(W> +7S(%1i+l)}

4 4 2

S(%l)d%l = pl(ﬁ,S) + R(ﬁ,S),

where R(9, S) is the error terms.
Proposition 3. From Theorem 3, we have

_ n=1 23952
R(8,8)| <
IR(8,S)] < EO 6480

(18" (Gaai) | + 18" (51i51) 1]

Proof. To acquire the desired result, we apply Theorem 3 over sub-interval [, 711, 1] and
taking sum fromi =0toi=n—1. O

Proposition 4. From Theorem 5, we have

1-1 1

1 1 q q
R(8,5)] < 17 [(fj‘;gfﬁff%p) (Z15alt + 18 G

1

q

g N s 3w
(@orsary)  (2ISCal+ 58 Gacr)

1
4l4p 4 (1) 3 5
(@mtey)  (@sadt+gis )

147+ BN T 1 7 :
+( (180)1+7(1 + p) ) <32|S (%1i)\q+3—2|8 (%1i+1)|q> ],

1

q

1.1 _
wherep—i-q 1.

Proof. To acquire the desired result, We apply Theorem 5 over sub-interval [;;, 51, 1] and
taking sum fromi =0toi=n—-1. O

By adopting a similar technique, several bounds can be developed from other main findings.

3.3. g-Digamma Function

Assume that 0 < q < 1. The g-digamma mapping Y (u) (for further information, refer
to [19]) can be expressed as

00 qi+u 00 qiu
Yq(u) = —In(1—q) +1In(q) ) g = —In(1—q) +In(q) ;} g

i=0 i=
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If ¢ > 1 and u > 0, the g-digamma mapping Y, can be represented as follows:

1 0 qf(ijLu)
i=0
00 q—iu
= —In(q—1) +1In(q) [u -5 _m]
2 ;’) 1—q

For q > 0, the mapping Yy (1) is completely monotonic on the interval (0, co), which implies
that it is a convex mapping. These facts allow us to formulate the following significant
results regarding g-digamma mapping.

Proposition 5. Considering Theorem 6, we obtain

n3 — % / [ 37+ 3 7+ 3 [ %+ 353 / _Yq(%>+Y,q(%3)
[7Yq(%) +32Y, (4 ) +12Y, (2 ) +32Y, <4 ) +7Yq(%3)} B

(14)1+p+ (31)1—1—]7 41+p+ (11)1+P
(180)*7p(1+p) ~ (60)"*7p(1+p)

1
<205 - + g G+ 1Y)l
1,1 _
where 5 + 7= 1.

Proof. By applying S(s¢1) — Y’q (511), the desired result follows directly. [J

Proposition 6. Considering Theorem 7, we obtain

n3 — % / [ 37+ 53 n + 3 [ %+ 353 / _Yq(%)+Y,c|(%3)
) [7Yq(%) +32Y, (4 ) +12Y, ( 5 ) +32Y, <4 ) + 7Yq(%3)} I
239M (525 — )

- 3240

Proof. By applying S(s1) — Y{(5¢1), the desired result follows directly. [

3.4. Modified Bessel Functions
Suppose Ay : R — (0, 1] which is defined as

As(v) = 2°T(1 + 8)o 2 15(0).
Now, we give an overview of modified Bessel mappings.

(2)5+2u
2

ls(v) = E) L@ +u+1)

The first- and nth-order derivative formula’s for As(v) are given as follows:

¥ s wios — som 146 2406 1+6—n 2+6—n e
/\5(0)—72(1+5>A5+1(v), e =2 VP ' (1 +6)283 R I PR > ,1—1—(5,4 ,

where »F3(., ., .) is a hypergeometric mapping which is represented as follows:

1486 248 146—n 24+6—n o2 o (%)k(%o‘)kvzk
2F3< 2 2 ' 2 T 2 /(1+5);4>:k¥0(1+g—n) (MT_") (14 6)dkk!
k k
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For details, see [20,21].

Proposition 7. For [s, s3] € R, and 6 > —1 then

1 3x+ i3 3+ 33 + 3 »+ 3
ot [0 2 (2 (572 ) 25572 e (252

»%+ 313 2+ 33 As(313) — As(5¢
+32<4>/\5+1 <4) +7%37\6+1(%3)] - %2_%()

- (303 — 2)2272°\ /7T (1 4 6) p(ltd2+4605-19
= 6480 W\ T2 2 2

146 2486 6-1 6 33?
2P3( 2 7 2 7 2 /21(1+5)r4>’:|

[329|%“|

,(1+6);Zz>‘

N

423952 72|

Proof. To conclude our desired outcome, we apply S(s1) = Aj(5¢) in Theorem 3. [

Proposition 8. For [, s3] € R, and § > —1, then

1 3x+ 3 33+ i3 %+ i3 %+ 3
——— |72\ 21 ——— A - 12 A
oty Ao 00+ 2 F 7 e (72 ) 22 e (77

¥+ 33 »+ 33 As(s3) — Ag (e
+32<4>/\5+1 <4> +7%3)\5+1(%3)] - (%z_%()

< 239M (523 — )
- 3240 ’

Proof. To conclude our desired outcome, we apply S(s) = Aj(51) in Theorem 7. [

4. Visual Demonstration

In the current part of the investigation, we present some visuals to validate our primary
results, which provide the bounds for Boole’s rule.

First, we demonstrate a graphical explanation of Theorem 3.
Example 1. For §(3a1) = 75, s t2,r > 1 & m > 1and [, 53] = [0,2], then Theorem 3 can
be written as follows:

r+2m

m r+2m r42m r+2m 7’}12 (2) m
_ . m . m m 12| —
90(r + 2m) 32((05)5" +(15)5) +72) % + 12] (r + 2m) (r + 3m)
239 r+m
< Te20* " |

For Figure la—c, we select r,m € [1,5], r € [1,5] and m € [1,10], respectively, as
unknown to construct the visual demonstration of left and right side of Theorem 3.

S(r)

RHS
08 0.30

025F
0.6
020
RH.S
04r 0151

0.2F

i—— LHS

2 5 7 s (c) 2 s P

L LHS
5

Figure 1. Graphical illustration of left (green) and right (purple) sides of Theorem 3.
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Figure 1a validate left (green) and right (purple) sides of Theorem 3 for r,m € [1,5].
Figure 1b validate left (green) and right (purple) sides of Theorem 3 for r € [1,5]. Figure 1c
validate left (green) and right (purple) sides of Theorem 3 for m € [1,5].

Example 2. For S(31) = H";m%ﬁ*z,r >1&m > 1,9 = 2and [5,3] = [0,2], then

Theorem 4 can be written as follows:

m r+2m r+2m r+2m m2 (2) rt’%m
" _[32((05)5" + (1.5)5") +7(2) 5" +12] —
90(r + 2m) [3 ((05) +(15) ) +7(2) + } (r +2m)(r + 3m)

< gt 1157 130,523 n [ 3209 n 137 1019 n 4127
- 64,800 \ \/ 8,748,000 10,393,500 7200 162,000 324,000 ) |
For Figure 2a—c, we select r,m € [1,5], r € [1,5] and m € [1,10], respectively, as
unknown to construct the visual demonstration of left and right side of Theorem 4.

S(r) S(m)

RHS 0.4
03¥
RHS

L~ LHS : : . L LHS
5 (C) 2 3 4 5

Figure 2. Graphical illustration of left (green) and right (purple) sides of Theorem 4.

Figure 2a validate left (green) and right (purple) sides of Theorem 3 for r,m € [1,5].
Figure 2b validate left (green) and right (purple) sides of Theorem 3 for r € [1,5]. Figure 2¢
validate left (green) and right (purple) sides of Theorem 3 for m € [1,5].

Example 3. For S(sq) = r+"§m%1%+2,r >1&m>1,p=2=gqand [», 3] = [0,2], then

Theorem 5 can be written as follows:

m r+2m r+2m r4+2m m2 (2) rt&m
— . m 1. m 7(2) m 12| —
90(r + 2m) 32((05)" + (1)) +7(2) %" + 12] (% 2m) (r - 3m)

IN

| f 2w (1 7N\ s ()3 )5
129,600 \ V32 " V 32 14,400\ V32 " V32 )|

For Figure 3a—c, we select r,m € [1,5], r € [1,5] and m € [1,10], respectively, as
unknown to construct the visual demonstration of left and right side of Theorem 5.

(b) 2 3 7 s () 2 3 n o

Figure 3. Graphical illustration of left (green) and right (purple) sides of Theorem 5.
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Figure 3a validate left (green) and right (purple) sides of Theorem 3 for r,m € [1,5].
Figure 3b validate left (green) and right (purple) sides of Theorem 3 for r € [1,5]. Figure 3c
validate left (green) and right (purple) sides of Theorem 3 for m € [1,5].

Example 4. For S(sq) = H";m%ﬁ*z,r >1&m>1,p=2=qand [», 3] = [0,2], then

Theorem 6 can be written as follows:

m r4+2m r+2m r+2m mZ (2) rt'%m
———(32((0.5) m 15) m 7(2) m 12| —
90(r +2m) 32((05) " + (19)"" ) +7(2)" +12] (% 2m)(r + 3m)
104 2r+2m
< — T
~ 6480 +2)

For Figure 4a—c, we select r,m € [1,5], r € [1,5] and m € [1,10], respectively, as
unknown to construct the visual demonstration of left and right side of Theorem 6.

L LHS (C) A 5 % Lo LHS
Figure 4. Graphical illustration of left (green) and right (purple) sides of Theorem 6.

Figure 4a validate left (green) and right (purple) sides of Theorem 3 for r,m € [1,5].
Figure 4b validate left (green) and right (purple) sides of Theorem 3 for r € [1,5]. Figure 4c
validate left (green) and right (purple) sides of Theorem 3 for m € [1,5].

Example 5. For S(5) = /5. s t2,r > 1 & m > 1and [, 53] = [0,2], then Theorem 7 can
be written as follows:

2 r+2m
m r+2m r+2m r+2m m (2) m
B . m . m 7 2 m 12 -
90(r + 2m) 32((05) %" + (15) " ) +7(2) " +12] (r+2m)(r 1 3m)
239 r+m
< —2m
- 1620| |

For Figure 5a—c, we select r,m € [1,5], r € [1,5] and m € [1,10], respectively, as
unknown to construct the visual demonstration of left and right side of Theorem 7.

S(r) S(m)
RH.S 068
151 o

04f

10f RH.S
03f
05 o2p
01f

L L . L LHS - - ; - LHS

(b) 2 3 4 5 (C) 2 3 4 5

Figure 5. Graphical illustration of left (green) and right (purple) sides of Theorem 7.

Figure 5a validate left (green) and right (purple) sides of Theorem 3 for r,m € [1,5].
Figure 5b validate left (green) and right (purple) sides of Theorem 3 for r € [1,5]. Figure 5¢
validate left (green) and right (purple) sides of Theorem 3 for m € [1,5].
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Hlpn4+1 = #1n —

4.1. Application to Numerical Scheme for Finding the Solutions of Non-Linear Equations

Now, we give novel applications to non-linear analysis. We propose a new iterative
scheme to evaluate the nonlinear equations.
Consider non-linear equation

S(3a) = 0. 3)

Various methods and novel techniques have been developed in the literature to compute
the zeros of non-linear equations. Also, it is an interesting aspect of research in the current
era. Iterative schemes, such as Newton’s method, have been extensively examined. Several
approaches, including quadrature formulae, Taylor’s series, interpolating polynomials,
and decomposition procedures, have also been identified. Based on the significance of
iterative methods, we propose a new efficient scheme to solve the nonlinear equations and
a few examples along with graphical explanations.

In [22], Weerakoon and Fernando addressed the association between quadrature and
iterative strategies for Newton’s indefinite integral expression. Now, we present Newton's
integral form, which is described in [23] as follows:

SGa) =SGay) + [ S'(w)dpu. ()

Hln

Example 6. For any [s, 53] C R such that S(s¢) = 0 is a non-linear equation, then

90S (51,,)
78/ (1) + 328" (ZgHn) 1287 (Ln ) 4 3057 (2Bl ) 478 ()

where

_ _ 8(%171)
TYn = M1y Sl(%ln) .

Proof. One can easily obtain the scheme utilizing Equation (4) in Theorem 7. [J

Theorem 8. Let r € I be a simple zero of sufficiently differentiable mapping S on 1°. If 21, is
sufficiently close to r, then Example 6 exhibits a cubic order of convergence and satisfies the following
error equation:

1 = chey +O(en).

Proof. Let r be a zero of differentiable S, by expanding S(5,) and S'(34,) about 7,
we have

S(3e1,) = S'(r)[en + 2% + c3ed +caet +..], (6)
and
S'(3a,) = 8'(r)[1 + 2c2en + 3c3€% + 4degel + 5cges; + .. . )
where ¢, = %?,(((:)),k =1,2,3,..., where e, = s, — r. Now, from Equations (6) and (7),
we have
Yn = 31, — 5,((]:1"”)) = [r+coe2 +2(c3 — 3)e3 + (—7cacs + 4¢3 + 3cqg)er + .. . (8)
This implies that

S(n) = 8S'(r) [czefl +2(c3— c%)e% + (=7ce5 + SC% + 3C4)€‘,11 +...L 9)
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This implies that
S’ o 2 COB\B (11,2 4 4
(vn) = S’ (r)[1 + 2c2e;, +4(coc3 — ¢3)e;, + (—11csc3 + 8¢5 + 6caca)ey + - . .. (10)
Also
321, + n 3 27 AN 27 9 G o3 3
1 2%An T\ _ o o =/ & £/ 7 0, Qs
8( 1 ) S(r)[c1+2c1c2en+c1<16C3+ > e; +c1 16C4+8C263—|—2 5 + > e, +.... (A1)
This implies that
S’ (%1”;_7”> = 8'(r)[ec1 + c1c0en + €1 (iq, + C%) 2+ <C24 + %CQC:}, +2(—c§ + C2C3))e‘:’l +...]. (12)
Also
3 _ s () [er + Lercren + o1 [ o 138 2y [ ey o 305 135 )y . (13)
1 = 1+ 5016en e o0 57 e T e1| o+ glacs 5 5 ntel

y

By using (8-13) in (5), we achieve
Hpy1 = 30 +O0(e}).
Hence, the result is acquired. O

4.2. Numerical Analysis

In the following subsequent portion, we demonstrate the numerical analysis of the
developed Example 6. For this, we consider some physical problems.

1. We consider the Blood Rheology and Fractional Non-Linear Equations Model ([24]).
To evaluate the plug flow of Casson fluids, we utilize the following non-linear frac-
tional equation, where a drop-in rate of flow is computed by:

16 4 1
S(%l) =1- 7M+ 5%1 — ﬁ%14 — G,
where the fall of in flow rate is measured by G = 0.4. Selecting the initial guess of
»19 = 0.1 then employing the developed Example 6 provides the desired solution
» = 0.1046986515365482281163926975 in three iterations.

2. Now, we consider fluid permeability in Biogels ([24]). The relation between velocity

and pressure in a porous medium can be visualized by the given equation:

S(31) = Reser® — 20 (1 — 1),

where R, = 10 x 10~ and x = 0.3655. Through initial guess of >, = 2, the developed
Example 6 provides the desired root in »; = 1.000037003578296426668052574 in
12 iterations.

3.  Lastly, we formulate the root of the non-linear equation given below ([25])

S(a) = —5log [04(1_%1)} +4.45977, (14)

1
11— 04— 05

where s indicates the transformation of species A in a chemical reactor and s € [0, 1].
Implementing Example 6, we obtain the solution s¢; = 0.7573962462537538794596412979
after three iterations.
Now, we present the comparative study of Example 6. For this purpose, we consider the
following non-linear equations:
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1. 81(%1) = %13 +4%12 - 15,‘

2. S(m) = xe*1’ — sin2 21+ 3cos i + 5
3. S3(05m) = 10%1e_"12 —-1;

4. S4(5n) = e + cos .

We present the comparative study of our proposed Example 6 with well-known schemes
such as the Newton method (NM) [26], Abbasbandy’s method (AM) [27], Halley’s method
(HM) [26], and Chun’s method (CM) [28]. To approximate the root, we take a tolerance of
€ = 10715, The subsequent termination conditions are utilized for computer Example 6:

L g —oa. <€
2. [SGap)l <e
Numerical tests were conducted on an Intel(R) Core(TM) i5 processor with 1.60 GHz and
16 GB RAM. Maple 2020 was used for coding, while graphical analysis was carried out
using MATLAB 2021.

After performing the numerical tests on the software, we obtained the present tabular
as well as visual illustrations of Example 6 for the above-mentioned examples.

Table 1 provides a comparison of newly proposed Example 6 with the classical method
by considering examples S to Sy.

Table 1. Comparison analysis for different examples.

Methods 19 IT Hn |S (5211) | ) Example
NM 2 5 1.6319808055660635175 0 477035 x 10~ 14 S
AM 2 4 1.6319808055660635175 0 0 S
HM 2 4 1.6319808055660635175 0 0 S
CM 2 4 1.6319808055660635175 0 0 S
ALG 2 4 1.6319808055660635175 0 0 S
NM —1 6 —1.2076478271309189270 40x 1071 758 x 10°17 S>
AM -1 5 —1.2076478271309189270 40x 1071 0 S,
HM -1 4 —1.2076478271309189270 40x 1071 0 S,
CM -1 5 —1.2076478271309189270 40x 1071 0 S,
ALG -1 4 —1.2076478271309189270 40x 1071 2.62456 x 10714 S,

Table 1. Cont.

Methods 219 IT H1n |S (5211) | ) Example
NM 1.8 5 1.6796306104284499407 —9x10% 47395 x 10~ S3
AM 1.8 4 1.6796306104284499407 —9x10720 1.0 x 10719 S3
HM 1.8 4 1.6796306104284499407 —9x10°20 0 S
CM 1.8 4 1.6796306104284499407 2.0x 1071 0 S
ALG 1.8 4 1.6796306104284499407 —9x10°20 0 S
NM 2 4 1.7461395304080124177 6.0 x 1020 1.611907606 x 10~ Sy
AM 2 4 1.7461395304080124177 —6x10"20 1.0 x 10719 Sy
HM 2 4 1.7461395304080124176 6.0 x 10720 1.0 x 10719 Sy
CM 2 3 1.7461395304080124177 —6x 10720 463 x 10717 Sy
ALG 2 3 1.7461395304080124177 —6x10"20 8.0159910 x 1012 S,

Next, we give the graphical demonstration of the examples under consideration based
on the root values and number of iterations.

Figure 6a—d illustrate the comparative study of our proposed Example 6 with clas-
sical method by the means of root value and number of iterations for examples S; to Sy
respectively.
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Figure 6. Comparison Analysis

4.3. Basins of Attraction

Here, we explore Example 6 by presenting the basin of attraction and visuals for
CPU time to produce the basin of attraction. We implemented our developed Example
6 on [—2,2] x [—2,2] with a 500 x 500 points grid by selecting the tolerance |S(s1,,)| <
1 x 10710 and the maximum number of iterations of 20. For this purpose, we considered
the following examples.

Figure 7a presents basin of attraction for polynomial 5> — 1 and Figure 7b gives the
visual analysis of CPU time required to produce the basin of attraction per iteration.

CPU Time per lteration

=)
=3

CPU Time (seconds)
3 3

40 [

20

0 5 10 15 20

(a) E ¢ L 2 (b) Iteration

Figure 7. (a) Basin of attraction for 212 — 1 and (b) the CPU time to produce the basin of attraction.

Figure 8a presents basin of attraction for polynomial > — 1 and Figure 8b gives the
visual analysis of CPU time required to produce the basin of attraction per iteration.
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CPU Time per lteration

350

300 -

250

n
S
15}

CPU Time (seconds)
g

=
153

50

0 5 10 15 20
Iteration

Figure 8. (a) Basin of attraction for 13 — 1 and (b) the CPU time to produce the basin of attraction.

Figure 9a presents basin of attraction for polynomial 5;* — 1 and Figure 9b gives the
visual analysis of CPU time required to produce the basin of attraction per iteration.

CPU Time per Iteration

600

500

IS
=)
=3

CPU Time (seconds)
g

. . .
0 5 10 15 20
Iteration

Figure 9. (a) Basin of attraction for s* — 1 and (b) the CPU time to produce the basin of attraction.

Figure 10a presents basin of attraction for polynomial »;% — 57 and Figure 10b gives
the visual analysis of CPU time required to produce the basin of attraction per iteration.

CPU Time per lteration

180
160
140 1
2 120
2
o
o
\3., 100
g
£ 8of
2
S 60r
40
20
0 . . .
% F 5 ; B 0 5 10 15 20
(a) (b) Iteration

Figure 10. (a) Basin of attraction for 213 — 51 and (b) the CPU time to produce the basin of attraction.

5. Conclusions
Error inequalities of Newton—Cotes quadrature procedures have been investigated
using multiple approaches to attain various upper and tight bounds. The derivation of
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various integral inequalities through convex functions and its generalization is a very active
field of research. In the present work, we have studied Boole’s type inequalities involving
convex mappings. We have developed the various error estimates for Boole’s inequality
and their applications to the theory of means, special mappings, and error bounds to the
composite Boole’s rule and an iterative method to solve nonlinear equations. Also, we have
provided a visual explanation of the primary findings. Moreover, we have discussed the
convergence of the proposed iterative method and provided several examples in support
of our proposed method. The novelty of this study is that it provides new upper bounds
for Boole’s error inequality for differentiable convex and bounded mappings. The results
obtained in the study have a large number of applications in numerical analysis, the theory
of means, etc. In the future, we will extend Boole’s type inequalities for non-convex function
classes in the frameworks of fractional calculus and quantum calculus.
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