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1. Introduction

In the field of financial and actuarial mathematics, the study of ruin probability
and related metrics has attracted significant attention from many researchers. In recent
years, numerous notable results based on statistical inference have emerged regarding ruin
probability and associated quantities. For example, see Shimizu [1], Zhang et al. [2], Zhang
and Yang [3], Masiello [4], Zhang and Yang [5], and You et al. [6], among others.

Estimating ruin probability and related quantities in risk theory often involves employ-
ing various methods to develop estimators. Shimizu [1] applied the regularized Laplace
inversion technique to estimate the Gerber–Shiu function in the Wiener–Poisson risk model.
You and Cai [7] used the same technique to estimate ruin probability for a spectrally neg-
ative Lévy process. Zhang et al. [2] constructed an estimator of ruin probability using
Fourier inversion and the kernel density estimation method in the classical risk model.
Similarly, Zhang and Yang [3,5] developed estimators via Fourier inversion in a Lévy risk
model. You et al. [6] established asymptotically normal distributions for the nonparametric
estimator proposed by Zhang and Yang [5] in the classical risk model. Additionally, You
and Gao [8] and You and Yin [9] applied threshold estimation and regularized Laplace in-
version to obtain estimators for survival probability in the Wiener–Poisson risk model and
the spectrally negative Lévy process, respectively. Gao and You [10] combined the threshold
technique with Fourier inversion to estimate ruin probability under the tempered-stable
Lévy subordinator. Zhang [11] estimated the Gerber–Shiu function using Fourier–Sinc
series expansion in a compound Poisson risk model perturbed by diffusion. Zhang and
Su [12] and Su et al. [13] used Laguerre series expansion to estimate the Gerber–Shiu
function in the classical and perturbed compound Poisson models, respectively. Shimizu
and Zhang [14] proposed an estimator for the Gerber–Shiu function by inverting a semi-
parametric estimator of its Fourier transform in a Lévy risk model. Yang et al. [15] applied
the Fourier-cosine method to estimate the discounted density of the deficit at ruin in the
classical risk model. Xie and Zhang [16] extended the Fourier-cosine method to estimate
the expected present value of dividend payments before ruin and the expected discounted
penalty function in the classical compound Poisson risk model under a constant barrier
dividend strategy. Wang et al. [17] used the Fourier-cosine method to estimate the time
value of ruin in a Lévy risk model.
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More recently, the Fourier-cosine method has gained traction for estimating or ap-
proximating ruin probability and related quantities. Initially introduced by Fang and
Oosterlee [18] for pricing European options, this method has since been extended to ruin
theory. Chau et al. [19] approximated infinite-time ruin probability using the Fourier-
cosine method under a Lévy subordinator model. In a subsequent study, Chau et al. [20]
systematically examined the approximation of Gerber–Shiu functions using this method.
Zhang [21] applied the Fourier-cosine method to approximate the density of time to ruin in
the classical compound Poisson risk model. Lee et al. [22] incorporated the Fourier-cosine
method to estimate finite-time ruin probability in a Lévy process. Li et al. [23] extended Lee
et al.’s work to approximate Gerber–Shiu functions in a Lévy process. In addition to these
approaches, Wang and Zhang [24] approximated the Gerber–Shiu function using frame
duality projection in a Lévy risk model. In our work, we adopt the Fourier-cosine method
to estimate ruin probability.

In finance, high-frequency trading generates vast amounts of data suitable for statisti-
cal analysis, offering insights into market dynamics. Ruin probability research is crucial for
managing specialized funds that prioritize long-term sustainability over short-term gains.
These funds aim to maintain consistent spending levels and avoid financial ruin, thereby
improving their long-term survival. For related studies, see Karathanasopoulos et al. [25].
Shimizu and Zhang [14] discussed the application of high-frequency observation schemes
in financial statistics and insurance.

In our work, we assume that the high-frequency data consist of n + 1 discrete-
time observations of the surplus process (1) with time steps, i.e., the discrete sample
Xn = {Xtn

m , m = 0, 1, 2, . . . , n}, tn
m = mhn(m = 0, 1, 2, . . . , n). The asymptotic framework

assumes that nhn → ∞ and hn → 0 while n → ∞. This high-frequency assumption is fre-
quently employed in statistical inference for Lévy processes. See, for example, Shimizu [26],
Zhang and Yang [3], and Comte and Genon-Catalot [27,28]. Under this assumption, we
obtain observable data on the surplus process, though we remain uncertain about the
occurrence of jumps within the small intervals (tn

m−1, tn
m] which can significantly affect the

accuracy of our ruin probability estimator. Therefore, we must devise a method to use ob-
servable data to detect whether jumps occurred within these small intervals. Mancini [29],
You and Gao [8], Gao and You [10], and Shimizu [26] employed a threshold technique to
identify jumps whose sizes exceed a defined threshold function. Given discrete observa-
tions, this technique helps differentiate between fluctuations due to diffusion shocks and
those caused by jumps.

In this paper, we propose an estimator for ruin probability using the threshold tech-
nique and the Fourier-cosine method. By integrating the threshold technique with the
Fourier-cosine method, the estimator becomes more stable and reliable, improving its
accuracy in assessing ruin probability.

The remainder of this paper is organized as follows: In Section 2, we introduce the risk
model, assumptions, ruin probability, and its Fourier transform. Section 3 presents several
estimators based on the Fourier-cosine method and the threshold technique. Section 4
establishes the asymptotic properties of our estimators and provides technical proofs.
Section 5 demonstrates the effectiveness of our estimators through simulations. Finally, we
provide concluding remarks in Section 6.

2. Preliminaries
2.1. Risk Model and Some Assumptions

The Wiener–Poisson risk process is defined by

Xt = x + ct + σWt −
Nt

∑
j=1

Uj, t ≥ 0, (1)

where x ≥ 0 is the initial surplus level, c > 0 is a parameter, σ > 0 is the diffusion coefficient,
{Wt, t ≥ 0} is a standard Wiener process, {Nt, t ≥ 0} is a Poisson process with intensity
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λ > 0, and U1, U2, U3, . . . comprise an independent and identically distributed positive
sequence of random variables with the common distribution F(density f ). Suppose that
{Nt, t ≥ 0}, {Wt, t ≥ 0}, and {Uj, j = 1, 2, . . .} are independent of each other.

In this paper, we assume that the Poisson intensity λ, the distribution function F,
and diffusion coefficient σ are unknown. In this case, our objective is to estimate the ruin
probability of risk process (1).

Next, we make some assumptions for our theoretical results:
Let µn =

∫ ∞
0 xnF(dx), n = 1, 2, 3, . . ..

Assumption 1. µn < ∞, n = 1, 2, 4 .

Assumption 2. The safety loading condition holds, i.e., c > λµ1.

2.2. Ruin Probability and Its Fourier Transform

Let τ = inf{t ≥ 0 : Xt ≤ 0}. The infinite-time horizon ruin probability is given by

Ψ(x) = P(τ < ∞|X0 = x), x ≥ 0. (2)

Let ϑ(s) be the characteristic exponent of Xt − x defined by ϑ(s) := t−1 log E[eis(Xt−x)] ,
which is easily calculated by the independent property of W, N, Uj as follows:

ϑ(s) = ics − σ2

2
s2 + λ

(∫ ∞

0
e−isxF(dx)− 1

)
. (3)

With reference to Zhang and Yang [5] and Gao and You [10], the Fourier transform of
Ψ(x) is given by

FΨ(s) =
σ2

2 is + λ
is
∫ ∞

0 (eisx − 1)F(dx)− λµ1

ics + σ2

2 s2 − λ
∫ ∞

0 (eisx − 1)F(dx)
(4)

=
ϑ(−s) + ics[1 − ρ]

−isϑ(−s)
. (5)

where ρ = λµ1
c and ϑ(−s) = −ics − σ2

2 s2 + λ
(∫ ∞

0 eisxF(dx)− 1
)
. By (4) and

lim
s→0

1
is

∫ ∞

0
(eisx − 1)F(dx) =

∫ ∞

0
lim
s→0

(eisx − 1)
is

F(dx) = µ1,

lim
s→0

1
(is)2

∫ ∞

0
(eisx − 1 − isx)F(dx) =

∫ ∞

0
lim
s→0

(eisx − 1 − isx)
(is)2 F(dx) =

µ2

2
,

and Equation (5) yields that

FΨ(s) =


ϑ(−s)+ics(1−ρ)

−isϑ(−s) , s ̸= 0,

σ2
2 +

λµ2
2

c−λµ1
, s = 0.

(6)

3. Estimation of Ruin Probability

In this section, our aim is to construct an estimator for Ψ(x) using the sample Xn.
Let us denote by Zm the increment Xtn

m − Xtn
m−1

for m = 1, . . . , n. hn is the sampling
interval, denoted by tn

m − tn
m−1.

If we can estimate λµ1, λµ2, σ2, ρ, and ϑ(s) in (6), then FΨ(s) can be estimated with
the plug-in device. Inspired by Zhang and Yang [3,5] and Gao and You [10], let us denote
ψ(s) = E[eisZ1 ], an estimator of ϑ(s), which is given by
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ϑ̂(s) =
1
hn

(
ψ̂(s)− 1

)
, (7)

where

ψ̂(s) =
1
n

n

∑
m=1

eisZm

is an empirical-type estimator of ψ(s).

3.1. Threshold Function Technique

Inspired by Shimizu [26], Mancini [29], and You and Gao [7], we introduce the filter

Dn
m := {ω ∈ Ω : chn − Zm > rn}, (8)

where rn = hθ
n > 0 is a suitable threshold function dependent on n such that limn→∞ rn = 0

and θ is a positive constant. Let Cn
m := {ω ∈ Ω : chn − Zm ≤ rn} be the complement of Dn

m.
The function rn, suitably chosen, plays the role of a threshold to detect the existence of

a jump in each sampling interval. Given these filters and rn, we can observe that there is no
jump in the interval

(
tn
m−1, tn

m
]

if chn − Zm ≤ rn.
By Mancini [29] and You and Gao [8], the natural estimators for λµ1 and σ2 are,

respectively, given by

λ̂µ1 =
∑n

m=1(chn − Zm)IDn
m

nhn
, σ̂2 =

1
nhn

n

∑
m=1

(chn − Zm)
2ICn

m . (9)

By Equation (9) and ρ =
λµ1

c
, an estimator of ρ is given by

ρ̂ =
λ̂µ1

c
=

1
c

∑n
m=1(chn − Zm)IDn

m

nhn
. (10)

According to Remark 3 in Wang et al. [17], we construct an estimator of λµ2 as follows:

λ̂µ2 =
1

nhn

n

∑
m=1

(Zm − chn)
2 − hn

(
λ̂µ1

)2
− σ̂2. (11)

Combining Equations (6), (7), (9), (10) and (11), we estimate FΨ(s) by

F̂Ψ(s) =


ϑ̂(−s)+ics(1−ρ̂)

−isϑ̂(−s)
, s ̸= 0,

σ̂2
2 +

λ̂µ2
2

c−λ̂µ1
, s = 0.

(12)

3.2. Fourier-Cosine Method

To ensure the smooth comprehension of the paper, we will provide a revised introduc-
tion to the Fourier-cosine method.

For an integrable function f (x), x ∈ [a1, a2], it has the following cosine series expansion,

f (x) =
∞

∑′

k=0
A f ,k cos(kπ

x − a1

a2 − a1
),
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where ∑′ indicates that the first term in the summation is weighted by one-half, and the
cosine coefficients are given by

A f ,k =
2

a2 − a1
ℜ
{∫ a2

a1

f (x) exp(ikπ
x − a1

a2 − a1
)dx
}

, k = 0, 1, 2, . . . ,

where ℜ means taking the real part and i =
√
−1 is the imaginary unit.

Let a1 = 0 and a2 = a, after choosing large a, we have

A f ,k ≈ B f ,k :=
2
a
· ℜ{F f (kπ/a)} =

2
a
· ℜ
{∫ a

0
f (x) exp(ikπ

x
a
)dx
}

, k = 0, 1, 2, . . . ,

then we obtain the following Fourier-cosine approximation for f (x),

f (x) ≈
∞

∑′

k=0
B f ,k cos(kπ

x
a
) ≈ f̃ (x) :=

K

∑′

k=0
B f ,k cos(kπ

x
a
), 0 ≤ x ≤ a, (13)

where K is a larger integer applied to truncate the infinite series.
By the Fourier-cosine approximation in (13), we can approximate Ψ(x) as follows:

Ψ(x) ≈ Ψ̃(x) :=
K

∑′

k=0
BΨ,k cos(kπ

x
a
), 0 ≤ x ≤ a, (14)

where BΨ,k =
2
a · ℜ

{
FΨ( kπ

a )
}

, k = 0, 1, . . . ..
Therefore, by (12) and (14), we can obtain the estimator of Ψ(x) as follows:

Ψ̂(x) :=
K

∑′

k=0
B̂Ψ,k cos(kπ

x
a
), 0 ≤ x ≤ a, (15)

where B̂Ψ,k =
2
a · ℜ

{
F̂Ψ( kπ

a )
}

, k = 0, 1, . . . ..

4. Asymptotic Properties of Estimators

In this section, we investigate the asymptotic properties of F̂Ψ(s) and Ψ̂(x). To
begin, we need to examine the asymptotic properties of σ̂2, ρ̂, ϑ̂(s), and λ̂µ2. For the ease of

exposure, we firstly introduce some notation. Symbols P→ and D→ stand for the convergence
in probability and in distribution, respectively. Define the set S := {kπ/a : k = 0, 1, . . . , K}.

The following Lemma 1 gives the rate of convergence of σ̂2.

Lemma 1. Let rn = hθ
n with θ ∈ (0, 1

2 ). Suppose that nhn → ∞, nh2
n → 0, and hn → 0 as

n → ∞, then

σ̂2 P→ σ2, n → ∞,
√

n(σ̂2 − σ2)
D→ N

(
0, 2σ4

)
, n → ∞. (16)

Proof. The proof of Lemma 1 is easily obtained by Appendix A in You and Gao [8].

Lemma 2. Under Assumptions 1 and 2, if θ ∈ (0, 1
2 ), nhn → ∞, nh1+α

n → 0 for some α ∈ (0, 1]
and hn → 0 as n → ∞. Then,

ρ̂ − ρ = OP(
1√
nhn

). (17)

Proof. It is easy to obtain Equation (17) by the proof of Theorem 1 in You and Yin [9].
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Lemma 3. Suppose that hn → 0, nhn → ∞ as n → ∞, we have

ϑ̂(s) P→ ϑ(s),√
nhn(ϑ̂(s)− ϑ(s)) D→ N (0, ϑ(2s)− 2ϑ(s)). (18)

Proof. Referring to the proof of Theorem 4.4 in You and Cai [7], we can easily obtain
the result.

Lemma 4. For real-valued integrable function f supported on [0, ∞), suppose that | f ′(0+)| < ∞,
| f ′(a)| < ∞, and

∫ ∞
0 | f ′′(y)|dy < ∞. Then for some positive constants c1 and c2, we have

sup
x∈[0,a]

| f (x)− f̃ (x)| ≤ c1aK−1 + c2Ka−1
∫ ∞

a
| f (y)|dy.

Proof. The proof of Lemma 4 can be referenced from Appendix A in Xie and Zhang [16].

Proposition 1. Under Assumptions 1 and 2, suppose that hn → 0, nhn → ∞ as n → ∞, and
we have

√
nhn

(
1
n

n

∑
m=1

(Zm − chn)
2

hn
− (σ2 + λµ2)

)
D→ N (0, λµ4). (19)

Proof. Firstly, according to the law of large numbers, we have

1
n

n

∑
m=1

(Zm − chn)
2

hn

P→ σ2 + λµ2, n → ∞.

Because of the stationary and independent increments of the risk process (1), we have

lim
n→∞

Var

(√
nhn(

1
n

n

∑
m=1

(Zm − chn)
2

hn
)

)

= lim
n→∞

1
hn

Var
(
(Zm − chn)

2
)

= λµ4. (20)

Through the central limit theorem, we obtain the result.

Proposition 2. Assuming the same conditions as in Lemma 2, we have

λ̂µ2 − λµ2 = OP

(
1√
nhn

)
. (21)

Proof. By Equation (11), we can obtain

λ̂µ2 − λµ2 =
1
n

n

∑
m=1

(Zm − chn)
2

hn
− 1

hn
(E[Zm − chn])

−hn(λ̂µ1 + λµ1)(λ̂µ1 − λµ1)

−(σ̂2 − σ2).

Combining Lemmas 1 and 2 with Proposition 1, we can obtain

λ̂µ2 − λµ2 = OP

(
1√
nhn

)
.
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Theorem 1. Assuming the same conditions as in Lemma 2, we have

F̂Ψ(s)−FΨ(s) = OP

(
1√
nhn

)
. (22)

Proof. First, let us consider the case where s = 0. By (12), we have

F̂Ψ(0)−FΨ(0) =
σ̂2

2 + λ̂µ2
2

c − λ̂µ1
−

σ2

2 + λµ2
2

c − λµ1

=
(σ̂2 − σ2) + (λ̂µ2 − λµ2)

2(c − λµ1)

+
σ̂2 + λ̂µ2

2(c − λ̂µ1)(c − λµ1)
· (λ̂µ1 − λµ1).

By Lemmas 1 and 2 and Equation (21), we can establish that

F̂Ψ(0)−FΨ(0) = OP

(
1√
nhn

)
. (23)

If s ̸= 0, we have

F̂Ψ(s)−FΨ(s) =
ϑ̂(−s) + ics(1 − ρ̂)

−isϑ̂(−s)
− ϑ(−s) + ics(1 − ρ)

−isϑ(−s)

=
(1 − ρ)

(
ϑ̂(−s)− ϑ(−s)

)
+ ϑ(−s)(ρ̂ − ρ)

1
c

ϑ(−s)ϑ̂(−s)
.

Moreover, by Lemmas 2 and 3, we have

F̂Ψ(s)−FΨ(s) = OP

(
1√
nhn

)
, s ̸= 0. (24)

Finally, combining Equations (23) and (24), we have

F̂Ψ(s)−FΨ(s) = OP

(
1√
nhn

)
.

Remark 1. For s ̸= 0, by Equations (7) and (10) and Lemma 3, we have

√
nhn(F̂Ψ(s)−FΨ(s)) =

√
nhn

1
n

n

∑
m=1

[[
(c − λµ1)

(
e−isZm − 1

)
+ ϑ(−s)(chn − Zm)IDn

m

]
hnϑ2(−s)

− c
ϑ(−s)

]
+ oP(1).

By the Theorem 1 in Mancini [29] and the central limit theorem, we obtain that√
nhn(F̂Ψ(s)−FΨ(s)) D−→ N (0, S), (25)
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where

S =
(c − λµ1)

2(ϑ(−2s)− 2ϑ(−s))
ϑ4(−s)

−
2λ(c − λµ1)

(∫ ∞
0 xeisxF(dx)− µ1

)
ϑ3(−s)

+
λµ2

ϑ2(−s)
.

In Zhang and Yang [3] and You and Cai [7], they gave an estimator of ρ as follows:

ρ̂∗ =
1

cnhn

n

∑
m=1

(chn − Zm). (26)

By Theorem 4.1 in You and Cai [7],

√
nhn(ρ̂

∗ − ρ)
D−→ N

(
0,

σ2 + λµ2

c2

)
. (27)

If we replace ρ̂ with ρ̂∗ in (28), the estimator of FΨ(s) is

F̂Ψ
∗
(s) =


ϑ̂(−s)+ics(1−ρ̂∗)

−isϑ̂(−s)
, s ̸= 0,

σ̂2
2c +

λ̂µ2
2c

1−ρ̂∗ , s = 0.

(28)

By the central limit theorem,√
nhn

(
F̂Ψ

∗
(s)−FΨ(s)

)
D−→ N (0, S∗) (29)

where

S∗ =
(c − λµ1)

2(ϑ(−2s)− 2ϑ(−s))
ϑ4(−s)

+
λµ2 + σ2

ϑ2(−s)

+
2(c − λµ1)

(
isσ2 + λ

∫ ∞
0 xeisxF(dx)− λµ1

)
ϑ3(−s)

. (30)

Comparing F̂Ψ
∗
(s) to F̂Ψ(s), we can easily see that ℜ{S∗} is greater than ℜ{S}. Therefore,

we can know that our estimator F̂Ψ(s) works better.

Theorem 2. Assuming the same conditions as in Lemma 2, we have

sup
0≤x≤a

∣∣Ψ̂(x)− Ψ̃(x)
∣∣ = OP

(
1√
nhn

)
. (31)

Proof. Firstly, by Equations (14) and (15), we obtain

Ψ̂(x)− Ψ̃(x) =
K

∑′

k=0
[B̂Ψ,k − B̃Ψ,k] cos(kπ

x
a
), 0 ≤ x ≤ a,

which gives

sup
0≤x≤a

∣∣Ψ̂(x)− Ψ̃(x)
∣∣ ≤ K

∑
k=0

∣∣B̂Ψ,k − B̃Ψ,k
∣∣ ≤ (K + 1) · sup

k=0,1,...,K

∣∣B̂Ψ,k − B̃Ψ,k
∣∣. (32)

Next, we derive the convergence rate of B̂Ψ,k. For each integer k, we have
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∣∣B̂Ψ,k − B̃Ψ,k
∣∣ = ∣∣∣∣2a · ℜ

{
F̂Ψ(

kπ

a
)

}
− 2

a
· ℜ
{
FΨ(

kπ

a
)

}∣∣∣∣ ≤ 2
a
·
∣∣∣∣F̂Ψ(

kπ

a
)−FΨ(

kπ

a
)

∣∣∣∣. (33)

By Theorem 1, we obtain

sup
k=0,1,...,K

∣∣B̂Ψ,k − B̃Ψ,k
∣∣ ≤ 2

a
sup
s∈S

∣∣∣F̂Ψ(s)− FΨ(s)
∣∣∣ = OP

(
1√
nhn

)
, (34)

then, by Formulas (32)–(34), we can obtain the following result:

sup
0≤x≤a

∣∣Ψ̂(x)− Ψ̃(x)
∣∣ = OP

(
1√
nhn

)
.

Remark 2. Using the triangle inequality, we have

sup
0≤x≤a

∣∣Ψ̂(x)− Ψ(x)
∣∣ ≤ sup

0≤x≤a

∣∣Ψ̂(x)− Ψ̃(x)
∣∣+ sup

0≤x≤a

∣∣Ψ(x)− Ψ̃(x)
∣∣.

Here we can see that Ψ(x) satisfies the conditions of Lemma 4, |Ψ′(0+)| < ∞, |Ψ′(a)| < ∞,
and

∫ ∞
0 |Ψ′′(y)|dy < ∞. Therefore, we can obtain

sup
x∈[0,a]

|Ψ(x)− Ψ̃(x)| = O
(

aK−1 + Ka−1
∫ ∞

a
|Ψ(x)|dx

)
. (35)

Finally, following (31) and (35), we have

sup
0≤x≤a

∣∣Ψ̂(x)− Ψ(x)
∣∣ = OP

(
1√
nhn

)
+ O

(
aK−1 + Ka−1

∫ ∞

a
|Ψ(x)|dx

)
. (36)

By the second term on the right side of Equation (36), large a and large K will lead to good
approximation results. However, compared to K, the selection of the integration-range truncation
parameter a holds significant importance. On the one hand, a small value of a can result in
substantial integration-range truncation error. On the other hand, a large value of a necessitates a
correspondingly large value of K to attain a certain level of accuracy. Based on Wang et al. [17] and
Chau et al. [19], we take a = 200 and K = 210. In this case, our estimators will perform very well
with finite sample sizes by Section 6.

5. Simulation

In this section, we present some simulation studies, executed utilizing MATLAB
R2024a, to meticulously illustrate the performance capabilities of our estimator when
dealing with finite sample sizes. These simulations offer a robust demonstration of our
estimator’s effectiveness in practical scenarios.

Example 1. In this example, we assume that the premium rate c = λ = 8, µ1 = 1
2 , and

F(x) = 1 − e−
1

µ1
x, x ≥ 0.

In Example 1, the jump size U follows an Exp( 1
µ1
). In this case, the ruin probability is

given by

Ψ(x) =
r1 +

1
µ1

+ 2λµ1
σ2

r1 − r2
er1x +

r2 +
1

µ1
+ 2λµ1

σ2

r2 − r1
er2x, x ≥ 0, (37)
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where r2 < r1 < 0 are negative roots of the following equation:

1
2

σ2s + c − λ

s + 1
µ1

= 0. (38)

Example 2. In this example, we assume that the premium rate c = 8, λ = 1.5, the jump size U
follows a Gamma(4, 1) with density

f (x) =
1
6

x3e−x, x ≥ 0.

Example 3. In this example, we assume that the premium rate c = 8, λ = 6, the jump size U
follows a generalized Pareto distribution with density

f (x) =
6
5
(1 +

x
5
)−7, x ≥ 0.

Throughout this section, we assume that K = 210, σ = 3.5, hn = n− 2
3 , and θ = 1

4 .
Firstly, according to Chau et al. [19] and Wang et al. [17], here we set the values of a as

200, 400, 600, 800, and 1000, respectively. In Figure 1, we plot the approximation Ψ̃(x) with
a = 200, 400, 600, 800, and 1000 and the parameter settings in Example 1, and then we list
absolute error between the approximation Ψ̃(x) and true value Ψ(x) in different cases of a
in Table 1.

0 1 2 3 4 5 6 7 8 9 10

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

R
ui

n 
P

ro
ba

bi
lit

y

Figure 1. The approximation Ψ̃(x) with a = 200, 400, 600, 800, and 1000 and true value Ψ(x).

Table 1. Absolute error between the approximation Ψ̃(x) and Ψ(x).

Absolute Error
x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 Average Error

a = 200 0.0622 0.0706 0.0666 0.057 0.0451 0.035 0.056083
a = 400 0.0681 0.0726 0.0666 0.0586 0.0472 0.0354 0.058083
a = 600 0.0547 0.0689 0.0677 0.0599 0.049 0.0375 0.056283
a = 800 0.0571 0.0822 0.0649 0.0574 0.0504 0.034 0.057667
a = 1000 0.073 0.072 0.0686 0.0595 0.046 0.0382 0.05955
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Next, from Table 1, by choosing the approximation value Ψ̃(x) of x = 1, 2, 3, 4, 5, 6
points and comparing it with the real value, we can see that the average absolute error when
a = 200 is smaller than in other cases, so here we choose a = 200 for subsequent simulation.

In Figure 2a, we plot the true ruin probability curve and 100 estimated curves with
sample size n = 10,000 and the parameters setting in Example 1. In Figure 2b, we plot
the true ruin probability curve and some mean curves with sample sizes n = 2000, 5000,
10,000, 20,000 and the parameter settings in Example 1, which are computed based on
100 simulation experiments.

0 2 4 6 8 10

x
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0

0.2

0.4

0.6

0.8

1

1.2

(a)

0 2 4 6 8 10

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

Figure 2. (a) True curve (bold blue line) and 100 estimated curves (green lines) with sample size
n = 10,000. (b) The estimator Ψ̂(x) with sample sizes n = 2000, 5000, 10,000, 20,000.

In Figure 3a, we plot 100 estimated curves, both with and without a threshold function,
along with the true ruin probability curve. The sample size is set to n = 10,000, following
the parameter settings in Example 1. In Figure 3b, We plot the mean estimators for a sample
size of n = 10,000, both with and without a threshold function, as well as the true ruin
probability curve, using the parameter settings from Example 1. These results are based on
100 simulation experiments.

(a)

0 2 4 6 8 10

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

Figure 3. (a) True curve (bold black line), 100 estimated curves without threshold function (green
lines), and 100 estimated curves with a threshold function (red lines) with sample size n = 10,000.
(b) The estimators mean of sample sizes n = 10,000 with and without a threshold function.
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In Figure 4a, we present the mean curves for sample sizes n = 2000, 5000, 10,000,
20,000, along with the approximation Ψ̃(x), using the parameter settings from Example 2.
These results are based on 100 simulation experiments. Similarly, in Figure 4b, we display
the mean curves for the same sample sizes, alongside the approximation Ψ̃(x), using the
parameter settings from Example 3, also derived from 100 simulation experiments.

0 5 10 15 20 25 30 35 40
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0.8
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(a)

0 5 10 15 20 25 30 35 40
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0.8

1
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Figure 4. (a) The estimator Ψ̂(x) with sample sizes n = 2000, 5000, 10,000, 20,000 and the approx-
imation Ψ̃(x). (b) The estimator Ψ̂(x) with sample sizes n = 2000, 5000, 10,000, 20,000 and the
approximation Ψ̃(x).

6. Conclusions

In this article, our result only discussed the asymptotic properties between the approx-
imate ruin probability and its estimator but did not address the asymptotic relationship
between the estimator of the ruin probability and its true value. This is because when
using the Fourier-cosine method, the true value of the ruin probability can be closely
approximated by selecting appropriate values for a and K. In our work, the values of a
and K are based on Chau et al. [19], and we validated these choices in Figure 1 under the
case where the jump sizes in the model follow an exponential distribution, confirming
their appropriateness. For more information on choosing a and K, see references [16,17].
Additionally, we further verified the conclusion of Theorem 4.9 in Examples 2 and 3. In
Examples 2 and 3, it is difficult to determine the true value of the ruin probability directly.
However, it can be estimated using the Monte Carlo method with a large sample size. In
theory, this estimate should be very accurate, though it requires significant computational
time. Ideally, in Examples 2 and 3, we should compare the Monte Carlo estimates with the
approximations from the Fourier-cosine method to further validate the appropriateness of
the a and K values.

We apply the threshold estimation technique and the Fourier-cosine method to con-
struct an estimator for the ruin probability in the Wiener–Poisson risk model, utilizing
high–frequency data. The methodology in this paper can also estimate other ruin-related
quantities, such as the Gerber–Shiu function. However, for the Gerber–Shiu function,
additional parameters or functions must be estimated, making the analysis more complex.
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