
Citation: Chen, X.; Qin, W.; Gong, Y.;

Yang, S; Wang, W. On Convergence

Rate of MRetrace. Mathematics 2024,

12, 2930. https://doi.org/

10.3390/math12182930

Academic Editor: Giovanni Stabile

Received: 2 August 2024

Revised: 15 September 2024

Accepted: 16 September 2024

Published: 20 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On Convergence Rate of MRetrace
Xingguo Chen 1 , Wangrong Qin 1, Yu Gong 1, Shangdong Yang 1 and Wenhao Wang 2,3,*

1 Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing University of Posts and
Telecommunications, Nanjing 210023, China; chenxg@njupt.edu.cn (X.C.); sdyang@njupt.edu.cn (S.Y.)

2 College of Electronic Engineering, National University of Defense Technology, Changsha 410073, China
3 Science and Technology on Information Systems Engineering Laboratory, National University of Defense

Technology, Changsha 410073, China
* Correspondence: wangwenhao11@nudt.edu.cn

Abstract: Off-policy is a key setting for reinforcement learning algorithms. In recent years, the
stability of off-policy learning for value-based reinforcement learning has been guaranteed even
when combined with linear function approximation and bootstrapping. Convergence rate analysis is
currently a hot topic. However, the convergence rates of learning algorithms vary, and analyzing the
reasons behind this remains an open problem. In this paper, we propose an essentially simplified
version of a convergence rate to generate general off-policy temporal difference learning algorithms.
We emphasize that the primary determinant influencing convergence rate is the minimum eigenvalue
of the key matrix. Furthermore, we conduct a comparative analysis of the influencing factor across
various off-policy learning algorithms in diverse numerical scenarios. The experimental findings
validate the proposed determinant, which serves as a benchmark for the design of more efficient
learning algorithms.

Keywords: finite sample analysis; off-policy learning; minimum eigenvalues; MRetrace

MSC: 68T05

1. Introduction

Off-policy learning generates experience data by a behavior policy and learns a different
target policy. Off-policy TD learning with a linear function approximation may diverge
in counterexamples known as “the deadly triad” [1]. The fundamental reason is that the
key matrix of off-policy TD is not guaranteed to be positive definite [2]. In the recent
30 years, the main research focused on the convergence guarantee of off-policy algorithms
via the construction of positive definite matrices, e.g., Bellman residual (BR) [3], gradient
temporal difference (GTD) [4], fast gradient temporal difference (GTD2) and TD with
gradient correction (TDC) [5], emphatic TD (ETD) [2], and modified Retrace (MRetrace) [6].

Recently, due to the guarantee of convergence, more research has paid attention
to the convergence rate analysis of reinforcement learning algorithms. Dalal et al. [7]
proposed convergence rates both in expectation and with a high probability for one-
timescale temporal difference learning algorithms. Dalal et al. [8], Gupta et al. [9], Xu
et al. [10], and Dalal et al. [11] obtained convergence rates with a high probability for
two-timescale temporal difference learning algorithms. Durmus et al. [12] proposed tight
high-probability bounds for linear stochastic approximation with a fixed step size. For
control settings, Xu and Liang [13] proposed convergence rates for Greedy-GQ. Zhang
et al. [14] proposed convergence rates for projected SARSA. Wang et al. [15] proposed
convergence rates with a high probability for distributionally robust Q-learning.

However, the above analysis did not answer the following questions: Which of these
algorithms is faster? Which one should we choose? The purpose of this paper is to give an
intuitive comparison of the convergence rate.

Mathematics 2024, 12, 2930. https://doi.org/10.3390/math12182930 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12182930
https://doi.org/10.3390/math12182930
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8757-1767
https://orcid.org/0000-0002-9611-7013
https://doi.org/10.3390/math12182930
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12182930?type=check_update&version=1

Mathematics 2024, 12, 2930 2 of 19

Our contributions: (1) We propose a simplified version of the expected convergence
rate theorem. (2) We analyze the core elements of the convergence rates by assuming the
same settings for each algorithm, and we find that the main factor affecting convergence
rate is the minimum eigenvalue of the key matrix. (3) We calculate core elements of different
temporal difference learning algorithms for several environmental examples and validate
by experimental studies.

2. Background

This section introduces MDP and reinforcement learning algorithms with their
key matrices.

2.1. Markov Decision Process

Consider a discounted Markov decision process ⟨S , A, R, T , γ⟩, where S is a state
space, |S| = n, A is an action space, T : S × A × S → [0, 1] is a transition function,
R : S ×A×S → R is a reward function, and γ ∈ [0, 1) is a discount factor. The state value
function is

Vπ(s) = Eπ

[
∞

∑
t=0

γtrt|s0 = s

]
, (1)

where rt is an immediate reward, and π is a policy used to select action a in state s with a
probability π(a|s). The value function is approximated with a linear function, as follows:

V(s) ≈ Vθ(s) = θ⊤ϕ(s) =
m

∑
i=1

θiϕi(s), (2)

where θ is the weight vector, and ϕ(s) is the feature vector of state s. This paper is con-
cerned with off-policy learning, where a different behavior policy µ generates experiences
⟨st, at, rt+1, st+1, at+1⟩.

2.2. Learning Algorithms and Their Key Matrices

Learning algorithms and their key matrices are summarized in Table 1.

Table 1. The general solution expressions for each algorithm (θ = A−1b).

Algorithm Key Matrix A Positive Definite b

Off-policy TD Aoff = Φ⊤Dµ(I − γPπ)Φ × boff = Φ⊤Dµrπ

Retrace Φ⊤DµDc(I − γPπ)Φ × Φ⊤Dµrc

BR Φ⊤(I − γPπ)⊤Dµ(I − γPπ)Φ ✓ Φ⊤(I − γPπ)⊤Dµrπ

GTD

(√
ηI Aoff

−A⊤
off 0

)
✓

(
boff

0

)

GTD2

(√
ηC Aoff

−A⊤
off 0

)
✓

(
boff

0

)
TDC A⊤

offC
−1Aoff ✓ A⊤

offC
−1boff

ETD Φ⊤D f (I − γPπ)Φ ✓ Φ⊤D f rπ

MRetrace Φ⊤Dµ(I − γDxPπ)Φ ✓ boff

2.2.1. Off-Policy TD

The update rule of off-policy TD [2] is as follows:

θt+1=̇θt + ρtαt(rt+1 + γθ⊤t ϕt+1 − θ⊤t ϕt)ϕt

=θt + αt

(
ρtrt+1ϕt − ρtϕt(ϕt − γϕt+1)

⊤θt

)
=θt + αt

(
boff,t − Aoff,tθt

)
,

(3)

Mathematics 2024, 12, 2930 3 of 19

Its key matrix is

Aoff = lim
t→∞

E[Aoff,t] = lim
t→∞

Eµ

[
ρtϕt(ϕt − γϕt+1)

⊤
]

= ∑
s

dµ(s)Eµ

[
ρtϕt(ϕt − γϕt+1)

⊤|St = s
]

= ∑
s

dµ(s)∑
a

µ(a|s)∑
s′

T(s, a, s′)
π(a|s)
µ(a|s) ϕ(s)

(
ϕ(s)− γϕ(s′)

)⊤
= ∑

s
dµ(s)ϕ(s)

(
ϕ(s)− γ ∑

a
π(a|s)∑

s′
T(s, a, s′)ϕ(s′)

)⊤
= ∑

s
dµ(s)ϕ(s)

(
ϕ(s)− γ ∑

s′
[Pπ]ss′ϕ(s

′)
)⊤

= Φ⊤Dµ(I − γPπ)Φ,

(4)

boff = lim
t→∞

E[boff,t] = lim
t→∞

Eµ[ρtrt+1ϕt]

= ∑
s

dµ(s)Eµ[ρtrt+1ϕt|St = s]

= ∑
s

dµ(s)∑
a

µ(a|s)π(a|s)
µ(a|s) rt+1ϕ(s)

= ∑
s

dµ(s)ϕ(s)∑
a

π(a|s)∑
s′

T(s, a, s′)R(s, a, s′)

= Φ⊤Dµrπ ,

(5)

where rπ is an expected reward vector under policy π with each component being

rπ(s) = ∑
a

∑
s′

π(a|s)R(s, a, s′). (6)

2.2.2. Retrace(0)

The update rule of Retrace(0) [16] is as follows:

θt+1=̇θt + ctαt

(
rt+1 + γθ⊤t Eπ [ϕt+1]− θ⊤t ϕt

)
ϕt

=θt + αt

(
ctrt+1ϕt − ctϕt(ϕt − γEπ [ϕt+1])

⊤θt

)
=θt + αt

(
bRetrace(0),t − ARetrace(0),tθt

)
,

(7)

where ct = min(1, ρt), Eπ [ϕt+1] = ∑a π(a|st+1)ϕ(st+1). The key matrix of the expected
Retrace’s update (7) is

ARetrace(0) = lim
t→∞

E[ARetrace(0),t] = lim
t→∞

Eµ

[
ctϕt(ϕt − γEπ [ϕt+1])

⊤
]

= ∑
s

dµ(s)Eµ

[
ctϕ(s)(ϕ(s)− γEπ [ϕ(s′)])⊤

]
= ∑

s
dµ(s)ϕ(s)∑

a
µ(a|s)min

(
1,

π(a|s)
µ(a|s)

)(
ϕ(s)− γEπ [ϕ(s′)]

)⊤
= ∑

s
dµ(s)ϕ(s)∑

a
min

(
µ(a|s), π(a|s)

)(
ϕ(s)− γ ∑

s′
[Pπ]ss′ϕ(s

′)
)⊤

= Φ⊤DµDc(I − γPπ)Φ,

(8)

where Dc is the n × n diagonal matrix with dc on its diagonal, and each component of dc is

dc(s) = ∑
a

min(µ(a|s), π(a|s)). (9)

Mathematics 2024, 12, 2930 4 of 19

b Retrace(0) = lim
t→∞

E[bRetrace(0),t] = lim
t→∞

Eµ[ctrt+1ϕt]

= ∑
s

dµ(s)Eµ[ctrt+1ϕt|St = s]

= ∑
s

dµ(s)∑
a

µ(a|s)min
(

1,
π(a|s)
µ(a|s)

)
rt+1ϕ(s)

= ∑
s

dµ(s)ϕ(s)∑
a

min
(
µ(a|s), π(a|s)

)
∑
s′

T(s, a, s′)R(s, a, s′)

= Φ⊤Dµrc,

(10)

where rc = ∑a min
(
µ(a|s), π(a|s)

)
∑s′ T(s, a, s′)R(s, a, s′).

2.2.3. Naive Bellman Residual

The update rule of the naive Bellman residual [3] is as follows:

θt+1=̇θt + ρtαt(rt+1 + γθ⊤t ϕt+1 − θ⊤t ϕt)(ϕt − γEπ [ϕt+1])

=θt + αt

(
ρtrt+1(ϕt − γϕt+1)− ρt(ϕt − γϕt+1)(ϕt − γEπ [ϕt+1])

⊤θt

)
=θt + αt

(
bBR,t − ABR,tθt

)
,

(11)

Its key matrix is

ABR = lim
t→∞

E[ABR,t] = lim
t→∞

Eµ

[
ρt(ϕt − γEπ [ϕt+1])(ϕt − γϕt+1)

⊤
]

= ∑
s

dµ(s)Eµ

[
ρt(ϕt − γEπ [ϕt+1])(ϕt − γϕt+1)

⊤|St = s
]

= ∑
s

dµ(s)∑
a

µ(a|s)∑
s′

T(s, a, s′)
π(a|s)
µ(a|s) (ϕ(s)− γEπ [ϕ(s′)])

(
ϕ(s)− γϕ(s′)

)⊤
= ∑

s
dµ(s)∑

a
∑
s′

T(s, a, s′)π(a|s)(ϕ(s)− γEπ [ϕ(s′)])
(
ϕ(s)− γϕ(s′)

)⊤
= ∑

s
dµ(s)(ϕ(s)− γEπ [ϕ(s′)])

(
ϕ(s)− γ ∑

a
π(a|s)∑

s′
T(s, a, s′)ϕ(s′)

)⊤
= ∑

s
dµ(s)(ϕ(s)− γEπ [ϕ(s′)])

(
ϕ(s)− γ ∑

s′
[Pπ]ss′ϕ(s

′)
)⊤

= Φ⊤(I − γPπ)
⊤Dµ(I − γPπ)Φ,

(12)

bBR = lim
t→∞

E[bBR,t] = lim
t→∞

Eµ[ρtrt+1(ϕt − γEπ [ϕt+1])]

= ∑
s

dµ(s)Eµ[ρtrt+1(ϕt − γEπ [ϕt+1])|St = s]

= ∑
s

dµ(s)∑
a

µ(a|s)π(a|s)
µ(a|s) rt+1(ϕ(s)− γEπ [ϕ(s′)]))

= ∑
s

dµ(s)(ϕ(s)− γEπ [ϕ(s′)]))∑
a

π(a|s)∑
s′

T(s, a, s′)R(s, a, s′)

= Φ⊤(I − γPπ)
⊤Dµrπ ,

(13)

2.2.4. GTD

The update rule of the GTD [4] algorithm is as follows:

ωt+1 = ωt + βt(δtϕt − ωt),

θt+1 = θt + αt(ϕt − γϕ′
t)ϕ

⊤
t ωt,

(14)

where the TD error δt = rt + (γϕ′
t − ϕt)⊤θt.

Mathematics 2024, 12, 2930 5 of 19

Let gt = (ω⊤
t /

√
η, θ⊤t)⊤; thus, we can obtain

gt+1 = gt + αt
√

η(bGTD,t+1 − AGTD,t+1gt), (15)

where b⊤
GTD,t+1 =

(
rtϕ

⊤
t , 0⊤

)
and

AGTD,t+1 =

(√
ηI ϕt(ϕt − γϕ′

t)
⊤

(γϕ′
t − ϕt)ϕ⊤

t 0

)
. (16)

Its key matrix is

AGTD = lim
t→∞

E[AGTD,t] =

(√
ηI Aoff

−A⊤
off 0

)
, (17)

bGTD = lim
t→∞

E[bGTD,t] =

(
Φ⊤Dµrπ

0

)
, (18)

2.2.5. GTD2

The update rule of the GTD2 [5] algorithm is as follows:

ωt+1 = ωt + βt(δt − ϕ⊤
t ωt)ϕt,

θt+1 = θt + αt(ϕt − γϕ′
t)ϕ

⊤
t ωt,

(19)

where the TD error δt = rt + (γϕ′
t − ϕt)⊤θt.

Let gt = (ω⊤
t /

√
η, θ⊤t)⊤; thus, we can obtain

gt+1 = gt + αt
√

η(bGTD2,t+1 − AGTD2,t+1gt), (20)

where b⊤
GTD2,t+1 =

(
rtϕ

⊤
t , 0⊤

)
and

AGTD2,t+1 =

(√
ηϕtϕ

⊤
t ϕt(ϕt − γϕ′

t)
⊤

(γϕ′
t − ϕt)ϕ⊤

t 0

)
.

Its key matrix is

AGTD2 = lim
t→∞

E[AGTD2,t] =

(√
ηC Aoff

−A⊤
off 0

)
, (21)

bGTD2 = lim
t→∞

E[bGTD2,t] =

(
Φ⊤Dµrπ

0

)
, (22)

where C = E[ϕϕ⊤].

2.2.6. TDC

The update rule of the TDC [5] algorithm is as follows:

ωt+1 = ωt + βt(δt − ϕ⊤
t ωt)ϕt,

θt+1 = θt + αtδtϕt − αtγϕ′
t(ϕ

⊤
t ωt),

(23)

where the TD error δt = rt + (γϕ′
t − ϕt)⊤θt.

Its key matrix is
ATDC = A⊤

offC
−1Aoff, (24)

bTDC = A⊤
offC

−1Φ⊤Dµrπ , (25)

Mathematics 2024, 12, 2930 6 of 19

2.2.7. ETD

The update rule of the ETD [2] algorithm is as follows:

θt+1
.
= θt + αtFtρt

(
rt+1 + γθ⊤t ϕt+1 − θ⊤t ϕt

)
ϕt

= θt + αt(Ftρtrt+1ϕt − Ftρtϕt
(
ϕt − γϕt+1

)⊤
θt)

= θt + αt
(
bETD,t − AETD,tθt

)
,

(26)

where F0 = 1 and Ft
.
= γρt−1Ft−1 + 1, ∀t > 0.

The key matrix of ETD is

AETD = lim
t→∞

E[AETD,t]

= lim
t→∞

Eµ

[
Ftρtϕt

(
ϕt − γϕt+1

)⊤]
= ∑

s
dµ(s) lim

t→∞
Eµ

[
Ftρtϕt

(
ϕt − γϕt+1

)⊤ | St = s
]

= ∑
s

dµ(s) lim
t→∞

Eµ[Ft | St = s]︸ ︷︷ ︸
f (s)

Eµ

[
ρtϕt

(
ϕt − γϕt+1

)⊤ | St = s
]

= Φ⊤D f (I − γPπ)Φ,

(27)

bETD = lim
t→∞

E[bETD,t] = lim
t→∞

Eµ[Ftρtrt+1ϕt]

= Φ⊤D f rπ ,
(28)

where D f is a diagonal matrix with a diagonal element approximated to f = (I− γP⊤
π)

−1dµ.

2.2.8. MRetrace

MRetrace [6] is a modified version of Retrace [16] with a convergence guarantee. Its
update rule is as follows:

θt+1=̇θt + αtρt
(
rt+1 + xtγθ⊤t ϕt+1 − θ⊤t ϕt

)
ϕt

=θt + αt
(
ρtrt+1ϕt − ρtϕt(ϕt − xtγϕt+1)

⊤θt
)

=θt + αt
(
bMR,t − AMR,tθt

)
,

(29)

where

xt=̇
1

maxa ρt
= min

a

{ 1
ρt

}
= min

a

{ µ(a|st)

π(a|st)

}
, (30)

bMR,t = ρtrt+1ϕt, AMR,t = ρtϕt(ϕt − xtγϕt+1)
⊤.

bMR = lim
t→∞

E[bt] = lim
t→∞

Eµ[ρtrt+1ϕt]

= ∑
s

dµ(s)Eµ[ρtrt+1ϕt|St = s]

= ∑
s

dµ(s)∑
a

µ(a|s)π(a|s)
µ(a|s) rt+1ϕ(s)

= ∑
s

dµ(s)ϕ(s)∑
a

π(a|s)∑
s′

T(s, a, s′)R(s, a, s′)

= Φ⊤Dµrπ ,

(31)

The key matrix of MRetrace is

Mathematics 2024, 12, 2930 7 of 19

AMR = lim
t→∞

E[At] = lim
t→∞

Eµ

[
ϕt(ϕt − xtγEπ [ϕt+1])

⊤
]

= ∑
s

dµ(s)Eµ

[
ϕ(s)(ϕ(s)− xtγEπ [ϕ(s′)])⊤

]
= ∑

s
dµ(s)ϕ(s)

(
ϕ(s)−Eµ[xtγEπ [ϕ(s′)]]

)⊤
= ∑

s
dµ(s)ϕ(s)

(
ϕ(s)− γ ∑

a
µ(a|s)min

b

{ µ(b|s)
π(b|s)

}
Eπ [ϕ(s′)]

)⊤
= ∑

s
dµ(s)ϕ(s)

(
ϕ(s)− γ min

b

{ µ(b|s)
π(b|s)

}
∑
s′
[Pπ]ss′ϕ(s

′)
)⊤

= Φ⊤Dµ(I − γDxPπ)Φ,

(32)

where Dx is the n × n diagonal matrix with dx on its diagonal, and each component of dx is

dx(s) = minb

{
µ(b|s)
π(b|s)

}
.

3. Finite Sample Analysis

The measurement criteria of finite sample analysis and convergence rate analysis are
equivalent. They are both concerned with the relationship between errors and the number
of iteration rounds.

3.1. Convergence Rate of General Temporal Difference Learning Algorithm

Let us start with a finite sample analysis of a general temporal difference learning
algorithm. For the i.i.d. sequence {rt, ϕt, ϕ′

t}, where rt and ϕt are sampled from the Markov
process with behavior policy µ, ϕ′

t is sampled from target policy π. Suppose its update rule
of parameter θ is defined as follows:

θt+1 = θt + αt
(
bt − Atθt

)
= θt + αt(h(θt) + Mt+1), (33)

where
Mt+1 = (A − At)θt + bt − b, (34)

h(θt) = b − Aθt = Aθ∗ − Aθt = −A(θt − θ∗), (35)

where A = limt→∞ E[At], b = limt→∞ E[bt], and the fixed point is θ∗ = A−1b. A and b are
based on the i.i.d. sequence {rt, ϕt, ϕ′

t}.

Assumption 1. The key matrix A of the general temporal difference learning algorithm is
positive definite.

Assumption 2. The sequences {rt, ϕt, ϕ′
t} have uniformly bounded second moments. Let

Ft = σ(θ1, M1, . . . , θt−1, Mt); then, fix some constant Cs > 0, such that the following holds:

E[||Mt+1||2|Ft] ≤ Cs(1 + ||θt − θ∗||2). (36)

This assumption holds for any initial parameter vector θ1.

Assumption 3. Step-size sequence αt satisfies αt ∈ (0, 1), ∑∞
t=0 αt = ∞, and ∑∞

t=0 α2
t < ∞.

Let λmin(X) and λmax(X) denote the minimum and maximum eigenvalues of the
matrix X.

Mathematics 2024, 12, 2930 8 of 19

Theorem 1. (Convergence Rate in Expectation for General Temporal Difference Learning Algorithm).
Assume that Assumptions 1–3 hold. For t ≥ 0, we have

E∥θt+1 − θ∗∥2 ≤eλt
0E∥θ0 − θ∗∥2 + Cs

t

∑
i=0

[
eλt

i+1

]
α2

i , (37)

where

λt
i =

{
−λmin(A + A⊤)∑t

k=i αk + λmax(A⊤A + CsI)∑t
k=i α2

k , i ≤ t,
0, i > t.

(38)

Proof. Note that the proof process is similar to the proof of Theorem 3.1 of [7].
Based on Definitions (33) and (35), we have

θt+1 − θ∗ = θt + αt(h(θt) + Mt+1)− θ∗

= θt − θ∗ + αt(−A(θt − θ∗) + Mt+1)

= (I − αtA)(θt − θ∗) + αt Mt+1.

(39)

∥θt − θ∗∥2 =(θt+1 − θ∗)⊤(θt+1 − θ∗)

=[(I − αtA)(θt − θ∗) + αt Mt+1]
⊤[(I − αtA)(θt − θ∗) + αt Mt+1]

=(θt − θ∗)⊤(I − αtA)⊤(I − αtA)(θt − θ∗)

+ αt(θt − θ∗)⊤(I − αtA)⊤Mt+1 + αt M⊤
t+1(I − αtA)(θt − θ∗)

+ α2
t ∥Mt+1∥2.

(40)

Taking conditional expectations on both sides, and using E[Mt+1|Ft] = 0, we get

E[∥θt+1 − θ∗∥2|Ft] = α2
tE[∥Mt+1∥2|Ft] + (θt − θ∗)⊤(I − αtA)⊤(I − αtA)(θt − θ∗). (41)

Therefore, using Assumption 2,

E[∥θt+1 − θ∗∥2|Ft] ≤ (θt − θ∗)⊤Λt(θt − θ∗) + Csα2
t , (42)

where
Λt = (I − αtA)⊤(I − αtA) + Csα2

t I. (43)

Since Λt is a symmetric matrix and the sum of two positive definite matrices, all its
eigenvalues are real and positive. Let λt := λmax(Λt); thus, we have λt > 0 and

E[∥θt+1 − θ∗∥2|Ft] ≤ λt∥θt − θ∗∥2 + Csα2
t . (44)

Taking the expectations on both sides, we have

E∥θt+1 − θ∗∥2 ≤ λtE∥θt − θ∗∥2 + Csα2
t . (45)

Sequentially using the above inequality, we have

E∥θt+1 − θ∗∥2 ≤
[

t

∏
k=0

λk

]
E∥θ0 − θ∗∥2 + Cs

t

∑
i=0

[
t

∏
k=i+1

λk

]
α2

t . (46)

where we let ∏t
k=t+1 λk = 1.

Mathematics 2024, 12, 2930 9 of 19

Based on Assumption 1, A is positive definite, and the matrices (A+A⊤) and (A⊤A+
CsI) in (38) are positive definite. Thus, their minimum and maximum eigenvalues are
strictly positive. Hence, using Weyl’s inequality, we have

λt = λmax((I − αtA)⊤(I − αtA) + Csα2
t I)

≤ λmax(I − αt(A + A⊤)) + α2
t λmax(A⊤A + CsI)

≤ 1 − αtλmin(A + A⊤) + α2
t λmax(A⊤A + CsI)

≤ e[−αtλmin(A+A⊤)+α2
t λmax(A⊤A+CsI)]

(47)

In the case of λt > 0, ∀t > 0, when 0 < i < t, for the concatenated multiplication of (47)
from i to t, we have

t

∏
k=i

λk ≤
t

∏
k=i

e[−αkλmin(A+A⊤)+α2
k λmax(A⊤A+CsI)]

= e∑t
k=i[−αkλmin(A+A⊤)+α2

k λmax(A⊤A+CsI)]

= eλt
i

(48)

The claim now follows.

3.2. Convergence Rate of the MRetrace Algorithm

Assumption 4. The Markov Chain (st) is aperiodic and irreducible; thus,
limt→∞ P(st = s′|s0 = s) = dµ(s′) exists and is unique.

This assumption implies that the state distribution vector dµ of the behavior policy µ
is the fixed point of

dµ = P⊤
µ dµ, (49)

where the element of matrix Pµ is as follows:

[Pµ]ss′ = ∑ µ(a|s)T (s, a, s′). (50)

Assumption 5. {ϕt, rt,Eπ [ϕt+1]} is such that Eµ[||ϕt||2|st1], Eµ[r2
t |st1], Eπ [||ϕt+1||2|st1] are

uniformly bounded.

Assumption 6. The feature matrix Φ is column full rank.

Corollary 1. (Convergence Rate in Expectation for MRetrace algorithm). Assume Assumptions 4–6
hold. Fix some constant Cs > 0, for t ≥ 0, we have

E∥θt+1 − θ∗∥2 ≤eλt
0E∥θ0 − θ∗∥2 + Cs

t

∑
i=0

[
eλt

i+1

]
α2

i . (51)

where

λt
i =

{
−λmin(AMR + A⊤

MR)∑t
k=i αk + λmax(A⊤

MRAMR + CsI)∑t
k=i α2

k , i ≤ t,
0, i > t.

(52)

Proof. All we need is to show that the MRetrace algorithm satisfies the assumptions of
Theorem 1.

According to the proof of Theorem 1 of [6], given Assumptions 4 and 6, the ma-
trix AMR is positive definite. Under Assumption 5, there exists some constant Cs > 0,
E[||Mt+1||2|Ft] ≤ Cs(1 + ||θt − θ∗||2). Then, based on Assumption 3, the claim follows by
directly applying Theorem 1.

Mathematics 2024, 12, 2930 10 of 19

4. How to Compare?

Theorem 1 and Corollary 1 are essentially simplified versions of Theorem 3.1 of [7], but
their advantage lies in facilitating the analysis of the main factor affecting convergence rates.

To ensure a fair comparison among different learning algorithms, we need the same
setting for each algorithm.

Assumption 7. Assume each algorithm shares the same feature matrix, the same behavior policy,
the same target policy, the same initial parameters θ0, the same constant Cs, and the same learning
rate sequences αt.

Corollary 2. (The main factor affecting convergence rates). Assume Assumptions 1–3, 6 and 7.
From the perspective of the expected convergence rate, the main factor that affects the convergence
rate is the minimum eigenvalue 1

2 λmin(A + A⊤) of the key matrix A. Furthermore, the larger
the minimum eigenvalue of the key matrix, the faster the algorithm has a convergence rate. (This
corollary is not actually what we discovered first. An anonymous expert reviewer of UAI2023
pointed out the role of the smallest eigenvalue. However, we did not find any relevant evidence or
conclusions in the existing literature, so we formally stated this conclusion here).

Proof. Based on Assumptions 1 and 2, we obtain Theorem 1 on the expected convergence
rate. Checking the error bound (37) in Theorem 1, removing the identical settings for
different algorithms, one can easily find that each term contains only a key term eλt

i , where
i ∈ [0, t]. When i < t,

λt
i = −λmin(A + A⊤)

t

∑
k=i

αk + λmax(A⊤A + CsI)
t

∑
k=i

α2
k . (53)

Based on Assumption 3, we have ∑t
k=i αt > ∑t

k=i α2
t . Furthermore, fix variable i; thus,

we have

lim
t→∞

t

∑
k=i

αt = ∞, (54)

and

lim
t→∞

t

∑
k=i

α2
t < ∞. (55)

That is

lim
t→∞

t

∑
k=i

αk ≫ lim
t→∞

t

∑
k=i

α2
k . (56)

Therefore, the main factor in (53) is −λmin(A+A⊤)∑t
k=i αk. Finally, based on the same

learning rate sequence, 1
2 λmin(A + A⊤) is the main factor that affects the convergence rate.

In (37), for a given t, a smaller bound indicates a faster convergence rate. In (37), all
elements including all eλt

i , E∥θ0 − θ∗∥2, Cs, and all αi, are greater than zero, meaning that a
smaller eλt

i leads to a faster convergence rate. Therefore, the smaller the value of λt
i in (53),

the faster the convergence rate. Hence, the larger the value of 1
2 λmin(A + A⊤), the faster

the convergence rate.

5. Numerical Analysis

To compare the expected convergence rates of various algorithms, what we are going
to do next is to compute and compare the minimum eigenvalues of each algorithm in
different environments and different policies based on Corollary 2. The environments
include two-state counterexample [2], Baird’s counterexample [3,5], Random Walk with
tabular feature [5], Random Walk with inverted feature [5], Random Walk with dependent
feature [5], and Boyan Chain [5,17]. Furthermore, in Random Walk, the target policy takes
the right action in 60% of the time and the behavior policy selects the right and left action

Mathematics 2024, 12, 2930 11 of 19

with equal probability [18]. In the Boyan Chain, the target policy and the behavior policy
are the same.

5.1. Example Settings

Two-state counterexample: The θ → 2θ problem has only two states. From each
state, there are two actions, left and right, which take the agent to the left or right state. All
rewards are zeros. The features Φ = (1, 2)⊤ are assigned to the left and the right state. The
schematic of the environment is shown in Figure 1.

1θ 2θ0.5 0.50.50.5
1.0

0 1.0

0

Figure 1. Two-state counterexample, where the blue solid arrows represent the behavior policy µ,
and the red dashed arrows represent the target policy π.

The behavior policy takes the equal probability to left or right in both states, i.e.,

Pµ =

[
0.5 0.5
0.5 0.5

]
.

The target policy only selects action right in both states, i.e., Pπ =

[
0 1
0 1

]
.

The state distribution dµ = (0.5, 0.5)⊤, dx = dc = (0.5, 0.5)⊤, C = 2.5, f = (0.5, 9.5)⊤,
rπ = 0, rc = 0.

Baird’s counterexample: Baird’s counterexample has seven states, and the schematic
of the environment is shown in Figure 2.

1 2 3 4 5 6

7

Figure 2. Baird’s counterexample, where the probability of the solid action and the dashed action in
behavior policy µ and target policy π are µ(dashed | ·) = 6

7 , µ(solid | ·) = 1
7 and π(solid | ·) = 1.

The feature matrix is of dimensions (7 × 8) where each state is represented by an
8-dimensional feature, i.e.,

Φ =

2 0 0 0 0 0 0 1
0 2 0 0 0 0 0 1
0 0 2 0 0 0 0 1
0 0 0 2 0 0 0 1
0 0 0 0 2 0 0 1
0 0 0 0 0 2 0 1
0 0 0 0 0 0 1 2

.

The behavior policy takes equal probabilities to each state, i.e.,

Mathematics 2024, 12, 2930 12 of 19

Pµ =

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

.

The target policy only selects the action to state 7 in both states, i.e.,

Pπ =

0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1

.

The state distribution
dµ = (

1
7

,
1
7

,
1
7

,
1
7

,
1
7

,
1
7

,
1
7
)⊤,

dx = dc = (
1
7

,
1
7

,
1
7

,
1
7

,
1
7

,
1
7

,
1
7
)⊤,

C =

0.571 0 0 0 0 0 0.286
0 0.571 0 0 0 0 0.286
0 0 0.571 0 0 0 0.286
0 0 0 0.571 0 0 0.286
0 0 0 0 0.571 0 0.286
0 0 0 0 0 0.571 0.286

0.286 0.286 0.286 0.286 0.286 0.286 1.429

.

f = (1
7 , 1

7 , 1
7 , 1

7 , 1
7 , 1

7 , 64
7)⊤, rπ = (0, 0, 0, 0, 0, 0, 0)⊤, rc = (0, 0, 0, 0, 0, 0, 0)⊤.

Random Walk: Random Walk is centered around a typical Markov Chain. This chain
comprises five consecutive states, with two terminal states positioned at each extremity
serving as absorptive endpoints.

The schematic of the environment is shown in Figure 3.

1 2 3 4 5

Start

Figure 3. Random Walk. All walks begin in state 3. Under the behavior policy, take either a left or
right action with a probability of 0.5 in each state. Under the target policy, take either a left or right
action with a probability of 0.4 or 0.6 in each state.

Specifically, its state–state transfer probability of behavior policy is

Pµ =

0 0.6 0.4 0 0

0.4 0 0.6 0 0
0 0.4 0 0.6 0
0 0 0.4 0 0.6
0 0 0.6 0.4 0

.

Mathematics 2024, 12, 2930 13 of 19

The state–state transfer probability of the target policy is

Pπ =

0 0.5 0.5 0 0

0.5 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5
0 0 0.5 0.5 0

.

The state distribution dµ = (1
9 , 2

9 , 3
9 , 2

9 , 1
9)

⊤, dc = (0.9, 0.9, 0.9, 0.9, 0.9)⊤,
dc = (5

6 , 5
6 , 5

6 , 5
6 , 5

6)
⊤, f = (0.773, 1.84, 3.333, 2.56, 1.493)⊤, rπ = (−0.4, 0, 0, 0, 0.6)⊤, rc = (−0.4,

0, 0, 0, 0.5)⊤.
The Random Walk environment has three feature representations, which are called

tabular features, inverted features, and dependent features. The feature matrix of Random
Walk with tabular features is

Φ =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.

C =

0.111 0 0 0 0

0 0.222 0 0 0
0 0 0.333 0 0
0 0 0 0.222 0
0 0 0 0 0.111

.

The feature matrix of Random Walk with inverted features is

Φ =

0 0.5 0.5 0.5 0.5

0.5 0 0.5 0.5 0.5
0.5 0.5 0 0.5 0.5
0.5 0.5 0.5 0 0.5
0.5 0.5 0.5 0.5 0

.

C =

0.222 0.167 0.139 0.167 0.194
0.167 0.194 0.111 0.139 0.167
0.139 0.111 0.167 0.111 0.139
0.167 0.139 0.111 0.194 0.167
0.194 0.167 0.139 0.167 0.222

.

The feature matrix of Random Walk with dependent features is

Φ =

1 0 0
1√
2

1√
2

0
1√
3

1√
3

1√
3

0 1√
2

1√
2

0 0 1

.

C =

0.333 0.222 0.111
0.222 0.333 0.222
0.111 0.222 0.333

.

Mathematics 2024, 12, 2930 14 of 19

Boyan Chain: The Boyan Chain consists of 13 states, each of which is represented by 4
state features. The feature matrix of the Boyan Chain with dependent features is

Φ =

1 0 0 0
0.75 0.25 0 0
0.5 0.5 0 0

0.25 0.75 0 0
0 1 0 0
0 0.75 0.25 0
0 0.5 0.5 0
0 0.25 0.75 0
0 0 1 0
0 0 0.75 0.25
0 0 0.5 0.5
0 0 0.25 0.75
0 0 0 1

.

The state distribution dµ = (0.108, 0.054, 0.081, 0.068, 0.075, 0.071, 0.073, 0.072, 0.072,
0.072, 0.072, 0.072, 0.108)⊤, dx= dc= (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)⊤,

C =

0.163 0.043 0 0
0.043 0.199 0.045 0

0 0.045 0.199 0.045
0 0 0.045 0.172

.

f = (1.084, 0.542, 0.813, 0.678, 0.745, 0.712, 0.729, 0.72, 0.724, 0.722, 0.723, 0.723, 1.084)⊤,
rπ = rc = (−3,−3,−3,−3,−3,−3,−3,−3,−3,−3,−3,−2, 0)⊤.

Then, the state–state transfer probability of behavior policy is the same as the state–
state transfer probability of target policy, i.e., Pµ = Pπ , where the element of matrix Pµ is as
follows, for i, j ∈ [0, 12]:

Pµ[i, j] =

0.5 if i ≤ 10 and j = i + 1
0.5 if i ≤ 10 and j = i + 2
1 if i = 11 and j = 12
1 if i = 12 and j = 0
0 otherwise.

The schematic of the environment is shown in Figure 4.

0 1 2 9 10 11 12

start

Figure 4. Boyan Chain. In state 0–10, each solid action is taken with probability 0.5. In states 11 and
12, the probability of a solid action is 1.

Mathematics 2024, 12, 2930 15 of 19

5.2. Results and Analysis

Based on Table 1, first, we need to set Φ, Pµ, Pπ , Dc, rc, rπ , C, D f , and Dx for each
setting. Then, based on the property dµ = P⊤

µ dµ, we compute the eigenvector of the matrix
P⊤

µ with eigenvalue 1.0, and we unitize it to obtain dµ and Dµ. (It is important to note that
when there are absorbing states in a Markov Chain, the probability distribution is 1.0 only
at the absorbing states and 0 at all other states. Therefore, we adopt a restart approach,
jumping directly back to the initial states, thus forming a probability transition matrix Pµ

without absorbing states.) After all, we compute the key matrix for each algorithm and
its minimum eigenvalue. Note that the step-size ratio η of the auxiliary parameter to the
learning parameter is usually set to η ≥ 1.0.

The minimum eigenvalues in several examples for each algorithm are summarized
in Table 2. We can find the following: (1) In Baird’s counterexample and a two-state
counterexample, the minimum eigenvalues of key matrices in off-policy TD and Retrace
are both less than 0, indicating that they will diverge in these two counterexamples, which
is consistent with the existing research [2]. Additionally, compared with off-policy TD,
Retrace does have some mitigation towards divergence but cannot avoid it.

Table 2. Minimum eigenvalues 1
2 λmin(A + A⊤) of various algorithms on several examples.

Algorithm Two-State Baird’s
Random Walk

Boyan Chain
Tabular Inverted Dependent

Off-policy TD −0.2 −0.791 0.018 0.017 0.07 0.024
Retrace −0.1 −0.113 0.017 0.015 0.063 0.024

BR 0.34 9.673 × 10−17 0.002 0.007 0.033 0.002
GTD 0 0 0 0 0 0
GTD2 0 −1.077 × 10−17 0 0 0 0
TDC 0.016 −0.002 0.002 0.007 0.011 0.002
ETD 3.4 −2.82 × 10−16 0.195 0.165 0.76 0.245

MRetrace 1.15 −2.141 × 10−17 0.046 0.02 0.094 0.024

(2) In Baird’s counterexample, the minimum eigenvalues of GTD2, TDC, ETD, and
MRetrace are all less than zero, indicating that their key matrices are not positive definite.
This seems inconsistent with our understanding. The main reason is that in Baird’s coun-
terexample, the feature matrix is 7 × 8, and is not column full rank, which is inconsistent
with the assumption in their theorems. Note that the absolute value of the minimum
eigenvalue is very small.

(3) Except for Baird’s counterexample, the minimum eigenvalues of GTD and GTD2
are all zeros. The reason is that matrices 1

2 λmin(A + A⊤) of GTD and GTD2 are positive
semi-definite. In the context of this paper, we are unable to distinguish which one is faster
between GTD and GTD2 in numerical analysis.

(4) The minimum eigenvalue of TDC is higher than GTD and GTD2, which is consistent
with the literature.

(5) Except for Baird’s counterexample, the minimum eigenvalue of ETD is the largest.
(6) Except for Baird’s counterexample, MRetrace has the second-largest

minimum eigenvalues.
(7) All the minimum eigenvalues of BR are greater than 0, making it the only one to

remain positive definite in all examples. However, except for Baird’s counterexample, its
minimum eigenvalue is not large.

(8) The Boyan Chain is an on-policy setting; off-policy TD is implemented in on-policy;
and off-policy TD, Retrace, and MRetrace have the same minimum eigenvalue of 0.024. BR
and TDC have the same minimum eigenvalue of 0.002, indicating that BR and TDC are not
suitable for on-policy learning.

(9) It is surprising that in an on-policy setting, the minimum eigenvalue of ETD is
larger than that of on-policy TD. This implies that in terms of the expected convergence
rate, ETD is the most recommended option for on-policy learning.

Mathematics 2024, 12, 2930 16 of 19

To the best of our knowledge, this is the first time that various temporal difference
learning algorithms have been compared for their convergence rates in a very intuitive
numerical analysis manner.

In summary, in the expected sense, ETD has the fastest convergence rate, followed
by MRetrace.

6. Experimental Studies

In Section 3, we proposed Corollary 2, and in Section 4, we compared the sizes of the
minimum eigenvalues of different algorithms for various environment settings. This means
that we carried out theoretical analysis combined with numerical analysis, but whether the
analytical results reflect the actual situation needs to be experimentally verified. Therefore,
we adopted the same environment settings as in Section 4.

Each algorithm runs independently 20 times, with 1000 steps per run, and calculates
the mean and standard deviation.

To compare convergence rates, we need to observe the trend of |θt − θ∗| over time
step t. Note that according to Table 1, different algorithms have different optimal solutions
θ∗ = A−1b, so we need to calculate their optimal solutions separately for each algorithm
and then measure the errors.

The learning rate is set to satisfy Assumption 3, αt = α0 × 1
t+1 , where α0 is an initial

learning rate. We set η = 4 for GTD and GTD2 in all environments. In two-state counterex-
amples, α0 = 0.1, and γ = 0.9. In Baird’s counterexamples, α0 = 0.05, and γ = 0.99. In
Random Walk, α0 = 0.25, and γ = 0.9. In a Boyan Chain, α0 = 0.25, and γ = 0.9.

The learning curves of different algorithms in different environments are shown in
Figure 5, where each curve displays the mean and standard deviation of the errors. We
can find the following: (1) In Random Walk with dependent features, the convergence rate
analysis is consistent with the learning curves of each algorithm. They have the same order:
ETD > MRetrace > off-policy TD > Retrace > TDC ≥ BR > GTD2 ≥ GTD.

(2) Off-policy TD and Retrace diverge in both counterexamples, but Retrace diverges
more slowly compared with off-policy TD. This is consistent with the numerical analysis in
Section 4.

(3) In Baird’s counterexample, GTD descends faster than GTD2 and TDC. This may
be related to the numerical analysis showing that the minimum eigenvalues of GTD2 and
TDC are less than 0. Therefore, this is consistent with the analysis.

(4) In Baird’s counterexample, ETD diverges. On the one hand, this is related to high
variances of ETD reported in the literature [6,19]; on the other hand, it is also related to the
numerical analysis, showing that the minimum eigenvalue is less than 0.

(5) In a two-state counterexample, compared to BR, ETD, and MRetrace, the algo-
rithms GTD, GTD2, and TDC converge very slowly. Additionally, BR converges slower
than MRetrace and ETD. These observations are consistent with our numerical analysis.
However, ETD is slower than MRetrace, which is attributed to the high variance of ETD.

(6) In Random Walk and the Boyan Chain, TDC converges much faster than GTD and
GTD2, which is consistent with our numerical analysis. This observation also aligns with
existing research.

(7) In Random Walk and the Boyan Chain, the convergence rate of ETD is remarkably
fast, which aligns with our numerical analysis. ETD is reported to be suitable for off-policy
learning, but its exceptional performance in on-policy learning is somewhat incredible.

(8) In the Boyan Chain, off-policy TD is implemented as on-policy TD. The learning
curves of TD, Retrace, and MRetrace overlap. This is consistent with our numerical analysis.

In conclusion, the convergence rates of the algorithms in the experiments align with the
numerical analysis. Moreover, any inconsistencies have interpretable underlying reasons.

Mathematics 2024, 12, 2930 17 of 19

0 200 400 600 800 1000
steps

2

4

6

8

10

12

|
* |

(a)

0 200 400 600 800 1000
steps

8

9

10

11

12

13

|
* | Off-policy TD

Retrace
BR
GTD
GTD2
TDC
ETD
MRetrace

(b)

0 200 400 600 800 1000
steps

4

6

8

10

12

|
* |

(c)

0 200 400 600 800 1000
steps

7

8

9

10

11

|
* | Off-policy TD

Retrace
BR
GTD
GTD2
TDC
ETD
MRetrace

(d)

0 200 400 600 800 1000
steps

4

6

8

10

|
* |

(e)

0 200 400 600 800 1000
steps

40.0

42.5

45.0

47.5

50.0

52.5

|
* | Off-policy TD

Retrace
BR
GTD
GTD2
TDC
ETD
MRetrace

(f)

Figure 5. Comparisons of learning curves in different environments. (a) Two-state counterexamples;
(b) Baird’s counterexamples; (c) Random Walk with tabular features; (d) Random Walk with inverted
features; (e) Random Walk with dependent features; (f) Boyan Chain.

7. Conclusions and Future Work

Based on the proposed convergence rate for constructing general off-policy temporal
difference learning algorithms, this paper proved that the primary determinant influencing
convergence rate is the minimum eigenvalue of the key matrix. Focusing on this factor will
be more conducive to the development of faster converging off-policy learning algorithms.

The limitations of this paper include the following aspects:

(1) This paper assumes that the learning rates of all algorithms are the same; however,
in reality, different algorithms have different ranges of applicable learning rates.

(2) This paper does not consider the scenario of a fixed learning rate.
(3) This paper focuses on learning prediction and does not address learning control.

Future works need to address the above limitations and explore how to design faster
algorithms based on the conclusions of this paper.

Mathematics 2024, 12, 2930 18 of 19

In the end, we discovered a contradiction. Sutton et al. [4] proved that

AGTD =

(√
ηI Aoff

−A⊤
off 0

)
is positive definite. Note that in the paper, G =

(
−√

ηI −Aoff
A⊤

off 0

)
is proved to be negative definite [4]. According to Theorem A.3 of [20], the positive def-
initeness of square matrix A is equivalent to the positive definiteness of (A + A⊤); thus,
(AGTD + A⊤

GTD) is positive definite. However, our calculations in this paper showed that

(AGTD + A⊤
GTD) =

(
2
√

ηI 0
0 0

)
is positive semi-definite, not positive definite. Therefore,

the conclusion that AGTD is positive definite is questionable.

Author Contributions: Conceptualization, X.C.; methodology, X.C.; software, W.Q.; formal analysis,
W.Q.; investigation, Y.G.; discussion, S.Y.; writing—review and editing, X.C.; supervision, W.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Natural Science Foundation, China
(Nos. 62276142, 62206133, and 62202240).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of this study; in the collection, analyses, or interpretation of data; in the writing of this
manuscript; or in the decision to publish the results.

References
1. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2018.
2. Sutton, R.S.; Mahmood, A.R.; White, M. An emphatic approach to the problem of off-policy temporal-difference learning. J. Mach.

Learn. Res. 2016, 17, 2603–2631.
3. Baird, L. Residual algorithms: Reinforcement learning with function approximation. In Proceedings of the 12th International

Conference on Machine Learning, Tahoe City, CA, USA, 9–12 July 1995; pp. 30–37.
4. Sutton, R.S.; Maei, H.R.; Szepesvári, C. A Convergent O(n) Temporal-difference Algorithm for Off-policy Learning with Linear

Function Approximation. Adv. Neural Inf. Process. Syst. 2008, 21, 1609–1616.
5. Sutton, R.; Maei, H.; Precup, D.; Bhatnagar, S.; Silver, D.; Szepesvári, C.; Wiewiora, E. Fast gradient-descent methods for

temporal-difference learning with linear function approximation. In Proceedings of the 26th International Conference on
Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 993–1000.

6. Chen, X.; Ma, X.; Li, Y.; Yang, G.; Yang, S.; Gao, Y. Modified retrace for off-policy temporal difference learning. In Proceedings of
the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, Pittsburgh, PA, USA, 31 July–4 August 2023; pp. 303–312.

7. Dalal, G.; Szörényi, B.; Thoppe, G.; Mannor, S. Finite sample analyses for TD (0) with function approximation. In Proceedings of
the AAAI Conference on Artificial Intelligence, New Orleans, LO, USA, 2–7 February 2018; Volume 32.

8. Dalal, G.; Thoppe, G.; Szörényi, B.; Mannor, S. Finite sample analysis of two-timescale stochastic approximation with applications
to reinforcement learning. In Proceedings of the Conference On Learning Theory, PMLR, Stockholm, Sweden, on 5–9 July 2018;
pp. 1199–1233.

9. Gupta, H.; Srikant, R.; Ying, L. Finite-time performance bounds and adaptive learning rate selection for two time-scale
reinforcement learning. In Proceedings of the 33rd International Conference on Neural Information Processing Systems,
Vancouver, BC, Canada, 8–14 December 2019; pp. 4704–4713.

10. Xu, T.; Zou, S.; Liang, Y. Two time-scale off-policy TD learning: Non-asymptotic analysis over Markovian samples. In Proceedings
of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019;
pp. 10634–10644.

11. Dalal, G.; Szorenyi, B.; Thoppe, G. A tale of two-timescale reinforcement learning with the tightest finite-time bound. In Proceedings of
the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–8 February 2020; Volume 34, pp. 3701–3708.

12. Durmus, A.; Moulines, E.; Naumov, A.; Samsonov, S.; Scaman, K.; Wai, H.T. Tight high probability bounds for linear stochastic
approximation with fixed stepsize. Adv. Neural Inf. Process. Syst. 2021, 34, 30063–30074.

13. Xu, T.; Liang, Y. Sample complexity bounds for two timescale value-based reinforcement learning algorithms. In Proceedings of
the International Conference on Artificial Intelligence and Statistics, PMLR, Virtual, 13–15 April 2021; pp. 811–819.

14. Zhang, S.; Des Combes, R.T.; Laroche, R. On the convergence of SARSA with linear function approximation. In Proceedings of
the International Conference on Machine Learning, PMLR, Honolulu, HI, USA, 23–29 July 2023; pp. 41613–41646.

Mathematics 2024, 12, 2930 19 of 19

15. Wang, S.; Si, N.; Blanchet, J.; Zhou, Z. A finite sample complexity bound for distributionally robust q-learning. In Proceedings of
the International Conference on Artificial Intelligence and Statistics, PMLR, Honolulu, HI, USA, 23–29 July 2023; pp. 3370–3398.

16. Munos, R.; Stepleton, T.; Harutyunyan, A.; Bellemare, M. Safe and efficient off-policy reinforcement learning. Adv. Neural Inf.
Process. Syst. 2016, 29, 1054–1062.

17. Boyan, J.A. Technical update: Least-squares temporal difference learning. Mach. Learn. 2002, 49, 233–246. [CrossRef]
18. Ghiassian, S.; Patterson, A.; Garg, S.; Gupta, D.; White, A.; White, M. Gradient temporal-difference learning with regularized

corrections. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 3524–3534.
19. Zhang, S.; Whiteson, S. Truncated emphatic temporal difference methods for prediction and control. J. Mach. Learn. Res.

2022, 23, 6859–6917.
20. Sutton, R.S. Learning to predict by the methods of temporal differences. Mach. Learn. 1988, 3, 9–44. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1023/A:1017936530646
http://dx.doi.org/10.1007/BF00115009

	Introduction
	Background
	Markov Decision Process
	Learning Algorithms and Their Key Matrices
	Off-Policy TD
	Retrace(0)
	Naive Bellman Residual
	GTD
	GTD2
	TDC
	ETD
	MRetrace

	Finite Sample Analysis
	Convergence Rate of General Temporal Difference Learning Algorithm
	Convergence Rate of the MRetrace Algorithm

	How to Compare?
	Numerical Analysis
	Example Settings
	Results and Analysis

	Experimental Studies
	Conclusions and Future Work
	References

