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Abstract: Multi-output regression aims to utilize the correlation between outputs to achieve infor-
mation transfer between dependent outputs, thus improving the accuracy of predictive models.
Although the Bayesian support vector machine (BSVR) can provide both the mean and the predicted
variance distribution of the data to be labeled, which has a large potential application value, its
standard form is unable to handle multiple outputs at the same time. To solve this problem, this paper
proposes a multi-output Bayesian support vector machine model (MBSVR), which uses a covariance
matrix to describe the relationship between outputs and outputs and outputs and inputs simultane-
ously by introducing a semiparametric latent factor model (SLFM) in BSVR, realizing knowledge
transfer between outputs and improving the accuracy of the model. MBSVR integrates and optimizes
the parameters in BSVR and those in SLFM through Bayesian derivation to effectively deal with
the multi-output problem on the basis of inheriting the advantages of BSVR. The effectiveness of
the method is verified using two function cases and four high-dimensional real-world data with
multi-output.

Keywords: multiple dependent outputs; support vector regression; Bayesian inference; semiparametric
latent factor model; multi-output Bayesian support vector regression (MBSVR)

MSC: 62J02; 68Txx

1. Introduction

Regression models, also known as response models, can accurately predict the output
of other features by establishing a mapping relationship between data features and out-
puts [1]. The commonly used regression models are single-output models, i.e., models with
one or more inputs but only one output. However, in real engineering problems, there are
often multiple outputs. For example, in novel battery material discovery, simultaneous
and comprehensive prediction of the multidimensional properties of battery electrode
materials is needed to help accelerate material discovery and design [2]. In environmental
forecasting, there is a need to simultaneously predict particulate matter concentrations at
different air quality monitoring stations, which often have potentially nonlinear spatial
correlations. Reliable and accurate predictions help in crisis response and can reduce health
risks [3]. Ultra-high-performance fiber-reinforced concrete (UHPFRC) is used in a variety
of civil engineering applications, and its structural behavior is closer to that of steel. To
investigate the effect of component dosage on its strain and energy absorption capacity
under peak tension and to optimize the material dosage, both outputs need to be predicted
simultaneously [4]. Multiple outputs can be processed separately, but this method ignores
the potential correlation between the outputs and results in information loss. Therefore,
the correlation between the outputs can be used to build a multi-output model, which is
also known as a multi-response or multi-task model.

Support vector machine (SVR) was first proposed by Vapnik based on the principle of
structural risk minimization [5]. SVR uses quadratic programming to obtain predictions
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for a single output. Compared to other models, SVR has superior performance due to its
structural risk minimization principle, which allows it to avoid overfitting and achieve
better output approximation [6,7]. The Bayesian support vector machine (BSVR) introduces
Gaussian process assumptions and Bayesian inference on the basis of SVR to obtain the
predicted values and their distributions. The BSVR model not only obtains an estimate of
the unknown sample points but also has the advantages of adaptivity and prediction error
distributions of Bayesian methods [8]. Meanwhile, SVR has shown superior performance
in dealing with nonlinear problems and avoiding overfitting with good generalization
ability [9]. Therefore, Bayesian support vector machines have received a lot of attention in
the past time, such as [9–11] and references therein.

Multiple output regression aims to establish a mapping from multivariate inputs to
multiple outputs [12]. Despite the potential utility of BSVR, its standard form cannot handle
multiple outputs. The simplest way to deal with the multiple-output problem is to model
multiple outputs individually. For each output indicator, a model can be built indepen-
dently. This treatment is simpler but does not take into account the correlation between
outputs and is suitable for scenarios where no correlation exists between outputs [13].
Another method is chain modeling [14]. This method predicts an output, followed by
predicting the next output using the predicted output as input, and so on. However, the
use of chain modeling requires determining the order of the outputs and the dependencies
between them.

Considering that multiple outputs are correlated and being modeled individually can
lead to information loss, more and more multi-output modeling approaches have been
proposed. Multi-output modeling takes advantage of the correlation between outputs so
that a single output can utilize information from other outputs to obtain more accurate pre-
dictions [13]. Methods have been developed to extend the support vector machine model
so that it can handle multiple outputs simultaneously. Pérez-Cruz et al. [14] transformed
the pipeline in a pipeline-based model ε − SVR into a hyper-square pipeline by equalizing
the output values of the data points located outside the pipeline. This hyperspherical insen-
sitive zone is designed to be more effective than modeling it individually. Zhang et al. [15]
proposed an extended LSSVR (ELS-SVR), which extends the original feature space using
vector virtualization to represent the multi-output case as an equivalent single-output case
in the extended feature space and solved using a least-squares support vector machine.
Inspired by multi-task learning, Xu et al. [16] changed the weight vector of a least-squares
support vector machine from one to two. One carries generic information and the other
carries specific information, thus characterizing the correlation between the two outputs,
which is referred to as multi-output LS-SVR (MLS-SVR). Literature [17] gives an overview
of the correlation methods and also analyzes the disadvantages of the above methods:
the hyperspherical ϵ-tube of M-SVR does not exhibit an advantage over a hypercubic
one, ELSSVR cannot handle the negative correlations, MLSSVR does not handle well the
case of only partial correlations, and the above methods do not consistently outperform
single-output support vector machines.

The above methods distribute modifications to ε − SVR and LSSVR so that they can
solve the multi-output problem. Among them, the support vectors in ε − SVR are sparse
and only some of the samples are involved in the model construction. LSSVR transforms
convex quadratic optimization problems into linear systems of equations problems, in
which all the samples are involved in the model construction. These methods better uti-
lize the correlation between the outputs and improve the model accuracy to some extent.
However, these methods cannot obtain a prediction distribution similar to BSVR, which
can quantify uncertainty and has good application prospects. In addition, BSVR is based
on Bayesian theory, which can systematically and effectively infer the optimal hyperparam-
eters [8]. In terms of describing the correlation of multiple outputs, the method based on
ε− SVR does not have an accurate structure to describe the correlation of outputs. ELS-SVR
only describes the correlation through a parameter greater than 0, so it cannot describe the
negative correlation. MLS-SVR describes the shared information through the disassembly
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of the weight vector. However, as the weight describes the correlation of multiple outputs
in a unified manner, it cannot describe the partial correlation of the outputs.

Therefore, this paper introduces the multi-output Gaussian process assumption based
on the Bayesian support vector machine model (BSVR) while considering the variability
of multiple outputs in terms of SVR trade-off parameters. A Bayesian framework is used
to systematically and comprehensively optimize the original BSVR hyperparameters and
the hyperparameters of the Gaussian process, which in turn provides the predicted values
and probability distributions of multiple outputs. The difference between the multi-output
Bayesian support vector machine (MBSVR) and single-output Bayesian support vector
machine (BSVR) mainly lies in the kernel function. MBSVR uses the semiparametric latent
factor model in the new kernel function, which describes the relationship between the
inputs and outputs, and the outputs and outputs at the same time through the linear
combinations of implicit functions so that information between them can be transferred to
improve the accuracy of the model. The main contributions of our work are as listed:

• The method inherits the advantages of support vector machines in nonlinear, high-
dimensional problems by introducing Bayesian derivation in support vector machines.

• Compared to other SVR-based multi-output regression methods. Based on Bayesian
theory, the predicted mean and its probability distribution (uncertainty) can be ob-
tained, and the hyperparameter optimization can be performed systematically and ef-
fectively.

• Compared with BSVR, the method combines the SLFM structure with BSVR for
comprehensive optimization of parameters through information transfer between
outputs and uses the shared information to improve model accuracy.

• The use of a trade-off parameter makes the method sensitive to outliers and allows for
more robust performance on real datasets than multi-output Gaussian process.

The rest of the paper is structured as follows: in Section 2, the Bayesian support vector
machine model and the semiparametric latent factor model are introduced. In Section 3, the
new multi-output Bayesian support vector machine model is introduced. In Section 4, the
model evaluation is carried out using function arithmetic and real datasets, and Section 5
concludes.

2. Related Description and Basic Theories
2.1. Single-Output Bayesian Support Vector Machine

Single-output Bayesian support vector machine (BSVR) introduces Gaussian process
assumptions based on SVR to optimize the hyperparameters by Bayesian derivation [8].
BSVR is widely used because it can obtain the mean and the prediction variance of the
prediction through rigorous derivation to measure the uncertainty of prediction while
maintaining the advantages of SVR. In BSVR, the mapping relationship between outputs
and factors can be expressed as [8]:

yj = g(xj) + δj (1)

where δj is an independently and identically distributed random error. g(xj) is the support
vector machine regression model. It is a zero-mean Gaussian stochastic process whose
covariance between the two outputs of different x can be expressed as:

k(g̃(x), g̃(x’) = k(x, x’) =
n

∏
j=1

exp(−θj(xj − x’
j)

2
) (2)

where θ = (θ1, θ2 · · · θn) is the hyperparameter to be adjusted and the covariance between the
two outputs is equal to the value of the corresponding kernel function. Under the assumptions
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of the Gaussian process, the a priori of the outputs G = {g̃(x1), g̃(x2), · · · , g̃(xN)}T can be
described as:

p(G|γ) = 1
ZG

exp(−1
2
(G − b)TK−1(G − b)) (3)

ZG = (2π)N/2
∣∣∣K∣∣∣1/2

(4)

where K ∈ RN×N is the input covariance matrix in the sample where training was per-
formed, b = [b, b, · · · , b] ∈ RN . γ denotes all hyperparameters. In this problem, the
hyperparameters include the hyperparameters θ = (θ1, θ2, · · · , θn) in the kernel function
and the trade-off parameters C. Since the noise is assumed to be an independent and
identically distributed random variable, the likelihood function of the sample output for
the training set of samples can be expressed as [8]:

p(Y|G,γ) =
N

∏
j=1

p(yj − g(xj)|G,γ) =
N

∏
j=1

p(δj) (5)

where p(δj) is the probability distribution of δj with the expression:

p(δ) =
1

Zδ
exp(−Cl(δ)) (6)

Zδ =
∫

exp(−Cl(δ))dδ =
√

2π/C (7)

where l(δ) is the loss function of the model and C is a trade-off constant. According to
Bayesian theory, the posterior distribution is obtained by synthesizing the information of the
existing samples with the prior distribution. In BSVR, the likelihood function characterizes
the training set sample information, while p(G|γ) is the prior distribution of the samples.
Since the prior distribution satisfies the Gaussian process assumption, it can be represented
by Equation (3). In summary, the posterior distribution of satisfies [18].

p(G|Y,γ) =
p(Y|G,γ)p(G|γ)

p(Y|γ) (8)

p(Y|γ) is a normalization constant. Bringing (3) and (5) into (8) yields:

p(G|Y,γ) =
1
Z

exp(−C
N

∑
i=1

l(yi − g̃(x))− 1
2
(G − b)TK−1(G − b)) (9)

Z =
∫

exp(−S(G))dG (10)

S(G) =
N

∑
j=1

Cl(yj − g̃(xj)) +
1
2
(G − b)TK−1(G − b) (11)

Thus, according to the principle of the great likelihood method of solution, maximizing
the posterior distribution in (11) can be equated to:

min
G

N

∑
i=1

Cl(yi − g̃(xi)) +
1
2
(G − b)TK−1(G − b) (12)

where C is the equilibrium parameter. The loss function of a support vector machine can
be represented in a variety of ways, and one is the squared loss function:

l(δ) =
1
2

δ2 (13)
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Minimizing the squared loss function is essentially equivalent to great likelihood
estimation under the assumption that the error follows a Gaussian distribution. Bringing
the loss function expression into (12) yields the new objective function as:

min
G

N

∑
j=1

C
2

e2
j +

1
2
(G − b)TK−1(G − b) (14)

where yj = g(xj) + ej. Solving yields an estimate of G as:

Ĝ = K(K + I/C)−1Y = Kβ+ b (15)

where I is the unit matrix, β = [β1, β2, · · · βN ] = (K + I/C)−1Y.
For the output g(x) to be predicted, its joint distribution with the training set satisfies:(

g(x)
G

)
∼ N

({
0
0

}
,
{

k(x, x) k(x,X)
k(X,x) k(X,X)

})
(16)

k(X, x) = k(x, X)T = [k(x1, x), · · · , k(xN, x)]T (17)

(17) denotes the variance between G and g(x), k(X, X) = K. The prior of g(x) still
obeys Gaussian distribution:

p(g(x)|Y) =
∫

p(g̃(x)|Y)p(G|Y)dG
= N(µ(x), Σ2(x))

(18)

µ(x) = k(x, X)k(X, X)−1Ĝ
= k(x, X)(K + I/C)−1Y

=
N
∑

j=1
β jk(x, xj)

(19)

Σ2(x) = k(x, x)− k(x, X)k(X, X)−1k(X, x) (20)

For the Bayesian support vector machine with a squared loss function, the parameters
to be optimized include θ and C, and the optimal values of these hyperparameters are
determined by the maximum posteriori probability. The specific formula derivation and
calculation methods are described in [10].

2.2. Semiparametric Latent Factor Model (SLFM)

The most used multi-output covariance structure in multi-output Gaussian processes
is the linear model of coregionalization (LMC) [19]. The semiparametric latent factor model
(SLFM) is a special form of LMC. The model assumes that there are Q shared potential
Gaussian processes, and generally, the number of potential Gaussian processes is smaller
than the number of outputs. SLFM represents the output as a linear combination of Q
Gaussian processes. Taking two outputs as an example, two Gaussian implicit functions are
chosen, N f = Q = 2. Assuming that u1(x) and u2(x) are obtained by sampling from the two
Gaussian processes respectively, where u1(x) ∼ GP(0, k1(x, x′)), u2(x) ∼ GP(0, k2(x, x′)),
g1(x) and g2(x) are obtained by linearly transforming u1(x) and u2(x):

g1(x) = a1,1u1(x) + a2,2u2(x) (21)

g2(x) = a2,1u1(x) + a2,2u2(x) (22)

where u1(x) and u2(x) obey a Gaussian process distribution with different covariance
functions and are independent of each other, i.e., in the case of q ̸= q′, uq(x)⊥uq′(x′),
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cov(uq(x), uq′(x′)) = 0. Since a new covariance function can be obtained by linearly
combining several covariance functions. g1(x) and g2(x) can be written as:

g(x) = a1u1(x) + a2u2(x) (23)

where g(x) =
[
g1(x) g2(x)

]T, a1 =
[
a1,1 a2,1

]T, a2 =
[
a1,2 a2,2

]T, the variances of g(x)
and g(x′) can be calculated:

kM(x, x′) = cov(g(x), g(x
′
))

= a1(a1)
Tcov(u1(x), u1(x′)) + a2(a2)

Tcov(u2(x), u2(x′))
= a1(a1)

Tk1(x, x′) + a2(a2)
Tk2(x, x′)

(24)

Defining B1 = a1(a1)
T, B2 = a2(a2)

T, we can obtain

kM(x, x′) = B1k1(x, x′) + B2k2(x, x′) (25)

[
g1
g2

]
=



g1(x1)
...

g1(xN)
g2(x1)

...
g2(xN)


∼ N

([
0
0

]
, B1 ⊗ K1 + B2 ⊗ K2

)
(26)

Furthermore, consider a plurality of outputs {gi(x)}
N f
i=1 in a more generalized form:

gi(x) =
Q

∑
q=1

ai,quq(x) (27)

(27) can be described using a matrix as:

g(x) = Au(x) (28)

g(x) =
{

g1(x), g2(x), · · · gN f (x)
}T

(29)

u(x) =
[
u1(x), u2(x), · · · , uQ(x)

]
(30)

A =

 a1,1 · · · a1,Q
...

. . .
...

aN f ,1 · · · aN f ,Q

 ∈ RN f ×Q (31)

Similarly, since multiple Gaussian processes are independent for multiple outputs
g(x) = [g1(x), · · · , gN f (x)]

T, the covariance of multiple outputs can be expressed as:

kM(x, x′) =
Q

∑
q=1

AqAT
q kq(x, x′) (32)
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
g1
...

gN f

 =



g1(x1)
...

g1(xN)
g2(x1)

...
g2(xN)

...
gN f (x1)

...
gN f (xN)



∼ N


0

...
0

,
Q

∑
q=1

AqAT
q ⊗ Kq

 (33)

where in Aq ∈ RN f ×N f , the elements corresponding to the i output is Aq
ii′ = ai,qai′ ,q. To

further characterize the multi-output Gaussian process, it is necessary to determine the
number of implicit functions. It has been found that the larger Q is, the more flexible the
model is and the more variability can be described. Some scholars have determined Q to
be two or the number of outputs. The increase of Q will also bring about a further increase
in computational cost. In order to balance the flexibility and accuracy of the model and the
computational overhead, this paper will take the value of Q as N f . Then, the correlation
can be further expressed as:

kM(x, x′) = Rdiag[k1(x, x′), · · · , kQ(x, x′)]RT (34)

Aq = rqrq
T (35)

R = [r1, r2, · · · , rQ] (36)

A =

 a1,1 · · · a1,Q
...

. . .
...

aN f ,1 · · · aN f ,Q

 = RRT (37)

and Q = N f , kq(x, x′) =
D
∏

d=1
exp(−θd(xd − x

′
d)

2
). The kernel function of a Gaussian process

has a set of parameters θ ∈ RD to be optimized, D is the sample dimension, then for each
of the Q implicit functions, there is a set of θ, which is used to measure the importance
of the inputs as equivalent to the specified outputs. Then the parameters of the kernel
function to be optimized include θM = [θ1,θ2, · · · ,θN f ] ∈ RN f ×N . ∑0 = AAT ∈ RN f ×N f

is used to describe the covariance between multiple outputs. A is the upper triangular
matrix and also a set of unknown hyperparameters to be optimized.

3. Multi-Output Bayesian Support Vector Regression Model

The structure of the MBSVR model is shown in Figure 1, where the left side is the
SLFM structure and g(x) combines linear combination of Q implicit functions, according to
which the variance between g(x) can be quantitatively described. The right side represents
the trade-off parameters in the support vector machine; for each output, there is a corre-
sponding trade-off parameter, which is used to trade off the complexity and error of the
model. The ith output can be expressed as (27), where ai,q is the parameter to be optimized,
uq(x) is Gaussian process implicit function. Based on the expression of gi(x), the model
can be expressed as:

Yi = g(xi) + δi (38)

where xj is the jth sample and δ is an independently and identically distributed random
error. C is a number greater than 0, which determines the degree of tolerance for error in
the model. When C is large, the model will not allow for errors, the complexity is high, and
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it may be overfitted with poor generalization ability. When C is small, the model does not
focus on the presence of errors, the model is simpler, and it is easy to be underfitted.

MSVR combines the SLFM structure with the support vector machine model through
the Bayesian assumptions. Through the Gaussian process assumption and Bayesian deriva-
tion, the correlation between the outputs is effectively delineated, and finally, the predicted
mean and probability distribution of multiple outputs are obtained.
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3.1. Bayesian Assumptions for MBSVR

Assume that a multi-output modeling problem consists of N f outputs and N samples.
Define a vector Y, which characterizes the outputs of the sample points and contains N f × N
elements in the vector. Multi-output Bayesian support vectors aim to approximate the N f
outputs {gi(x)}1≤i≤N f

simultaneously. A more accurate model is built by considering the
correlation between the outputs. In a multi-output Bayesian support vector machine, for
a certain xj ∈ Rd, the relationship between the outputs and the factors can be expressed
as (38). where δj ∈ RN f is an independently and identically distributed random error
whose distribution form is usually unknown. Yj is the values of multiple outputs. g(x)
is a support vector machine, which is a multi-output Gaussian process. Since there are

multiple outputs, the multiple outputs of all samples g(x) =
{

g1(x), g2(x), · · · , gN f (x)
}T

are satisfied:
g(x) ∼ GP(0, ∑

0
) (39)

According to the SLFM principle, ∑0 = AAT is the parameter to be optimized. N f
Gaussian process outputs can be expressed as:


g̃1(x1), g̃1(x2), · · · , g̃1(xN)
g̃2(x1), g̃2(x2), · · · , g̃2(xN)

...
g̃N f (x1), g̃N f (x2), · · · , g̃N f (xN)


T

(40)

In order to make the model satisfy the Gaussian process assumptions and to facilitate
the solution, the Gaussian process output is stored using a stack as: G = {g̃1(x1), g̃2(x1), · · · ,
g̃Nf (x1) · · · , g̃1(xN), g̃2(xN), · · · , g̃Nf (xN)}T ∈ RNf ×N. To facilitate the derivation of the for-

mula, it is denoted as G =
{

g1, g2, · · · , gNf ×N

}T
. Then, the likelihood function of G can be

expressed as:

p(G|γ) = 1

(2π)N f ×N/2 (|KM|) 1/2 exp[−1
2
(G − b)TKM

−1(G − b)] (41)
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where b = [b, b, · · · , b] ∈ RN f N denotes the mean vector of the N f × N elements and
KM ∈ RN f N×N f N denotes the covariance matrix of Y. γ denotes the parameter vector to be
optimized. The definition of the covariance matrix KM is the key element that distinguishes
the multi-output Gaussian process from the multi-output correlation, and the description
of the multi-output correlation is also included in the covariance matrix.

Since the noise is assumed to be an independent and identically distributed random
variable, the likelihood function of the sample output for a given training set of samples
can be expressed as:

p(Y|G,γ) =
r=N f N

∏
r=1

p(yr − gr|G,γ) =
r=N f N

∏
r=1

p(δr) =

i=N f

∏
i=1

j=N

∏
j=1

p(δij) (42)

where p(δ) is the probability distribution of δ and the expression is:

p(δi) =
1

Zδi

exp(−Cil(δi)) (43)

Zδi =
∫

exp(−Cil(δi))dδ =
√

2π/Ci (44)

where l(δi), i = 1, 2, · · · , N f is the loss function of the support vector machine. C =

[C1, C2, · · · , CN f ]
T is the trade-off constant. For each output, there is a corresponding

trade-off constant. According to Bayesian theory, the posterior distribution of G satisfies:

p(G|Y,γ) =
p(Y|G,γ)p(G|γ)

p(Y|γ) (45)

p(Y|γ) is a normalization constant, and further, p(G|Y,γ) can be expressed as (See
Appendix A for more details):

p(G|Y,γ) =
1
Z

exp(−CMl(y − g)T − 1
2
(G − b)TKM

−1(G − b)) (46)

where C = [C1, C2, · · · , CN f ]
T, CM = 1D ⊗ C, 1D = [1, 1, · · · , 1] ∈ RN f , ⊗ is Kronecker

products.

Z =
∫

exp(−S(G))dG (47)

S(G) = CMl(y − g)T +
1
2
(G − b)TKM

−1(G − b) (48)

Therefore, maximizing the posterior distribution according to the principle of the great
likelihood method of solution can be equated to:

min
G

CMl(y − g)T +
1
2
(G − b)TKM

−1(G − b) (49)

Similar to the original support vector machine, the first term of the objective function
denotes the empirical risk, and the second term, which denotes the smoothness of the
function, CM is an expansion of the trade-off parameters.

3.2. Model Construction for MBSVR

As with single-output Bayesian support vector machines, MBSVR still uses the squared
loss function:

l(δ) =
1
2

δ2 (50)
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The squared loss function actually obeys a Gaussian probability density function [20].
Bringing in the loss function expression yields the new objective function as

min
G

1
2 CMe2 + 1

2 (G − b)TKM
−1(G − b)

s.t.yr = gr + er
(51)

where e =
{

e1, e2, · · · , eN f N

}
. er = yr − gr, r = 1, 2, · · · , N f N. CM = 1D⊗C. The estimate

of G is (See Appendix B for more details):

Ĝ = KM(KM + Ch)
−1Y + b = KMβ+ b (52)

where Ch satisfies Ch ⊙ diag(CM) = I, diag(CM) is in diagonal form of CM, I ∈ RN f N×N f N

is a unit matrix, β = [β1, β2, · · · βN f ×N ] = (KM + Ch)
−1Y. ⊙ is the Hadamard product, de-

noting the element-by-element multiplication of the matrix. For the output to be predicted
g(x), its joint distribution with the training set is satisfied:(

g(x)
G

)
∼ N

({
b0
b

}
,
{

kM(x, x) kM(x, X)
kM(X, x) kM(X, X)

})
(53)

kM(X, x) = kM(x, X)T = [kM(x1, x), · · · , kM(xN , x)]T (54)

kM(X, X) =


k11(X, X) · · · k1N f (X, X)

...
. . .

...
kN f 1(X, X) · · · kN f N f (X, X)

 (55)

where kM(X, X) = KM, b0 = [b, b, · · · , b] ∈ RN f .The prior of g(x) still obeys a multi-output
Gaussian distribution:

p(g(x)|G) = N (µ(x), Σ2(x)) (56)

µ(x) = b0 + kM(x, X)(kM(X, X) + Ch)
−1(G − b) (57)

Σ2(x) = kM(x, x)− kM(x, X)(kM(X, X) + Ch))
−1kM(X, x) (58)

where b0 = [b, b, · · · , b] ∈ RN f , kM(x, X) ∈ RN f ×N f N ,the expression is:

kM(x, X) =


k11(x, X) · · · k1N f (x, X)

...
. . .

...
kN f 1(x, X) · · · kN f N f (x, X)

 (59)

kii′(x, X) = [kii′(x, x1), kii′(x, x2), · · · , kii′(x, xN)], i = 1, 2, · · · N f (60)

kM(x, x) =


k11(x, x) · · · k1N f (x, x)

...
. . .

...
kN f 1(x, x) · · · kN f N f (x, x)

 ∈ RN f ×N f (61)

The variance of the ith diagonal element of Σ2(x) corresponds to the variance of ith
output of x.

3.3. Optimized Solution of Parameters

In MBSVR, the parameters to be optimized include the kernel function parameter θM;
the trade-off parameter C; and the matrix A, which describes the correlations between
outputs. For computational convenience, the specific implementation is decomposed by
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Cholesky A into RRT . The optimal values of these hyperparameters are determined by the
maximum a posteriori probability:

p(γ) =
p(Y|γ)p(γ)

p(Y)
(62)

where γ = {θM, C, R}, p(γ) is the prior distribution of the hyperparameters, and p(Y) is
a regularization constant that in general specifies a uniform probability distribution for
the hyperparameters. Therefore, its prior distribution p(γ) is a constant. Therefore, it is
only necessary to maximize p(Y|γ) to achieve the purpose of great likelihood estimation
of the parameters:

p(Y|γ) =
∫

p(Y|G,γ)p(G|γ)dG =
1

ZG

N f

∏
i=1

ZN
δi

∫
exp(−S(G))dG (63)

where ZG = (2π)N f ×N/2 (|KM|) 1/2, Zδi =
∫

exp(−Cil(δi))dδi. S(G) can be expressed as

S(G) = S(Ĝ) +
1
2
(G − Ĝ)

T
(KM

−1 + diag(CM)⊙ I)(G − Ĝ) (64)

Bringing (64) into the probability distribution in (63) yields the following equation:

− ln(p(Y|γ)) = 1
2

CMe2 +
1
2
βTKMβ+

1
2

ln |I + diag(CM)⊙ KM|+ N
N f

∑
i=1

ln Zδi (65)

The hyperparameters are obtained by solving according to the minimized likelihood
function. The nonlinear programming problem is solved using the “fmincon” function in
MATLAB2022b. Given the initial solution, iterative optimization is performed to obtain the
optimal hyperparameters. In general, the method can find the global optimal solution of
the objective function, and the initial value of the parameters on the optimal solution of the
parameters has less influence.

4. Numerical Experiments
4.1. Performance Metrics and Experiment Settings

The single-response Bayesian support vector machine [10] and a multi-output Gaus-
sian process model [21] are used for comparison with the multi-output Bayesian support
vector machine model (MBSVR). The three methods are denoted by (independent regres-
sion) IND, (multi-output Gaussian process) MGP, and MBSVR, respectively. The lhsdesign
function in MATLAB is used to generate the training set and test set, and for the model
parameters, the kernel function parameter in MBSVR is initialized to 1, the trade-off param-
eter C is initialized to 1000, and the range of optimality search is [0.01, 100] and [1, 106]. The
kernel function parameter of the multi-output Gaussian process is initialized to 1. In the
multi-output Bayesian support vector machine, Aq is initialized to a unit matrix. For the
same hyperparameters in all three models, the same initial values and optimization ranges
are assigned to allow for a fairer comparison.

To measure the generalization effect of the model, the error criterion normalized root
mean square error (NRMSE) is used, and its expression is:

NRMSEi =

√
1

Tn

Tn
∑

t=1
(yit − ỹit)

max(yi)− min(yi)
(66)

where Tn is the size of the test set, i denotes ith output, yit is the true value of the t test set
for the i first output, and ỹit is the corresponding predicted value. The smaller the value of
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the error metric, the more accurate the model is. The performance of the model is affected
not only by the training set size but also by the specific sample points. Therefore, in order to
ensure the diversity of the experiments and fully reflect the model performance, repeat the
experiments 100 times; 100 training sets are generated with the same number of points and
statistically characterize the results. In this paper, we use the Pearson correlation coefficient
for correlation analysis of the output before proceeding with the model construction, which
is the most used [13].

4.2. Datasets Description

In order to evaluate the modeling effect of the three models, two function cases and
four real data are selected to verify the effect of the proposed method. The functions are
based on the original cases with some changes so that their outputs have a certain degree
of relevance, and the selected function cases include the one-dimensional case of Forrester
and the two-dimensional case of Branin, and all data details are shown in Table 1.

Table 1. Information about the test dataset.

Type Name D Nf Dataset Size Train Size Test Size

Numerical function
Forrester 1 2 4:1:8 100

Branin 2 2 5:3:20 5000

Real-world datasets

Energy_efficiency 8 2 768 10:5:40 500
Polymer 10 4 61 10:5:35 20

Broomcorn 19 3 128 30:10:90 30
Sarcos 21 7 44,484 10:5:50 4449

The specific expressions of Forrester and Branin are given in (Appendix C), and the
information of Energy_efficiency, Polymer, Broomcorn, and Sarcos are as follows:

Energy_efficiency [22]. This dataset contains a total of two outputs for heat load
and cooling load demand for building energy efficiency. It includes eight factors, such
as lighting area, roof area, and overall height. There is a total of 768 sample points in
this dataset.

Polymer [16]. The polymer dataset contains ten inputs, such as temperature and feed
rate, and contains four outputs of measurements. The dataset contains a total of 61 samples.

Broomcorn [22]. This dataset is a sorghum sample from the Institute of Crop Seed
Resources, Chinese Academy of Agricultural Sciences, containing a total of 128 sample
points. It contains 19 inputs and 3 outputs. The outputs are the protein, lysine, and starch
fractional content of the sorghum samples, respectively.

Sarcos [13,23]. This dataset is a high-dimensional, large-scale dataset. This dataset is
an inverse dynamics modeling problem for a 7-degree-of-freedom anthropomorphic robotic
arm that has 21 inputs (7 joint positions, 7 joint velocities, and 7 joint accelerations) and
corresponding moments at 7 joints as outputs. Only the modeling results for six responses
are shown.

4.3. Results and Discussions
4.3.1. Numerical Functions

From Forrester’s expression, it can be found that the output f1 is a nonlinear variation
of f2. As shown in Figure 2, the actual output of the two functions is computationally
highly correlated, with a Pearson correlation coefficient of 0.95.

Figure 3 shows the modeling results for the two outputs of Forrester. The bottom and
top of the boxplot indicate the lower and upper quartiles, respectively, while the center
depression indicates the median of the metrics. The maximum length of the vertical line
at the end of the boxplot is 1.5 times the interquartile spacing. A red plus sign indicates
an outlier that is outside the boundaries of the vertical line. It can be seen that when the
number of sample points is small (4), the three modeling methods are roughly equivalent.
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As the number of training sets increases, the two modeling methods MBSVR and MGP,
which consider output correlation. This phenomenon may be due to the fact that when the
number of samples is small, the current information cannot support the accurate solution
of relevant parameters such as correlation. Moreover, MBSVR has the best results and
the most significant advantage when the size of the training set is 5 or 6, after which the
modeling results of MBSVR are gradually comparable to the modeling results of MGP. This
may be related to the small-sample modeling capability of SVR.
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Next, a two-dimensional function Branin with two outputs is used to validate method
validity. Output 2 is the original Branin function, and Output 1 is a fine-tuning of the
original Branin with a linear translation added, as shown in Figure 4. These two outputs
are also strongly correlated, with a Pearson correlation coefficient of 0.69.

Figure 5 shows the modeling results of Branin. Overall, the modeling method consid-
ering correlation outperforms the independent modeling method, and for both Output 1
and Output 2, the accuracy of the MBSVR is higher than that of the MGP for moderate
training set sizes (11, 14, 17). For training set size 20, the accuracy of the MBSVR model
is roughly comparable to that of the MGP model, and even lower than that of the MGP
in some sample point cases are even lower than MGP. This phenomenon, which is the
modeling advantage of MBSVR becoming progressively less significant as the training set
increases, is consistent with the one-dimensional arithmetic case.
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4.3.2. Real-World Dataset

According to the results of the correlation analysis, the Pearson correlation coefficient
of Energy_efficiency is greater than 0.97. The Pearson correlation coefficients of the four
outputs of Polymer are large, as shown in Figure 6a, and there is a strong correlation
between Output 1 and Output 2 as well as between Output 3 and Output 4. As for
Broomcorn, the Pearson correlation coefficient of Output 1 and Output 2 is 0.39, the
correlation coefficient of Output 1 and Output 3 is −0.67, and the correlation coefficient of
Output 2 and Output 3 is −0.37. The results of the output correlation analysis of Sarcos
are shown in Figure 6b. The correlation of Output 4 and Output 7 is the highest, and the
correlation of Output 1 and Output 2 is the lowest. Output 6 has low correlation with all
other outputs.
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Figures 7–10 shows the modeling results for each dataset. As the number of sample
points increases, the model accuracy gradually improves but the rate of improvement
gradually decreases, as can be seen from the modeling results:
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In most cases, modeling methods that consider correlation outperform independent
modeling methods, and in aggregate, MBSVR works better. For example, MGP and
MBSVR outperform the metric modeling approach BSVR in Output 1 for Energy_efficiency,
Output 2 and Output 3 for Broomcorn, and most of the outputs for Sarcos. Except for
Output 1 for Broomcorn, where the accuracy of MBSVR is significantly lower than that
of the independent modeling approach (IND). In conclusion, MBSVR is more accurate in
many problems than other modeling methods.

In some cases, independent modeling methods will outperform methods that consider
correlations, such as polymer’s output 3 and Broomcorn’s output 1. For Broomcorn’s output
1, the independent modeling approach significantly outperforms the other. Observing the
correlation coefficients, it can be found that the Pearson correlation coefficient between
output 1 and output 2 is 0.39, and the correlation coefficient between output 1 and output 3
is −0.67. This disadvantage in accuracy may be due to the lack of obvious correlation, or it
may be due to the model’s inability to accurately approximate the real shared information.

As the training size increases, the model accuracy advantage shows two different
trends. In Output 1 and Output 4 for polymer and Output 2 and Output 3 for Broomcorn,
the advantage of MBSVR over other modeling methods is more pronounced as the training
size increases. However, there are also cases where the advantage of MBSVR is not obvious
as the training size increases, e.g., in the Sacros dataset, the modeling accuracy of MBSVR
gradually converges to the modeling accuracy of MGP as the training set increases. Theo-
retically, as the training set increases, the hyperparameter estimates should get closer and
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closer to the true values, and if the model assumptions are correct, the hyperparameter
estimates are accurate, and the model accuracy improves as the training set increases.

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 7. Modeling results for Energy_efficiency: (a) Results for Output 1; (b) results for Output 2. 

 
Figure 8. Modeling results for polymer: (a) results for Output 1; (b) results for Output 2; (c) results 
for Output 3; (d) results for Output 4. 

 
Figure 9. Modeling results for Broomcorn: (a) results for Output 1; (b) results for Output 2. (c) results 
for Output 3. 

Figure 8. Modeling results for polymer: (a) results for Output 1; (b) results for Output 2; (c) results
for Output 3; (d) results for Output 4.

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 7. Modeling results for Energy_efficiency: (a) Results for Output 1; (b) results for Output 2. 

 
Figure 8. Modeling results for polymer: (a) results for Output 1; (b) results for Output 2; (c) results 
for Output 3; (d) results for Output 4. 

 
Figure 9. Modeling results for Broomcorn: (a) results for Output 1; (b) results for Output 2. (c) results 
for Output 3. 

Figure 9. Modeling results for Broomcorn: (a) results for Output 1; (b) results for Output 2. (c) results
for Output 3.



Mathematics 2024, 12, 2923 17 of 20

Mathematics 2024, 12, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 10. Modeling results for Sarcos (f1–f6): (a) results for Output 1; (b) results for Output 2. (c) 
Results for Output 3; (d) results for Output 4; (e) results for Output 5. (f) results for Output 6. 

In most cases, modeling methods that consider correlation outperform independent 
modeling methods, and in aggregate, MBSVR works better. For example, MGP and 
MBSVR outperform the metric modeling approach BSVR in Output 1 for Energy_effi-
ciency, Output 2 and Output 3 for Broomcorn, and most of the outputs for Sarcos. Except 
for Output 1 for Broomcorn, where the accuracy of MBSVR is significantly lower than that 
of the independent modeling approach (IND). In conclusion, MBSVR is more accurate in 
many problems than other modeling methods. 

In some cases, independent modeling methods will outperform methods that con-
sider correlations, such as polymer’s output 3 and Broomcorn’s output 1. For Broomcorn’s 
output 1, the independent modeling approach significantly outperforms the other. Ob-
serving the correlation coefficients, it can be found that the Pearson correlation coefficient 
between output 1 and output 2 is 0.39, and the correlation coefficient between output 1 
and output 3 is −0.67. This disadvantage in accuracy may be due to the lack of obvious 
correlation, or it may be due to the model’s inability to accurately approximate the real 
shared information. 

As the training size increases, the model accuracy advantage shows two different 
trends. In Output 1 and Output 4 for polymer and Output 2 and Output 3 for Broomcorn, 
the advantage of MBSVR over other modeling methods is more pronounced as the train-
ing size increases. However, there are also cases where the advantage of MBSVR is not 
obvious as the training size increases, e.g., in the Sacros dataset, the modeling accuracy of 
MBSVR gradually converges to the modeling accuracy of MGP as the training set in-
creases. Theoretically, as the training set increases, the hyperparameter estimates should 
get closer and closer to the true values, and if the model assumptions are correct, the hy-
perparameter estimates are accurate, and the model accuracy improves as the training set 
increases. 

From the results of the numerical analysis, it can be seen that in some arithmetic 
cases, due to the large number of hyperparameters that need to be optimized by MBSVR, 
the discrepancy between the shared information obtained from modeling and the actual 
accurate information leads to limited room for improvement in model accuracy. The final 
modeling accuracy is comparable to that of MGP. This discrepancy also leads to the fact 
that in some outputs, the accuracy of modeling methods that consider correlation may be 

Figure 10. Modeling results for Sarcos (f1–f6): (a) results for Output 1; (b) results for Output 2.
(c) Results for Output 3; (d) results for Output 4; (e) results for Output 5. (f) results for Output 6.

From the results of the numerical analysis, it can be seen that in some arithmetic
cases, due to the large number of hyperparameters that need to be optimized by MBSVR,
the discrepancy between the shared information obtained from modeling and the actual
accurate information leads to limited room for improvement in model accuracy. The final
modeling accuracy is comparable to that of MGP. This discrepancy also leads to the fact
that in some outputs, the accuracy of modeling methods that consider correlation may be
lower than that of independent modeling methods. Additionally, MBSVR requires more
optimized hyperparameters, resulting in lower time efficiency.

5. Conclusions

This paper investigates the multi-output modeling problem, aiming to improve the
model accuracy by quantitatively describing the correlation between the outputs and
using the information between the outputs to construct the model for multiple outputs
simultaneously. To inherit the advantages of a single-output Bayesian support vector
machine, based on it, the SLFM model is introduced, combined with Bayesian derivation,
and the hyperparameters are optimized comprehensively to get the multi-output model
that can predict multiple output means and probability distributions at the same time.
Model validation is carried out on simple function arithmetic cases and real datasets,
and overall, the MBSVR accuracy is higher due to the single-output modeling and the
multi-output Gaussian process model.

Due to the large number of hyperparameters that need to be optimized in MBSVR,
the efficiency of the algorithm is low. In addition, inaccurate hyperparameters make a
difference between the shared information and the actual accurate information, result-
ing in limited room for improvement in model accuracy. Therefore, achieving efficient
and accurate parameter optimization is the main problem that needs to be solved in the
future. In addition, how to simplify the correlation description structure and further im-
prove the applicability and optimization efficiency of the model is also the direction of
further research.
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Appendix A

The posterior distribution in (48) considering multiple outputs can be described as:

p(G|Y,γ) =
p(Y|G,γ)p(G|γ)

p(Y|γ)

=
i=N f

∏
i=1

j=N
∏
j=1

p(δij)×
1

(2π)N f ×N/2 (|KM|) 1/2 exp[−1
2
(G − b)TKM

−1(G − b)]

=
N f

∏
i=1

1
Zδi

exp(−Cil(δi))×
1

(2π)N f ×N/2 (|KM|) 1/2 exp[−1
2
(G − b)TKM

−1(G − b)]

=

exp(
N f

∑
i=1

−Cil(δi)−
1
2
(G − b)TKM

−1(G − b))

N f

∏
i=1

Zδi × (2π)N f ×N/2 (|KM|) 1/2

=

exp(
N f

∑
i=1

−Cil(yi − gi)−
1
2
(G − b)TKM

−1(G − b))

N f

∏
i=1

∫
exp(−Cil(yi − gi))dG ×

∫
exp(−1

2
(G − b)TKM

−1(G − b)))dG

=

exp(
N f

∑
i=1

−Cil(yi − gi)−
1
2
(G − b)TKM

−1(G − b))

∫
exp(

N f

∑
i=1

(−Cil(yi − gi)−
1
2
(G − b)TKM

−1(G − b)))dG

Appendix B

The Lagrangian function of the primal optimization problem in (53) reads:

L(G,α, e, b) =
1
2
(G − b)K−1

M (G − b) +
1
2

CMe2 +

N f N

∑
r=1

βr(yr − gr − er)

where e = [e1, e2, · · · , eN f N ]
T, β = [β1, β2, · · · , βN f N ]

T is Lagrange multiplier. According
to the Karush–Kuhn–Tucker conditions, we can obtain:

∂L(G,β, e, b)
∂G

= 0 → G = KMβ+ b

∂L(G,β, e, b)
∂er

= 0 →
N f N

∑
r=1

βr = CMe

∂L(G,β, e, b)
∂βr

= 0 → yr = gr + er

∂L(G,β, e, b)
∂b

= 0 →
N f N

∑
r=1

βr = 0
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Solving the above equation, we obtain the optimal values of G as

Ĝ = KMβ+ b

Appendix C

The expression of the Forrester function is:

f1(x) = 1.5(x + 2.5)
√
(6x − 2)2 sin(12x − 4) + 10, x ∈ [0, 1]

f2(x) = (6x − 2)2 sin(12x − 4) + 10, x ∈ [0, 1]

The expression of the Branin function is:

f1(x) = (x2 −
3

4π
x2

1 +
4
π

x1 − 6)
2
+ 10(1 − 1

8π
) cos(x1) + 2x1 − 9x2 + 32

f2(x) = (x2 −
5.1
4π

x2
1 +

5
π

x1 − 6)
2
+ 10(1 − 1

8π
) cos(x1) + 10

x1 ∈ [−5, 10], x2 ∈ [0, 15]
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