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Abstract: Over the past few years, there has been a surge in research attention towards tasks involving
graph data, largely due to the impressive performance demonstrated by graph neural networks
(GNNs) in handling such information. Currently, out-of-distribution (OOD) detection in graphs is a
hot research topic. The goal of graph OOD detection is to identify nodes or new graphs that differ
from the training data distribution, primarily in terms of attributes and structures. OOD detection is
crucial for enhancing the stability, security, and robustness of models. In various applications, such as
biological networks and financial fraud, graph OOD detection can help models identify anomalies or
unforeseen situations, thereby enabling appropriate responses. In node-level OOD detection, existing
models typically only consider first-order neighbors. This paper introduces graph diffusion to the
OOD detection task for the first time, proposing the HOOD model, a graph diffusion-based OOD node
detection algorithm. Specifically, the original graph is processed through graph diffusion to obtain a
new graph that can directly capture high-order neighbor information, overcoming the limitation that
message passing must go through first-order neighbors. The new graph is then sparsified using a
top-k approach. Based on entropy information, regularization is employed to ensure the uncertainty
of OOD nodes, thereby giving these nodes higher scores and enabling the model to effectively detect
OOD nodes while ensuring the accuracy of in-distribution node classification. Experimental results
demonstrate that the HOOD model outperforms existing methods in both node classification and
OOD detection tasks on multiple benchmarks, highlighting its robustness and effectiveness.

Keywords: out-of-distribution; graph diffusion; regularization; graph neural network

MSC: 35Q68

1. Introduction

Graph-structured data is ubiquitous in our daily lives, with applications spanning
social network analysis, molecular chemical reasoning, and recommendation systems.
Drawing on the principles of advanced deep learning models, including convolutional
neural networks, recurrent neural networks, and autoencoders, a variety of graph neural
network (GNN) techniques have been developed in recent times. These include graph
convolutional networks (GCN) [1], graph autoencoders (GAE) [2], graph attention networks
(GAT) [3], and graph recurrent neural networks (GRNN) [4,5]. As a result, GNNs have
garnered significant research interest due to their capacity to model complex relationships
between entities and uncover potential interactions within those entities. This capability
has led to their widespread application across various domains.

Graph representation learning involves using learned node or graph embeddings for
downstream tasks such as node classification, link prediction, graph classification, out-of-
distribution (OOD) graph detection, and graph importance analysis [6–10]. Among these,
OOD graph detection is receiving increasing attention due to its significant relevance in
real-world applications. For instance, graph-structured data in the real world often changes
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dynamically with the environment, as seen in transportation systems and bioinformatics
networks. Consequently, existing graph neural network models frequently encounter data
with significant changes in structure or attribute information. These unknown data violate
the common assumption that the test and training distributions are the same. As a result,
researchers are striving to enhance the generalization capabilities of network models to
handle OOD data effectively.

If network models fail to appropriately address OOD node data, it can lead to severe
prediction errors. Therefore, a model with robust OOD detection capabilities can take
appropriate measures for such data, ensuring proper handling and avoiding the forceful
categorization of unknown data as known types, thereby enhancing the model’s stability
and robustness. For example, in cybersecurity, attackers may alter network traffic patterns
to evade detection systems. A model with strong OOD detection capabilities can promptly
respond to abnormal graph patterns, maintaining the integrity and security of the system.

Existing OOD detection methods have several limitations, such as relying on first-order
neighbors for information propagation, which restricts their ability to capture higher-order
information. Additionally, they perform poorly in handling noise and lack robustness when
facing significant changes in graphs’ structures or attributes, making them less reliable in
practical applications like network security and bioinformatics.

In this paper, we introduce a novel OOD detection structure that incorporates the
graph diffusion equation to enhance the model’s capability for out-of-distribution detection.
To mitigate the risks of over-smoothing and the impact of noise on message passing, we
employ a multi-head attention mechanism. This mechanism effectively leverages the
inherent features of the nodes, thereby reducing the risk of over-smoothing. Based on the
principles of entropy information from the literature [11], we ensure the uncertainty of
entropy information of OOD nodes. During the prediction phase, this approach allows
for the accurate detection of OOD nodes while maintaining the classification accuracy of
in-distribution nodes.

2. Preliminary
2.1. Graph Neural Network

Recent advancements have seen the development of numerous methods designed to
address the challenges associated with graph data, which are inherently non-Euclidean
in nature. Inspired by traditional convolutional neural networks and autoencoders, re-
searchers have designed various types of graph neural networks (GNNs). These GNNs can
broadly be categorized into three types: graph convolutional networks, graph attention
networks, and graph recurrent neural networks.

To address noise issues and enhance robustness, several techniques have been pro-
posed. Graph attention networks, for instance, leverage the weights of the attention
mechanism to aggregate information from neighboring nodes, thereby improving robust-
ness. Other approaches, such as DropEdge [11], utilize graph sparsification and sampling
to achieve efficient computation and increased robustness. Additionally, significant efforts
have been directed towards anomaly detection in graphs, with comprehensive surveys
available in the literature [12,13]. These studies primarily focus on identifying anomalous
samples within the graph.

However, OOD detection requires not only the effective identification of OOD sam-
ples but also maintaining the overall performance of the model. This paper investigates
the challenge of end-to-end semi-supervised node classification by training GNN mod-
els with integrated OOD detection capabilities. By adopting a semi-supervised learning
approach [14], our method enables the effective detection of OOD nodes without com-
promising the accuracy of node classification, thereby ensuring robust performance in
practical applications.
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2.2. Out-of-Distribution Detection

Graph neural networks (GNNs) have achieved remarkable success in handling graph-
structured data, but their performance typically assumes an idealized setting. In real-world
environments, however, GNNs are likely to encounter diverse conditions and challenges
that can significantly impact their performance, potentially leading to model failure in se-
vere cases [15,16]. The stark contrast between controlled, ideal environments and the unpre-
dictable nature of real-world settings presents a significant challenge for network models.

For instance, in bioinformatics [17], experimental data often contain errors or anoma-
lies, introducing noise into the data structure. This noise adversely affects the learning
process of network models, preventing GNNs from making accurate predictions about
molecular structures. Similarly, in cybersecurity [18], applying GNNs to network threat
detection can lead to a significant deterioration in performance when encountering novel
or out-of-distribution data types. These practical challenges expose the susceptibility of
GNN models to a range of issues, emphasizing the necessity for enhancing their stability
and dependability.

In graphs, out-of-distribution (OOD) data refer to data encountered during the testing
phase, the distribution of which significantly deviates from that of the training dataset.
In graph learning, OOD detection primarily involves identifying new or anomalous data
that did not appear during the network model’s training process. Figure 1 illustrates the sit-
uation of OOD node data. Presently, OOD detection algorithms in graphs can be categorized
into three types: propagation-based OOD detection algorithms, classification-based OOD
detection algorithms, and self-supervised learning-based OOD detection algorithms [19].
Propagation-based algorithms monitor and detect anomalous nodes by propagating infor-
mation through the graph, making them suitable for capturing structural anomalies but
sensitive to edge noise and changes in graph structure. Classification-based algorithms add
an OOD detection module or use the confidence levels of classification results to identify
OOD nodes, fitting well for scenarios with significant attribute changes but limited for dis-
tinguishing when features are similar. Self-supervised learning-based algorithms enhance
discriminative power by designing self-supervised tasks (e.g., node feature reconstruction,
edge prediction), which are advantageous in dynamic environments but depend on well-
designed self-supervised tasks. Each method has its pros and cons: propagation-based
methods are good at capturing structural anomalies, classification-based methods can
handle attribute changes, and self-supervised methods excel in dynamic environments.

Figure 1. An example of graph out-of-distribution detection.

For graph-structured data, previous works [20,21] have aimed to detect OOD nodes
primarily through uncertainty detection. These efforts have focused exclusively on the
OOD detection task, neglecting the simultaneous consideration of both OOD detection and
graph node classification in an integrated, end-to-end manner.
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2.3. Diffusion Equation

The application of diffusion equations in the context of graph-structured data has been
extensively explored, particularly in the realm of graph neural networks (GNNs). For an
in-depth understanding of graph diffusion processes and their theoretical underpinnings,
we refer the reader to [22]. This work provides a comprehensive treatment of diffusion
kernels and their utility in learning tasks conductedon graphs. Additionally, the use of
diffusion maps for dimensionality reduction and data parameterization is elucidated in [23],
offering a broader perspective on the application of graph-based algorithms. More recent
developments, specifically the incorporation of a heat kernel in semi-supervised learning
within GNNs, are detailed in [24]. These references offer a robust theoretical framework
that complements the graph diffusion mechanisms integral to our model.

Graph diffusion. The graph diffusion equation plays a central role in graph signal
processing, as it not only provides a mathematical description for the propagation of signals
on graph structures, but also lays the theoretical foundation for designing graph filters
and graph convolutional networks. By simulating the natural diffusion process of signals,
the graph diffusion equation enables the fusion of neighbor information into node features,
thereby enhancing the representational power of graph signals and offering a powerful
tool for the analysis and processing of graph signals [25]. The application of the diffusion
equation in graph neural networks (GNNs) primarily involves leveraging the structural
information of graphs to enhance the capability of node feature representation [24]. GNNs
facilitate the effective capture of complex relationships and dependencies between nodes
in graph-structured data through information propagation and feature aggregation. By em-
ploying the concept of the diffusion equation, strategies for information propagation in
GNNs can be designed to naturally mirror the process of information diffusion. This
is particularly useful in tasks such as node classification, graph classification, and node
clustering, where the diffusion equation guides the processes of information aggregation
and propagation, thereby improving the overall performance and robustness of the models.

As shown in Figure 2, in graph data, the diffusion process can be viewed as moving
from one node i to another node j. However, in the graph domain, the data domain is dis-
crete, not continuous. Assuming c represents the diffusion rate on the edge, the amount of
material moving from node i to node j over a time period dt is c

(
xi − xj

)
dt, and the amount

moving from node j to node i is c
(
xj − xi

)
dt, the following expression can be derived:

dxi
dt

= c
(
xj − xi

)
(1)

dxj

dt
= c

(
xi − xj

)
(2)

Figure 2. The example of inter-node diffusion in graph.

Nonetheless, in a graph’s diffusion process, the procedure from all nodes to a particular
node,and from node io to all other nodes must be taken into account. The adjacency matrix
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depicts the graph’s structure and connectivity. For a specified graph, the formula for node i
can be deduced as shown in Equation (3):

dxi
dt

= cAi1(x1 − xi) + cAi2(x2 − xi) + · · ·+ cAin(xn − xi) (3)

By employing summation, this can be reformulated as displayed in Equation (4).

dxi
dt

= c
n

∑
j=1

Aij
(
xj − xi

)
= c

n

∑
j=1

Aijxj − cxi

n

∑
j=1

Aij = c
n

∑
j=1

Aijxj − cxidi (4)

δij =

{
0, i f i ̸= j
1, else

(5)

The integration of Equations (4) and (5) results in Equation (6).

cxidi = c
n

∑
j=1

δijxjdj (6)

dxi
dt

= c
n

∑
j=1

Aijxj − c
n

∑
j=1

δijxjdj (7)

Subsequently, the equation can be depicted in matrix format, as illustrated in Equation (8).

dx⃗
dt

= cAX⃗ − cDx⃗ (8)

where x⃗ = [x1, x2, · · · , xn]
⊤, and D is the n × n degree matrix. According to the graph

Laplacian operator,

dx⃗
dt

= cAx⃗ − cDx⃗ = c(A − D)x⃗ = −c(D − A)x⃗ = −cLx⃗ (9)

By reparameterizing t and c into a single term t′ = ct, Equation (9) is rewritten as
Equation (10).

dx⃗
dt′

= −Lx⃗ (10)

The sequence of formula derivations presented above demonstrates the application of
the diffusion equation to graph neural networks.

3. HOOD
3.1. Overall Framework

The overall framework of the HOOD model is shown in Figure 3. The HOOD model
is an innovative graph neural network model specifically designed to address the detection
of out-of-distribution (OOD) nodes in graph-structured data. By incorporating graph diffu-
sion mechanisms, multi-head attention mechanisms, and various regularization methods,
the model effectively enhances the detection capability for OOD nodes while maintaining
good classification performance for in-distribution nodes. The HOOD model begins with a
heat kernel diffusion mechanism to perform information diffusion and smoothing across
the graph. Following this, the top-k method is employed to sparsify the diffused graph.
On the newly sparse graph, a multi-head attention mechanism is applied, dynamically
adjusting the weights of the node features. The model incorporates entropy-based regular-
ization and Lcon functions to optimize the training process. Finally, the optimized graph is
used for model training to perform node classification and OOD node detection.
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Figure 3. The overall framework of HOOD.

3.2. Out-of-Distribution Node Detection Based on Graph Heat Kernel Diffusion

Spectral analysis of graph neural networks (GNNs) has led to the adaptation of numer-
ous concepts and methods from traditional deep learning to manage graph-structured data.
Spectral theory is particularly pivotal in GNNs design. For instance, graph convolutional
networks (GCNs) are built on the graph Laplacian matrix, including its eigenvalues and
eigenvectors. The graph’s Laplacian matrix, denoted as L = D − A, where A signifies the
graph’s adjacency matrix and D is the diagonal degree matrix, with each element Dii repre-
senting the degree of node i; that is, the count of nodes connected to node i. The Laplacian
matrix encodes structural information about the graph.

Spectral graph theory methods define the heat kernel based on the graph’s spectral
properties to generate filters on the graph, enabling efficient information propagation and
feature smoothing. The heat kernel, being the fundamental solution to the heat equation,
can be interpreted as simulating the diffusion process of information or signals within the
graph structure when applied to graphs. Moreover, the heat kernel can be considered a
function of the graph Laplacian operator. Specifically, for a graph G, the normalized graph
Laplacian operator is denoted as Lsym. Consequently, the mathematical representation of
the heat kernel is as illustrated in Equation (11).

H(t) = exp
(
−tLsym

)
(11)

where t is a time parameter that represents the duration of the diffusion process. For the
exponential function in the aforementioned Equation (14), it is decomposed through the
eigenvalues of the graph Laplacian operator, followed by computation. It can be assumed
that Lsym = UΛU⊤, where U is the matrix composed of eigenvectors and Λ is the diagonal
matrix of corresponding eigenvalues. Then, Equation (11) can be rewritten as Equation (12).

H(t) = U exp(−tΛ)U⊤ (12)
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The previously mentioned Equation (12) explicitly shows that the heat kernel can be
defined via the graph Laplacian operator, where each eigenvalue’s impact exponentially
decays over time t. This also mirrors the process of information diffusion throughout the
graph over time.

The heat kernel matrix H(t) = exp(−tLsym) is obtained through the spectral decompo-
sition of the graph Laplacian operator Lsym, where each element of exp(−tLsym) represents
the probability of information diffusion from one node to another. Thus, the heat kernel
matrix generates a new weighted graph through these information diffusion probabilities.
Specifically, the graph Laplacian operator Lsym is obtained through spectral decomposition
as Lsym = UΛUT , where U is the matrix of eigenvectors and Λ is the diagonal matrix of
eigenvalues. The Equation (12) indicates that the heat kernel is generated by the decay
process of the graph Laplacian operator’s eigenvalues, directly capturing the high-order
relationships within the graph structure. The matrix generated by this process is typically
dense because each node may have non-zero diffusion probabilities with other nodes.

In the HOOD model, a common approach is used, treating the heat kernel

H(t) = exp
(
−tLsym

)
= ∑∞

i=0
(−tLsym)i

i! as a filter, which can be considered as a polynomial
of Lsym. Its kernel filter is g(λi) = exp(−λit), and λi are the eigenvalues for Lsym. The range
of eigenvalues for Lsym is [0, 2]. For ∀i, j, if λi < λj, then g(λi)/g

(
λj
)
= exp[

(
λj − λi

)
t] > 1,

meaning g(λi) > g
(
λj
)
. As t escalates, the ratio exp[

(
λj − λi

)
t] also amplifies, progres-

sively disregarding more high-frequency information. Thus, t serves as a modulator
between low and high frequencies. This method of processing graph data mitigates the
high-frequency noise in the graph signals, rendering the signals smoother throughout the
graph. Additionally, as a spectral filter, the heat kernel can capture both local and global
features of nodes in the graph. It effectively distances nodes from different distributions,
reducing their mutual influence. By effectively adjusting the diffusion time t, it allows
for precise control over the scale of feature extraction for different graph datasets. That is,
when t is small, it can overly concentrate on local structural information in the graph; when
t is large, it can better focus on the global structural information in the graph.

Figure 4 provides an overview of the diffusion and sparsification processes in our
graph model. The diffusion process aims to smooth neighborhood information by propagat-
ing it throughout the graph, leading to a denser graph structure. To address this increased
density, we employ a sparsification process, which is crucial for managing complexity and
enhancing the computational efficiency of our model. Although the edges in the figure
do not precisely point to the centers of the nodes, this visual representation effectively
conveys the iterative nature of these processes and their significance in preparing the
graph for subsequent analysis. As proposed in DGC [26], the HOOD model adopts a top-k
sparsification approach. In the experimental section, an ablation study on the k value is
conducted, and the results are analyzed. The top-k method retains only the most significant
k connections in each node’s neighborhood, disregarding the rest. “Importance” can be
defined based on various criteria, such as the feature similarity of adjacent nodes, edge
weights, or the strength of interactions between nodes. In HOOD, by sorting the graph
after heat kernel diffusion and setting the remaining elements to zero in the sorted array, all
connections except for the k strongest are removed, thereby achieving graph sparsification.
By only retaining the k most important neighbors for each node, computational load is
further reduced, accelerating the model’s training and inference processes and positively
impacting model performance.
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Figure 4. The schematic diagram of the structure of figure diffusion.

3.3. Attention Mechanism

Post the diffusion and sparsification processing of the graph data as outlined above,
a new graph is generated. An attention mechanism is utilized in the model to further
differentiate in-distribution and out-of-distribution nodes during the network model train-
ing process, thereby diminishing their mutual influence. This mechanism determines the
weight information between nodes, facilitating the accumulation of more beneficial infor-
mation during the information propagation process and mitigating the noise impact from
different distributions. Inspired by graph attention networks [3], the general form of the
graph convolution formula for the attention mechanism is as illustrated in Equation (13).

h′ = σ

 ∑
j∈N(i)∪{i}

αijWhj

 (13)

where αij represents the attention weight between node i and node j. To enhance the
performance of the HOOD model, this section employs a multi-head attention mechanism,
as shown in Equation (14).

h′ = ∥K
k=1σ

 ∑
j∈N(i)∪{i}

αk
ijW

khj

 (14)

where, K represents the number of attention heads, and the content of the output layer is
shown in Equation (15).

z = softmax

 1
K

K

∑
k=1

∑
j∈N(i)∪{i}

αk
ijW

khj

 (15)

3.4. Regularization

In the HOOD model, node classification within the graph employs cross-entropy loss.
Cross-entropy loss is primarily utilized to gauge the divergence between two probability
distributions. In the downstream tasks of graph neural networks, it is typically applied to
classification. The mathematical representation is as depicted in Equation (16).

Lce = − 1
N

N
∑
i=1

yi log(ŷi) (16)
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Here, N represents the number of nodes in the graph, yi represents the true label of
node i, and ŷi represents the model’s predicted probability distribution, which is typically
calculated using the softmax function.

To ensure enhanced learning of the differences between in-distribution node data and
out-of-distribution node data by the model’s classifier, thereby boosting the model’s stability
and reliability, the model applies cross-entropy loss supplemented by two regularization
terms to manage the learning procedure of the HOOD model. The overall structure of the
regularization loss in the model is depicted in Figure 5.

Figure 5. Diagram of the structure of the regularization.

As per the literature [14], the utilization of cross-entropy loss in the HOOD model
gradually aligns the predicted probability distribution of nodes with the true one-hot
distribution during the model’s classification tasks. Overall, in the training process, nodes
are progressively drawn towards the one-hot distribution, a process that diminishes the
entropy of the nodes’ distribution in the graph. In the network model, this situation is ben-
eficial for in-distribution node data. However, for out-of-distribution nodes, a reduction in
entropy is not desirable. To lessen the impact of reducing entropy on the detection of out-of-
distribution nodes, it is crucial to prevent a decrease in entropy information for these nodes.
Therefore, out-of-distribution nodes should maintain a uniform distribution rather than
shifting towards a one-hot distribution. This differentiation between in-distribution and
out-of-distribution nodes enhances the model’s out-of-distribution detection performance.
The mathematical formula for entropy loss is depicted in Equation (17).

Lentry =
∑i∈N CE(U,Pi)δi

S (17)

S = ∑
i∈N

δ(i) (18)

δ(i) =

{
1, i f s(i) > ϕ

0, else
(19)

where U represents the uniform distribution, Pi represents the predicted distribution of
node i, and ϕ represents the threshold for identifying a node as out-of-distribution. The
term CE(U, Pi) computes the cross-entropy between the predicted distribution Pi of node
i and a uniform distribution U. If the predicted distribution of node i is close to the
uniform distribution, the cross-entropy loss CE(U, Pi) will be large, indicating a higher
likelihood that the node is considered an out-of-distribution node. Therefore, by applying
this regularization term to out-of-distribution nodes, the risk of misclassifying them as
in-distribution nodes can be effectively reduced.

In the HOOD model, this paper adopts the same method used in OODGAT, which
uses a binary classifier to predict the scores for out-of-distribution nodes within the input
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graph data. To capture useful feature information between nodes, the previously discussed
attention mechanism is utilized during the training process to manage the weights between
nodes. Ultimately, in the model’s output, each node’s distribution is obtained, and these
outputs are then computed to serve as criteria for determining whether nodes in the graph
are out-of-distribution. In the model, these two parameters are optimized simultaneously.
Cosine similarity is used for this purpose. The corresponding mathematical representation
is depicted in Equation (20).

Lcon = − cos(si, zi) (20)

where si represents the entropy information of node i, and zi represents the classifier’s
predicted outcome for node i. By combining the two regularization terms and the classi-
fication loss from the above formula, the overall loss function is presented as shown in
Equation (21).

L = Lentry + Lcon + Lce (21)

4. Experiments

In this section, we assess the performance of the HOOD model across a range of actual
graph datasets.

4.1. Datasets

In this study, we follow the evaluation protocol proposed in the literature [14]. Our
experiments were performed on six commonly used graph datasets utilizing the HOOD
algorithm. For each dataset, the corresponding classes are divided into two parts: in-
distribution data, comprising nodes from in-distribution graph data, and out-of-distribution
data, encompassing nodes from out-of-distribution graph data. To ensure balance in the
data distribution within the graphs, the method used for dividing the datasets in the litera-
ture [14] was employed, ensuring that there are more than three categories of in-distribution
graph data nodes. Information about the six datasets is provided in Table 1 below.

Table 1. The detailed information of each dataset.

Dataset # Nodes # Edges # Labels

Cora 2708 5429 7
Amazon-Computer 13,752 491,722 10

Amazon-Photo 7650 238,163 8
Coauthor-CS 18,333 163,788 15
LastFMAsia 7624 27,806 18

Wiki-CS 11,701 216,123 10

4.2. Baselines

We compared HOOD with eight mainstream graph OOD detection baseline methods,
which can be classified into two types.

End-to-end methods. In this framework, we perform semi-supervised out-of-distribution
detection and node classification. We have chosen MLP, GCN, GraphSAGE [27], GAT,
and OODGAT as comprehensive baselines for this task. MLP serves as a control to measure
performance without considering the graph’s topological structure, while the other four
models are representative GNNs. For all these methods, the entropy of the predicted
distribution is used as the score for OOD detection.

Post-hoc OOD detectors. This strategy involves the implementation of additional
outlier detection mechanisms that operate subsequent to a pre-trained classification system.
We have used ODIN [28], Mahalanobis distance [29], and CaGCN [30] as subsequent
detection tools. ODIN modifies the output distribution using temperature scaling and
pre-processing of inputs, while the Mahalanobis distance calculates the separation between
test samples and identified inliers, leveraging the latent space from the pre-trained classifier.
For these methods, we have adopted the OOD detection metrics from their original sources,
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specifically the MSP from [28] and the Mahalanobis metric from [29]. CaGCN, a newly
introduced technique for confidence calibration in GNN outputs, enables us to utilize the
calibrated confidence levels as a scoring system for outlier detection.

4.3. Evaluation Metrics

In the context of graph-based learning with out-of-distribution (OOD) nodes, our
focus is on dual objectives: categorizing nodes and identifying anomalies. Accuracy serves
as the primary benchmark for node classification. In contrast, for OOD detection, we rely
on established metrics: the area under the receiver operating characteristic curve (AUROC)
and the false positive rate at a 95% true positive rate (FPR@95). Across our experiments,
anomalies are labeled as positive instances. To gauge the collective efficacy of these tasks,
we frame them within a multi-class framework encompassing N + 1 classes—N for the
standard distribution and one for OOD. The weighted F1 score serves as a comprehensive
measure of this performance.

4.4. Experimental Settings

For the multi-head attention model, the number of attention heads is set to 4, the learn-
ing rate is set at 0.01, and DropEdge is set to 0.6. The values for the heat kernel diffusion
coefficient t range from [1, 10]. For the top-k algorithm, the values of k are in the set
{16, 64, 128}. The number of training iterations is set at 1000. All experiments are con-
ducted using PyTorch Geometric.

4.5. Results

The experimental results, as presented in Tables 2 and 3, highlight the significance
and efficacy of the HOOD model, particularly in the task of out-of-distribution (OOD)
node detection. Our model demonstrates a marked advantage over other methods across
five of the six datasets, showcasing its strength in identifying nodes that deviate from the
training data distribution. From the results, it is evident that the HOOD model signifi-
cantly outperforms MLP in out-of-distribution node detection, demonstrating that graph
neural networks can greatly enhance model performance in node classification and OOD
detection by utilizing the graph topology. The HOOD model’s superiority is especially
pronounced when compared to the MLP model, indicating the substantial benefits of
leveraging graph topology for OOD detection. This performance edge is further empha-
sized in its comparison with established graph neural network models such as GCN, GAT,
and, GraphSAGE, where HOOD consistently outperforms these models. This success can
be attributed to the model’s incorporation of graph diffusion and regularization techniques,
which effectively segregate nodes of varying distributions and bolster the model’s OOD
detection capabilities. Compared to the OODGAT model, HOOD outperforms OODGAT
in node classification on the Cora and AmazonCS datasets, while OODGAT has superior
performance on the remaining four datasets. In terms of OOD node detection, except on
the CoauthorCS dataset where OODGAT performs better, HOOD outperforms OODGAT
on the other five datasets. This indicates that graph diffusion effectively separates nodes
of different distributions within the graph data, helping to reduce the impact between
in-distribution and out-of-distribution node data and enhancing the model’s ability to
detect out-of-distribution nodes.

In Table 3, ODIN, CaGCN, and the Mahalanobis distance are post-hoc detection
methods. Since HOOD utilizes semi-supervised learning, its performance is significantly
superior to that of the post-hoc detection methods.
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Table 2. Comparison with end-to-end methods.

Cora AmazonCS AmazonPhoto CoauthorCS LastFMAsia Wiki-CS

Acc/AUROC/FPR@95/F1

MLP 74.1/72.4/75.5/63.1 68.4/65.7/84.6/54.6 91.8/80.2/71.9/72.8 88.6/95.0/28.9/84.8 54.5/57.4/87.0/51.2 78.6/71.7/76.4/64.0
GCN 92.1/88.9/46.0/80.5 81.2/83.3/61.9/70.3 97.1/88.3/44.6/80.7 92.7/94.5/32.2/86.4 79.8/72.1/74.7/66.5 80.9/71.7/76.6/63.0
SAGE 90.8/87.7/46.6/79.2 83.2/84.6/54.9/71.7 97.1/93.5/32.0/87.2 92.6/97.0/16.8/89.1 79.3/73.7/68.9/67.0 78.6/73.0/65.3/66.2
GAT 91.6/90.1/40.8/81.5 82.3/88.5/42.9/76.5 96.9/92.5/31.7/86.1 92.0/96.6/16.7/89.0 82.3/81.1/49.6/75.0 79.9/79.8/63.6/70.0

OODGAT 92.3/93.6/26.1/85.1 86.6/93.1/45.2/82.2 97.6/98.3/5.8 /93.9 92.4/99.6/1.6 /93.5 83.3/91.9/27.7/81.0 81.4/88.3/51.2/73.7
HOOD 92.8/95.8/18.6/87.9 90.1/94.0/24.2/84.8 93.4/99.0/3.3/93.3 88.5/99.3/2.8/91.5 82.6/94.7/19.2/84.3 76.8/92.4/33.1/78.3

The bold values indicate the best performance for each dataset.

The experimental results in Tables 2 and 3 demonstrate, from various aspects, the
importance and effectiveness of graph diffusion, multi-head attention mechanisms, and reg-
ularization in enhancing the performance of graph neural networks in node classification
and out-of-distribution node detection.

Table 3. Comparison with end-to-end methods.

GAT ODIN Mahalanobis-Distance CaGCN OODGAT HOOD

AUROC/FPR@95

Cora 90.7/36.8 90.7/37.2 87.3/50.3 89.9/45.7 94.1/25.0 95.8/18.6
AmazonCS 84.1/51.9 84.4/51.2 81.8/78.8 83.6/56.2 92.3/52.0 96.3/19.2

AmazonPhoto 94.3/21.7 94.3/26.5 77.1/59.6 94.4/24.1 98.4/4.2 99.0/3.3
CoauthorCS 96.2/19.6 96.1/19.8 94.0/25.3 95.8/22.1 99.6/1.4 99.3/2.8
LastFMAsia 78.5/60.7 81.1/52.9 83.4/51.0 89.6/30.4 90.5/26.8 95.9/15.6

Wiki-CS 80.4/62.5 80.4/62.5 74.0/74.4 82.7/54.7 88.6/49.0 92.9/31.3

The bold values indicate the best performance for each dataset.

4.6. Ablation Study

To further validate the effectiveness of the modules proposed in this chapter, and to
examine the impact of regularization on node classification and out-of-distribution detec-
tion performance, this section conducts a more comprehensive exploration of the model’s
performance through ablation studies of the HOOD out-of-distribution detection model
conductedon six datasets.

In HOOD, the loss function module is divided into four combinations to verify the
effectiveness of each component. These combinations are Lce,Lce + Lentry, Lce + Lcon and
Lce + Lentry + Lcon.

From Figure 6, it is evident that in the HOOD algorithm, incorporating the Lentry mod-
ule results in a slight decrease in performance for in-distribution node prediction, which
can be attributed to the effect of entropy regularization on the distribution of nodes. Overall,
the impact of each module on the performance of in-distribution node prediction is minimal.
From Figure 7, it is observed that in the HOOD algorithm model, except for the AmazonCS
and AmazonPhoto datasets, using only Lce results in the worst AUROC scores across the
remaining four datasets, directly demonstrating the effectiveness of adding Lentry and
Lcon to the loss function in enhancing the model’s OOD detection capability. Comparing
Lce +Lentry and Lce +Lcon, except for AmazonCS and AmazonPhoto, Lce + Lcon performs
better in AUROC on the remaining datasets, indicating that Lcon has a greater impact on
the network model than Lentry. Finally, among the four combinations, Lce + Lentry + Lcon
performs the best across all six datasets, further indicating the effectiveness of using the
three loss function combinations in the HOOD algorithm.
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Figure 6. The results of Acc on the HOOD model.

Figure 7. The results of AUROC on the HOOD model.

4.7. Impact of Hyper-Parameters on Model Performance

To observe the impact of parameters on the experimental results within the HOOD
model, this section conducts parameter sensitivity analysis experiments by varying the
parameters in the model. This analysis is performed across six datasets.

In the HOOD algorithm model, there are mainly two parameters: one is the value of
t in the heat kernel diffusion, and the other is the value of k for sparsifying the original
graph using the top-k method. When k is set to 16, the range of t is from 1 to 10 , i.e.,
t ∈ [1, 10]. The experiments observe the impact of the heat kernel diffusion t value on
model performance, with the accuracy results shown in Figure 8a and the AUROC results
shown in Figure 9a. When t is set to 5, and k takes values of 16, 64, and 128, the accuracy
results are shown in Figure 8b and the AUROC results in Figure 9b.

Figure 8. The results of experiments of Acc.
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Figure 9. The results of experiments of AUROC.

The experimental results are shown in Figures 8 and 9. From these figures, the follow-
ing conclusions can be drawn.

When k is set to 16, as the value of t increases, a general trend observed across the
six datasets is that the accuracy performance first improves and then declines, and the
AUROC performance also shows an initial increase followed by a decrease. Regarding
the effect of t in the model, it influences the neighborhood relationships of nodes in
the graph. As t increases, the AUROC performance initially improves because, with the
expansion of node neighborhoods, the nodes in the graph can aggregate more useful feature
information, reducing the impact of noise from nodes of different distributions. This means
the model is better able to capture the characteristic information of in-distribution nodes
and reduce the impact of out-of-distribution nodes. However, as t continues to increase,
a decline in AUROC performance begins to appear. This decline can be attributed to
potential overfitting as t becomes too large. Although regularization in the model helps
mitigate overfitting, an excessively high t value can still have a detrimental effect on the
network model.

When t is set to 5 and k values are increased, on the Cora and WikiCSfour datasets,
the accuracy performance generally exhibits a trend of initial decline followed by an in-
crease. On the Cora, AmazonCS, AmazonPhoto, and CoauthorCS datasets, the AUROC
performance generally shows a declining trend. On the LastFMAisa dataset, the AUROC
performance overall shows an increasing trend. On the WikiCS dataset, the AUROC perfor-
mance initially increases and then decreases. Therefore, when using top-k sparsification on
the new graph obtained through graph diffusion, the performance varies slightly across
different datasets due to inherent characteristics of the datasets, such as graph size and
sparsity, which all influence performance differently.

5. Conclusions

In this paper, we investigate the problem of graph learning with out-of-distribution
(OOD) nodes. Specifically addressing the node-level OOD detection issue, we designed a
graph diffusion-based HOOD algorithm model. This model introduces graph diffusion
into OOD detection tasks for the first time and employs a multi-head attention mechanism
to further differentiate between in-distribution and out-of-distribution node data. This
reduces the mutual influence among nodes of different distributions, maintaining good
performance in both in-distribution node prediction and OOD node detection, thereby
enhancing the model’s stability and reliability.
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