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Abstract: Current mainstream methods for detecting surface blemishes on substation equipment
typically rely on extensive sets of blemish images for training. However, the unpredictable nature
and infrequent occurrence of such blemishes present significant challenges in data collection. To
tackle these issues, this paper proposes a novel approach for generating localized, representative
blemish images within substations. Firstly, to mitigate global style variations in images generated
by generative adversarial networks (GANs), we developed a YOLO-LRD method focusing on local
region detection within equipment. This method enables precise identification of blemish locations in
substation equipment images. Secondly, we introduce a SEB-GAN model tailored specifically for
generating blemish images within substations. By confining blemish generation to identified regions
within equipment images, the authenticity and diversity of the generated defect data are significantly
enhanced. Theexperimental results validate that the YOLO-LRD and SEB-GAN techniques effectively
create precise datasets depicting flaws in substations.

Keywords: augmentation of blemish images in substations; YOLO; GAN; localized area blemish
image generation

MSC: 68T07

1. Introduction
1.1. Background

Electricity is an important factor in guaranteeing the development of the national econ-
omy, and a safe and reliable power supply is related to the development of various industries
in society. The substation plays a critical role in the power system by facilitating the transmis-
sion of electricity from power plants to end-users through voltage conversion between high
and low levels. Due to exposure to outdoor environments, important electrical components
such as insulators, high-voltage lines, and fittings are subjected to prolonged sunlight, wind,
rain, snow, hail, acid and alkali corrosion, electrical arcing, foreign object suspension, and other
influences. Compounded by limited production processes for electrical components, materials
are prone to aging and sustained tension effects. Consequently, various apparent blemishes
may occur in different electrical equipment, such as insulator stringing and contamination,
foreign objects hanging on towers, and metal corrosion. If not detected and effectively dealt
with in a timely manner, these apparent blemishes may lead to failures in the power grid
system, causing interruptions in power transmission and resulting in large-scale power outage
accidents, which can inflict significant economic losses on society. Nowadays, identifying
issues like metal rust, oil leaks, and damaged insulators in substations usually require manual
inspections. These inspections are slow and demand a lot of manpower [1]. With the advance-
ment of robotics technology, intelligent inspection methods are gradually integrating into
the process of power grid inspections [2,3]. Inspection robots first follow predefined routes
to inspect power equipment, during which onboard devices collect information from the
substations [4,5]. Through image processing techniques, the inspection images are analyzed
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to detect faults in the power equipment. During the detection process, a large amount of
image data is collected. If these were to be observed by human eyes, there could be issues of
misjudgment or oversight, making it difficult to efficiently identify safety hazards in power
equipment and significantly increasing maintenance costs. Therefore, intelligent surface
blemish detection methods based on image processing technology are essential for inspecting
power equipment [6,7].

1.2. Related Works
1.2.1. Target Detection Methods

In recent years, as processor performance continues to improve, machine learning
methods have also been evolving [8]. Deep learning-based object detection methods
have begun to advance at an unprecedented pace [9]. Nowadays, there are mainly two
main approaches to deep learning-based object detection. The first approach is detection
algorithms based on target region proposal, such as Fast R-CNN, Faster R-CNN, and
Mask R-CNN [10–12]. The second approach is detection algorithms based on integrated
regression networks, such as YOLOv1-v8 [13]. These methods have become popular
technologies applied in defect detection.

The existing blemish detection methods for substation equipment utilizing the above
algorithms necessitate a substantial training dataset to ensure accuracy. Nevertheless, es-
tablishing datasets for surface blemishes encounters several challenges: Firstly, during the
collection of image data, there exists a notable disparity in the quantity of normal images
of substation equipment compared with images depicting blemishes [14]. This places a
substantial burden on the human review and categorization of defective images. Secondly,
differences in manual expertise lead to varying levels of accuracy in the collection, classi-
fication, and annotation of blemish images, presenting challenges in maintaining dataset
quality. Thirdly, current image augmentation algorithms primarily rely on techniques such
as rotation often neglecting super-pixel characteristics. Consequently, the dataset exhibits
considerable redundancy and fails to substantially improve the recognition and detection
performance of deep learning models.

1.2.2. Deep Learning-Based Blemish Image Generation Methods

To tackle the challenges mentioned above, numerous researchers have utilized image
augmentation techniques in a broad spectrum of applications, such as cross-modality insu-
lator augmentation for multidomain insulator defect detection [15], enhanced detection
of subway insulator blemishes [16], and so on. These researchers have explored image
generation techniques utilizing superpixel characteristics. Generative models such as
generative adversarial networks (GAN) [17] play a crucial role in creating new images
featuring intricate backgrounds and diverse attributes. This technique aids in developing
training datasets that are more comprehensive, thus improving the accuracy and efficiency
of blemish diagnosis algorithms. Yang et al. [18] proposed a perceptual capsule cycle
generative adversarial network (PreCaCycleGAN) for industrial defect sample augmen-
tation, generating realistic and diverse defect samples from defect-free real samples. Di
Maggio et al. [19] introduced an innovative approach that leverages CycleGAN [20] to
synthesize data for faulty industrial equipment. Through the training of the CycleGAN
model, wavelet images mimicking vibration signals are converted into authentic data
representing mechanically impaired bearings. Liu et al. [21] utilized DCGAN [22] to create
numerous synthetic samples based on pre-existing concrete crack images. These artificial
samples were carefully curated to be diverse and information-rich. Zhuang et al. [23]
utilized Defect-GAN [24] to enlarge a limited dataset of plastic blemish images. In response
to the scarcity of abnormal blemish images on train surfaces, Liu et al. [25] introduced an
innovative approach. Their Anomaly-GAN effectively maintains the reality of the created
blemish images at both overall and specific levels.

While the image enhancement techniques utilizing adversarial deep learning have shown
promise in generating new industrial blemish images, there are specific challenges when adapt-
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ing them to create substation equipment blemish images. Firstly, the real-world environments
in which substation equipment images are captured often feature intricate backgrounds,
posing a hurdle for existing adversarial deep learning methods that tend to diminish such
complexities. These methods generally alter the overall image style rather than targeting
specific regions of interest, which is crucial for substation equipment blemish generation.
Secondly, substation equipment blemishes, like rust and oil leakage, exhibit diverse and
intricate features that extend beyond simple imperfections such as scratches. Existing GAN
approaches, focusing on simpler blemishes, may struggle to accurately replicate the rich
textures and color variations present in substation equipment blemishes, resulting in lower
success rates. Lastly, the quality of generated images requires enhancement. Common issues
such as mode collapse during GAN training can obscure blemish details, while unrealistic or
unstable generated images may disrupt the coherence between the blemishes and the overall
image, diminishing the natural appearance of the blemishes.

1.3. Main Contributions

To solve the challenge of scarce blemish image data for substation equipment, which
does not meet the supervised deep learning training data requirements, a method for gen-
erating localized typical blemish images in substations is proposed. The key contributions
and innovations are as follows:

(1) To address the issue of global style variation in images generated by GAN methods,
we have proposed a method for local region detection on equipment. We utilize an
improved YOLOv7 [26] method to accurately detect potential blemish locations in
substation equipment images.

(2) We use a GAN model for generating blemish images in substations. By generat-
ing blemishes on localized images of detected substation equipment, the effective
generation of blemish data is achieved.

(3) The above method preserves the features of the original images to a great extent,
while also generating different types of blemishes on multiple devices within the same
image. This addresses the limitations of original images having a single blemish type
and few blemishes. Experimental validation has shown that the dataset generated
by this method effectively enhances the precision of mainstream surface blemish
detection methods.

The following sections are organized as follows: Section 2 outlines the method used
to detect specific areas of substation equipment. Section 3 offers a detailed explanation of
the GAN model employed to generate defective images. Section 4 presents experimental
findings and discussions. Finally, the Section 4 summarizes this study’s findings.

2. Methodologies
2.1. Local Area Detection of Substation Equipment

In the realm of substations, the presence of common imperfections like surface oil
contamination, oil leakage, metal corrosion, and cracked insulator sleeves has long been a
cause for concern. These flaws not only jeopardize the well-being of substation equipment
but also pose a threat to electrical safety. The visual representation of these imperfections
can be seen in Figure 1. Given the haphazard nature of blemish occurrences, capturing
images of these blemishes is no easy feat, let alone capturing multiple blemishes in a
single image. The efficacy of supervised deep learning-based blemish detection hinges on
having a substantial number of images featuring singular blemish categories. Furthermore,
the variety of blemish types depicted in these images plays a crucial role in refining the
accuracy of blemish detection models.

To address the data requirements for training blemish detection models, we introduce
a novel approach based on an enhanced YOLOv7 method for detecting local device regions
(YOLO-LRD) to generate multiclass blemish images overlaid on normal equipment images,
as depicted in Figure 2. This method identifies potential locations for blemish formation
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on equipment, confines the area where blemishes may appear, and ensures the creation of
blemish images without compromising the overall image aesthetics.

Figure 1. Typical blemishes of substation equipment: (a) Surface oil contamination. (b) Metal
corrosion. (c) Oil leakage on the ground. (d) Cracked insulator sleeves.

Figure 2. Structure diagram of YOLO-LRD model.

YOLO-LRD incorporates the C3-S2 block, an advanced feature extraction unit that
enhances both local detail focus and overall processing. This improvement is crucial for
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accurately identifying key features in substation images. Additionally, the integration
of SimAM into the neck network of YOLO-LRD improves the network’s learning ability
and supports adaptive attention weight tuning for diverse input scenarios. The new WD-
CIoU fusion loss function also addresses challenges related to size and shape variations
in substation equipment images. Together, these innovations highlight YOLO-LRD’s
significant advancements in local region detection for substation imagery.

2.1.1. YOLOv7 Model

The YOLOv7 model is structured into three main components: Backbone, Neck,
and Head. In the Backbone, images are initially resized to 640 × 640 pixels, processed
through four convolutional layers, and then processed by an ELAN module along with
three MP1-ELAN modules. The ELAN module improves learning efficiency in deep
networks by managing gradient flow. The Neck module handles feature extraction and
detection output generation, utilizing components such as CBS, SPPCSPC, UpSampling,
MPConv, and ELAN-W for enhanced feature processing. The Head segment, featuring REP
and CBM blocks, refines the final output by fusing feature maps at various downsampling
levels using upsampling to produce the network’s results.

2.1.2. C3-S2 Block

The C3 block plays a crucial role in YOLOv5 [27], enhancing the network’s depth and
perceptive range for better feature extraction. It consists of three convolutional (Conv)
blocks, where the first block uses a stride of 2 to decrease the feature map dimensions by
50%, expanding the perceptive range while controlling computational burden. The sub-
sequent two Conv blocks use a stride of 1, which helps maintain detail resolution and
preserve fine details of local targets. Each Conv in the C3 block employs 3 × 3 kernels,
and utilizes Batch Normalization (BN) layers and LeakyReLU function to stabilize the block
and optimize its effectiveness.

To optimize the YOLOv7 backbone with greater depth and a broader perceptive range,
as well as to improve feature processing efficiency, the upgraded C3-S2 block is presented,
illustrated in Figure 3. This module incorporates principles from the Swin Transformer and
Switchable Atrous Convolution (SAC), facilitating smooth feature transfer between various
windows in the network. It effectively maintains detailed depth information, extends the
network’s perceptual range, and employs attentional strategies to further explore feature
information. Leveraging a residual block architecture and advanced feature extraction
components, the C3-S2 block significantly boosts the YOLO-LRD backbone’s ability.

Figure 3. Structure diagram of C3-S2.

The Swin block leverages key aspects of the Swin Transformer. Our study combines
the Subregion Partitioning and Dimensional Reduction techniques into this block. Firstly,
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the Subregion Partitioning technique divides the input activation map into uniform size,
disjoint segments, facilitating the independent analysis of each segment. This division
enhances the model’s ability to efficiently acquire detailed regional attributes, thereby
boosting processing effectiveness. After the Subregion Partitioning, the Dimensional
Reduction process reduces the feature complexity, converting the input information into a
more compact form. The resultant feature data is subsequently channeled into the Swin
Transformer module. This structured approach supports effective information modification
and engagement, which is essential for thorough feature extraction and aggregation.

The Switchable Atrous Convolution (SAC) block combines PreGlobal Awareness and
PostGlobal Awareness mechanisms, alongside a switching block. This set-up enables
adaptive modulation of the expansion parameter and switch parameter within the SAC
framework, enhancing the capture of multiscale target details. This strategy alleviates
information degradation and improves the network’s performance in processing image
features. Importantly, a flexible switching structure is utilized to manage the equilibrium
between Typical Conv and Atrous Conv, thereby seamlessly integrating Atrous Conv with
the switching structure to detail the SAC block.

In this study, the Coordinate Attention (CA) structure is incorporated subsequent to
the C3-S2 block after SAC. Its main goal is to mitigate the loss of overall spatial weights,
improve the backbone emphasis during characteristic selection, and instantly provide
accurate attribute specifics to the subsequent network layer to minimize needless rep-
etition. The central concept of CA is to embed spatial data in the feature channel axis,
splitting channel-focused attention into feature consolidation throughout two directional
dimensions. One addresses distant relationships, while the other maintains exact spatial
details. Ultimately, these aspects are combined to assess the channel relevance weights,
improving direct attention to intricate target characteristics while minimizing superfluous
or interference-prone channels. The process involves two primary phases: integrating
positional data and creating spatial focus, as shown in Figure 3.

2.1.3. SimAM in the Neck

The Simple, Parameter-Free Attention Module (SimAM) [28] refines network focus by
fine-tuning the energy evaluation to measure the impact of single neurons, modifying focus
coefficients in real time. A key benefit of SimAM is that it delivers these advancements
without adding extra parameters to the detection model. Rather, it utilizes its efficient
parameter set to compute 3D attention weight allocations for feature layers.

Due to its straightforward nature, parameter efficiency, and flexibility, we incorporate
SimAM into the Neck of YOLO-LRD. This inclusion boosts the Neck network’s feature
extraction ability by adjusting attention coefficient allocations for diverse input cases, such
as complicated object features, small details from far-off scales, and large attributes from
close ranges. This approach enables the Neck to concentrate on comprehensive substation
device features while eliminating unrelated data, thus refining feature integration and
enhancing YOLO-LRD’s detection precision.

2.1.4. WD-CIoU Loss

To accurately extract unique attributes, it is crucial to balance target and nontarget
instances. Although the detection of objects across different sizes is widespread in actual
substation environments, current YOLO models are chiefly optimized for targets of regular
scales. The Intersection over Union (IoU) metric, which is size-sensitive, causes significant
variations in IoU results for targets of different sizes. This issue is especially noticeable with
tiny objects, where even slight location changes can lead to substantial IoU fluctuations.
Conversely, comparable adjustments for standard-scaled targets have a negligible effect
on IoU scores. This size dependence results in sudden shifts in bounding box positions,
eventually affecting arrangement accuracy.

To tackle this challenge, an innovative assessment method utilizing Wasserstein Dis-
tance for detecting tiny targets has been proposed [29]. This approach models bounding



Mathematics 2024, 12, 2950 7 of 17

boxes as two-dimensional normal profiles and employs the standardized Wasserstein Dis-
tance (WD) to evaluate the correspondence between these profiles. WD can be smoothly
incorporated into the allocation, nonmaximal value elimination, and loss criteria of anchor-
based models, acting as an alternative to the typical IoU function. This method provides
two key benefits: it precisely assesses the distributional resemblance for tiny objects even
without any intersection, and its unresponsiveness to size enhances its effectiveness in
evaluating tiny object similarities.

For tiny targets, nonobject pixels often infiltrate the bounding box since ground truth
targets rarely align perfectly inside a bounding box. Generally, ground truth pixels cluster
in the center, with background pixels being more frequent near the periphery. To more
precisely apply weights to each pixel within the rectangular region, one effective strategy is
to frame it as a 2D Gaussian distribution N(ϵ, ζ), as illustrated below:

ϵ =

[
cx
cy

]
, ζ =

[
w2

4 0
0 h2

4

]
, (1)

where cx, cy denotes the central point coordinates, and w and h demonstrate the dimensions
of the bounding box. For two 2D Gaussian allocations ϵ1 = N(n1, ζ1) and ϵ2 = N(n2, ζ2),
the second-stage WD is as follows:

WD2
2(ϵ1, ϵ2) = ||n1 − n2||22 + ||ζ1/2

1 − ζ1/2
2 ||2F, (2)

where || · || denotes the F-norm. By employing Gaussian allocations Np and Nr, where
Np depicts the forecasted bounding box Bp = (cxp, cyp, wp, hp) and Nr illustrates the real
data bounding box Br = (cxr, cyr, wr, hr), the second-stage WD within these two bounding
boxes can be expressed as follows:

WD2
2(Np, Nr) = ([cxp, cyp,

wp

2
,

hp

2
]T , [cxr, cyr,

wr

2
,

hr

2
]T)2

2, (3)

Because WD2
2(Np, Nr) is measured in distance metrics, while the value for bound-

ing box correspondence should lie within the (0, 1) range, it is essential to normalize
WD2

2(Np, Nr) as follows:

WD(Np, Nr) = exp[−
WD2

2(Np, Nr)

CLASS
]. (4)

Finally, WD loss is shown as follows.

LWD = 1 − WD(Np, Nr). (5)

The WD loss function is effective for tiny-size objects. Nevertheless, because substation
device images vary in scale, the CIoU loss [30] is included as follows:

IoU =
Rp ∩ Rt

Rp ∪ Rt
, (6)

v =
4

π2 (arctan
wt

ht
− arctan

wp

hp
)2, (7)

α =
v

(1 − IoU) + v
, (8)

LCIoU = 1 − IoU +
ed2

c2 + αv, (9)

where Rp denotes the forecasted bounding box and Rt indicates the real box. The parameter
v evaluates the alignment of the width and height proportions. wt and ht denote the scale
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of the real bounding box, while wp and hp denote the scale of the forecasted bounding box.
Moreover, α assesses the alignment of the dimension ratios between the forecasted and
real bounding boxes. Moreover, ed illustrates the geometric distance between the centroids
of the forecasted and real bounding boxes, and c represents the diagonal distance of the
minimal surrounding rectangle that encompasses both the boxes.

By allocating a suitable merging weight Λ to LWD and LCIoU , we propose the WD-
CIoU loss function as follows:

LWD−CIoU = Λ·LCIoU + (1 − Λ)·LWD. (10)

where Λ is between 0 and 1. Through multiple experiments, we verified that the final
LWD−CIoU can be minimized when Λ is set to 0.7.

2.2. Blemish Generation Algorithm

After successfully detecting local areas of substation equipment, we employ a GAN
method to generate blemishes within these detected regions. This section introduces
two key concepts and their underlying principles: the local area blemish generation model
for substation equipment and the objective loss function. These concepts are utilized to
create corresponding blemish images for the equipment.

2.2.1. Algorithm Principle of GAN

The GAN model is a commonly adopted algorithm for generating images, trained
on a dataset to produce resembling samples [31]. A GAN is composed of two essential
components: the generator and the discriminator. The generator learns the dispersion of
the trial data and employs noise z from a specified dispersion to create data that mirrors
actual input data. Its objective is to generate progressively realistic samples. Meanwhile,
the discriminator acts as a two-class decision model, assessing the likelihood that a given
sample originates from the real data rather than being created.

Currently, most GAN algorithms can only transform the global style of an image
and cannot be confined to a specific area, which can lead to distortion of the image’s
style. For substation equipment blemish images with complex backgrounds, overall image
distortion can affect the quality of the generated dataset, thereby reducing the precision of
detection models. To overcome this limitation, a substation equipment blemish generation
model (SEB-GAN) is proposed, based on the local area detection of substation equipment
obtained using the YOLO-LRD model, depicted in Figure 4. SEB-GAN is designed to
convert images from one category to another, using two data sets: N (normal equipment
images) and B (blemish images). The primary goal is to map samples from N to B. SEB-
GAN achieves this by learning a mapping function G that transforms N into B. Here, G
serves as the generator in the SEB-GAN model, producing an image F(n) in set B from
a sample n in set N. The discriminator DB in SEB-GAN assesses whether the generated
image F(n) is true, structuring a GAN model. SEB-GAN enables the reversible conversion
of normal and blemished images. In this paper, we concentrate on converting typical
images of substation devices to blemished ones.

2.2.2. Localized Blemish Generation Model

In this study, a localized blemish generation algorithm is designed using a dual-path
network built upon the U-Net structure [32], as illustrated in Figure 4. The U-Net is
composed of two primary segments: a feature extraction pathway and a reconstruction
pathway. The feature extraction pathway operates as a standard CNN with a recurring
design for activation layer processing utilizing ConV-BN-ReLU stages. The reconstruction
pathway starts each step with a deconvolution operation, which increases the feature
map dimensions and reduces the count of feature channels by 50%. The resulting feature
map is then aggregated with the aligned map from the feature extraction pathway and
backpropagated. This dual-path mechanism, combined with feature merging, enables the
integration of surface-level positional features with in-depth categorical features, enhancing
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both feature efficiency and image synthesis. Thus, this study uses the U-Net structure
rather than a CNN for the localized blemish generation model.

Figure 4. Structure diagram of SEB-GAN model.

2.2.3. Composite Discriminator

The assessment of created images addresses two primary factors. The first factor
is whether the image correctly depicts substation devices. The second factor is whether
the generated blemishes exhibit characteristics typical of surface blemishes. To achieve
these objectives, we introduce a composite discriminator that evaluates both the complete
image and the blemish. This discriminator consists of two distinct networks: one dedicated
to the blemish region and the other to the entire image. The composite discriminator
integrates the results from these networks to determine the realism of the created image,
thereby improving blemish quality. The structure of the composite discriminator is shown
in Figure 4. The vectors produced by the two distinct networks are concatenated and fed
into a Sigmoid layer, yielding a score between 0 and 1 for the generated image. This score
indicates the likelihood that the image is real.

2.2.4. Loss Function

We use the convergence of the loss curve of the SEB-GAN model to determine whether
the GAN network has converged. When the loss function of the SEB-GAN gradually
decreases and converges to a minimum value during training, we consider the GAN
network to be converged.

Based on the SEB-GAN model’s architecture, the loss function includes three parts [14].
The loss function for the generator Gnorm2de f , responsible for converting blemish-free
images into defective ones, along with its corresponding discriminator D1de f , is formulated
as follows:

Lglo(Gnorm2de f ; D1de f ; Ide f ; MIde f ; Fde f ; MFde f ) =

EInorm∈Pdata(Inorm)[lgD1de f (Ide f , MIde f )]

+EIde f ∈Pdata(Ide f )
[lg(1 − D1de f (Fde f , MFde f ))],

(11)

where Inorm denotes the blemish-free image, Ide f represents the collected blemish image,
MIde f represents the blemish image in YOLO-LRD detected area, Fde f stands for generated
image, and MFde f refers to the generated image in the detected area. This equation describes
a process aimed at enhancing the discriminator D1de f ’s ability to identify local blemishes,
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while simultaneously minimizing the discrepancy between the generated image and its
corresponding blemish-free image in terms of local blemish perception, governed by
Gnorm2de f . As D1de f (Ide f , MIde f ) approaches 1, the discriminator effectively distinguishes
authentic samples. Throughout training, the discriminator remains fixed, and improved
performance by Gnorm2de f can sometimes lead the discriminator to misclassify generated
images as originals, thereby increasing D1de f (Ide f , MIde f ), and reducing overall loss.

Given that surface blemishes on devices typically occupy only a small portion of the
surface, we introduce a local defect perceptual loss within the generator section of the
network to enhance the quality of defect generation:

Lde f (MInorm; MFnorm; MIde f ; MFde f ) = Lsemantic(MFnorm; MInorm)

+Lsemantic(MFde f ; MIde f ),
(12)

where Lsemantic(MFnorm; MInorm) represents the difference loss between the blemish-free
area generated within the YOLO-LRD detected area MFnorm and the actual blemish-free
image MInorm. Similarly, Lsemantic(MFde f ; MIde f ) denotes the difference loss between the de-
fective portion generated within the YOLO-LRD detected area MFde f and the real defective
image MIde f . This loss component aims to ensure high image quality in both defect-free and
defective regions within the mask during generator training. A lower loss value indicates
superior image quality within the mask.

In practical applications, the scarcity of actual defect images compared with the
abundant normal images may result in a lack of diversity in the generated defect image
features. This presents a challenge when using local perceptual D2 loss to ensure high
quality and varied characteristics in generated surface defect images. To address this
issue, this study introduces cycle consistency loss [20]. This method aims to prevent this
scenario and achieve the goal of generating defect images with diverse features using
normal images. The cycle consistency loss assumes the existence of a mapping Hde f 2norm
that can transform the generated defect images back into the space of defect-free sample
images. By establishing a one-to-one mapping between normal and defect sample image
spaces, this approach mitigates the issue of repetitive features in generated defect sample
images. Cycle consistency loss can be formulated as follows:

Lcyc(Gnorm2de f ; Hde f 2norm) = EInorm∈Pdata(Inorm)||Fnorm − Inorm||
+EIde f ∈Pdata(Ide f )

||Fde f − Ide f ||.
(13)

3. Experiments and Discussion

Following the construction of the YOLO-LRD and SEB-GAN models, we proceeded
with experiments conducted on an IW4210-8G server running Ubuntu 18.04. Training of
both models utilized GPU resources.

3.1. Experimental Preparation

In this paper, we generated several typical blemishes, including surface oil contami-
nation on equipment, oil leakage on the ground, metal corrosion, and cracked insulator
sleeves. Therefore, in the equipment surface area detection stage, we collected images of
the substation equipment surface area, the substation equipment ground, and the insulator
sleeves. For each category, 2000 images were collected and annotated, constructing a train-
ing dataset for the substation equipment surface images used to train the YOLO-LRD model.
The YOLO-LRD model initialization involves setting the parameters detailed in Table 1.
The SEB-GAN model initialization involves setting the parameters detailed in Table 2.
To achieve peak performance, in YOLO-LRD, input images are resized to 640 × 640 pixels
and training is carried out with a batch size of 8. We utilize key parameters from the
YOLOv7 model, including momentum, initial learning rate, and decay, due to their es-
tablished effectiveness. An extensive training regimen of 4000 steps provides a thorough
understanding of the process. In SEB-GAN, input images are resized to 256 × 256 pixels
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and training is carried out with a batch size of 1. We utilize key parameters from the
Cycle-GAN model, including training steps, momentum, and initial learning rate due to
their established effectiveness. The learning rate is adjusted dynamically to enhance model
performance and convergence. By following these protocols, we train the YOLO-LRD
and the SEB-GAN models. The process of generating defects in substation equipment is
illustrated in Algorithm 1.

Algorithm 1 Workflow for Generating Defective Images using YOLO-LRD and SEB-GAN

1: Step 1: Image Acquisition
2: Collect images of substation equipment surfaces {I1, I2, . . . , In}
3: Step 2: Annotation and Dataset Construction
4: Construct annotated dataset {(Ii, Bi)} where Bi denotes bounding boxes
5: Step 3: YOLO-LRD Model Construction
6: Initialize YOLO-LRD model architecture
7: Step 4: YOLO-LRD Model Training
8: Train YOLO-LRD model using dataset {(Ii, Bi)}
9: Step 5: Obtain Trained YOLO-LRD Model

10: Trained YOLO-LRD model: MYOLO−LRD
11: Step 6: Dataset Construction for Defects and Normal Surfaces
12: Construct datasets: normal surface images {Inormal} and defect images {Ide f ect}
13: Step 7: SEB-GAN Model Construction
14: Initialize SEB-GAN model architecture
15: Step 8: SEB-GAN Model Training
16: Train SEB-GAN model using datasets {Inormal} and {Ide f ect}
17: Step 9: Generate Defective Images
18: for each new image Ii in substation equipment do
19: Detect surface area using MYOLO−LRD: Bi
20: Generate defect in Bi using MSEB−GAN
21: Obtain defective image Ide f ective
22: end for
23: return Generated defective images {Ide f ective}

Table 1. Training parameters of YOLO-LRD.

Size of input images 640 × 640

Batch 8

Optimizer Adam

Momentum 0.999

Learning rate 0.001

Decay 0.0005

Training steps 4000

Table 2. Training parameters of SEB-GAN.

Size of input images 256 × 256

Batch 1

Optimizer Adam

Momentum 0.5

Learning rate 0.0002

Training steps 150,000
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We then compiled a dataset of 700 images showcasing various surface blemishes on
substation equipment from field scenarios: 353 images of surface oil contamination on
equipment, 233 of oil leakage on the ground, 347 depicting metal corrosion, and 175 show-
ing cracked insulator sleeves. Furthermore, 1200 images of blemish-free substation equip-
ment were collected for training the SEB-GAN model. We then generate 2000 images of
substation equipment blemishes using the SEB-GAN model. In these generated images,
there are 500 images for each type of blemish.

This study evaluates the blemish image dataset generated by the SEB-GAN model
using the YOLOv7 target detection model. Performance is measured using metrics such as
Mean Average Precision (mAP), Precision, Recall, and F1 Score. The specific calculation
formulas are as follows:

Precision =
TP

TP + FP
, (14)

where TP is True Positives, and FP is False Positives.

Recall =
TP

TP + FN
, (15)

where FN is False Negatives.

mAP =
1
n

n

∑
i=1

APi, (16)

where n is the number of classes, and APi is the average precision for class i. APi is the area
under the precision–recall curve for class i.

APi =
∫ 1

0
Pi(Ri)dRi, (17)

where Pi(Ri) is the precision of class i under recall Ri.

F1 =
2 · Precision · Recall
Precision + Recall

, (18)

3.2. Complexity of the Proposed Method

Our method consists of two main components: YOLO-LRD for surface area detection
of substation equipment and SEB-GAN for generating blemish images on the detected
areas. Analyzing the complexity involves several aspects:

1. Model Complexity: YOLO-LRD has a parameter size of 53.7 MB and 49 GFOLPs, mak-
ing it suitable for real-time detection. SEB-GAN has a parameter size of 43.9 MB and
146 GFOLPs, indicating greater computational demands for generating defect images.

2. Memory Usage: YOLO-LRD uses 6.4 G of GPU memory, while SEB-GAN requires
8.0 G. This difference in memory demand can impact overall performance, especially
in resource-limited environments.

3. Training and Inference Time: YOLO-LRD has a faster inference speed during detection,
but SEB-GAN’s training and generation times are longer, requiring a balance between
real-time performance and generation quality.

Overall, our approach creates a complex dependency between real-time detection and
image generation, which may present challenges in performance and resource management.
Delving into the optimization of interactions between these two models can help reduce
overall complexity.

3.3. Effect of Generated Blemishes

After training the YOLO-LRD and SEB-GAN models, we created a test set with
blemish-free substation equipment images to validate the blemish generation methods for
local areas. The generated images are shown in Figure 5.
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Figure 5. Blemish image generated by YOLO-LRD and SEB-GAN models: (a–d) Blemish-free image.
(a1–d1) Detection results of YOLO-LRD. (a2–d5) The generated blemish images.

Figure 5a–d shows the original images collected from the substation, which are free
of blemishes. Figure 5a1–d1 displays the local areas of substation equipment detected by
the YOLO-LRD model, including the equipment surface, ground, and insulator sleeves.
Figure 5a2–d5 illustrates the blemishes generated by the SEB-GAN model in the detected
local areas, such as metal corrosion, surface oil contamination, oil leakage on the ground,
and cracks in the insulator sleeves.

The results demonstrate that the proposed method for generating blemishes on sub-
station equipment effectively maintains the original image’s authenticity while creating
realistic blemishes in likely locations. Moreover, it can generate various types of blemishes
within a single image, facilitating the creation of numerous blemish samples. This capability
meets the training data needs for supervised learning-based defect detection models.



Mathematics 2024, 12, 2950 14 of 17

3.4. Ablation Experiments of YOLO-LRD

YOLO-LRD introduces two primary elements: the C3-S2 block and the SimAM. To de-
termine their effects on performance, a set of ablation tests were carried out. The compre-
hensive results are presented in Table 3.

The addition of the C3-S2 block to the backbone of YOLO-LRD significantly improves
general performance. This improvement is due to the module’s capability to enhance
focused region awareness and holistic image analysis, enabling the accurate detection
of image features pertinent to substation equipment. This novel approach allows the
backbone to handle feature data across different regions, extend the perceptive field depth,
and maintain crucial parameter details.

Furthermore, incorporating SimAM into the neck of YOLO-LRD results in a significant
boost in IoU precision. The SimAM module enhances the network’s training ability by
independently adjusting focus parameters for different input conditions, including com-
plex object features, fine aspects of faraway objects, and prominent features of proximal
objects. As a result, the neck network can effectively focus on capturing intricate features of
substation equipment and ignore nonessential information. This improvement significantly
enhances YOLO-LRD’s general detection performance.

Table 3. Results of the ablation experiments.

C3-S2 SimAM mAP@0.5 (%) F1 Score (%) IoU (%)

83.7 87.6 89.0
✓ 88.1 88.5 89.7

✓ 84.8 87.0 89.9
✓ ✓ 90.3 90.8 92.5

3.5. Comparison Experiment of GAN Models

To assess the image quality produced by the SEB-GAN algorithm, we conducted
comparison experiments. Initially, we applied conventional image enhancement techniques
such as rotation, scaling, and brightness adjustment to generate 2000 images of substation
equipment blemishes. These enhanced images were then combined with the original
blemish images to build a training dataset.

The other five comparison datasets use both reference methods and optimized ap-
proaches [19,21,23], to generate 2000 blemish images sequentially. These images are merged
with the accumulated blemish images to form distinct datasets. Table 4 provides a compari-
son of the computational demands among the six GAN techniques.

It can be concluded that the Def-GAN model consumes a significant amount of
computational resources, reflecting its superior intricacy compared with the other models.
The SEB-GAN and Cycle-GAN algorithms show similar complexity levels. Due to the
intricate backgrounds in substation device images, these algorithms often alter the general
appearance of the images, resulting in greater distortion compared with authentic scenarios.
This complicates image annotation and the training of the blemish detection algorithm.

Table 4. Comparison experiment results.

Image Augmentation Method mAP/% F1
Score/% Params/MB

GPU
Memory
Usage/G

GFLOPs

Conventional techniques 74.9 84.4 - - -
Cycle-GAN 73.7 84.3 39.1 6.3 105

ResNet + Cycle-GAN 74.1 84.7 41.5 6.3 129
DCGAN 71.8 80.9 27.5 4.7 75

CONV + DCGAN 72.4 82.6 27.7 4.7 82
Def-GAN 76.9 86.5 76.3 11.2 335
SEB-GAN 90.3 90.8 43.9 8.0 146
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We evaluated YOLOv7 object detection models trained on datasets generated by dif-
ferent GAN methods using authentic scenarios test datasets, detailed in Table 4. Compared
with the current state-of-the-art model Def-GAN, our SEB-GAN model trained on a dataset
of images it generated achieved a 13.4% improvement in mAP accuracy and a 4.3% increase
in F1 score, while requiring fewer computational resources for training. The results show
that SEB-GAN creates more varied images compared with conventional techniques. Unlike
other GAN methods, SEB-GAN precisely manages blemish regions, effectively mitigating
issues related to image authenticity. This enhancement in object detection performance
highlights SEB-GAN’s ability to produce blemish images with both intricate detail and
enhanced authenticity.

3.6. Limitations of the Proposed Method

During the experiments, we found that using the YOLO-LRD model for substation
equipment surface area detection and the SEB-GAN model for defect generation could
generate blemishes of the corresponding categories on the equipment surface without
altering the overall image style. However, this method still has the following limitations:

1. Compared with real defect images, the defect positions in the images generated by
our method are not sufficiently realistic. For instance, oil stains typically occur at
seals or other vulnerable joints of oil tanks prone to leakage, whereas our model may
generate oil stains on the tank body surface where such stains are less likely to occur.

2. The connection between the generated blemishes and the background image still ex-
hibits a noticeable boundary, lacking naturalness. For example, significant differences
in brightness, saturation, and other aspects between the generated blemishes and the
background image can make the generated image appear unnatural.

3. Our proposed method is capable of generating defect textures that are relatively
simple, but it struggles to generate blemishes with complex textures such as bird nests,
foreign objects, or intricate damage patterns like markings. The SEB-GAN method’s
performance in generating such complex defect features is inadequate.

4. Conclusions

In this paper, we propose a novel method for generating localized typical blemish im-
ages in substations. To address the issue of global style variation in GAN-generated images,
we introduce a local region detection approach. By utilizing the YOLO-LRD method, we
accurately pinpoint potential blemish locations in substation equipment images. YOLO-
LRD features the C3-S2 block, a sophisticated unit for feature extraction that enhances
both local detail and overall processing efficiency. This enhancement is vital for accurately
detecting key features in substation images. Furthermore, integrating SimAM into the neck
network boosts the model’s learning capacity and facilitates adaptive attention weight
adjustment for various input conditions. The introduction of the WD-CIoU fusion loss
function also tackles issues related to size and shape variations in images of substation
equipment. Collectively, these advancements demonstrate YOLO-LRD’s notable progress
in local region detection for substation imagery.

We then developed the SEB-GAN model specifically for generating blemish images in
substations. SEB-GAN employs a joint discriminator that evaluates both the overall image
and the defect image, thereby improving the quality of the generated defect images. This
approach targets the creation of defect images in particular areas of substation equipment
while maintaining the overall quality of the images. As a result, it prevents distortions that
may arise from alterations in the global image style.

Our method excels in producing high-quality equipment blemish images with rich
features and high realism. Experimental results show that the YOLOv7 defect detection
model trained by the dataset generated by SEB-GAN, achieves an mAP of 90.3%, an F1
score of 90.8%, and an IoU of 92.5%. The results demonstrate that the SEB-GAN model
surpasses performance of other conventional GAN-based methods in image generation
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quality. Additionally, the training sets produced enhance the detection accuracy of leading
object detection algorithms.

Future work may involve conducting application experiments on a wider range of
substation equipment data, further validating the practical performance of YOLO-LRD and
SEB-GAN, and making additional enhancements to the networks.
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