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Abstract: Motivated by the comovement of realized volatilities (RVs) of agricultural commodity
prices, we study whether multi-task forecasting algorithms improve the accuracy of out-of-sample
forecasts of 15 agricultural commodities during the sample period from July 2015 to April 2023. We
consider alternative multi-task stacking algorithms and variants of the multivariate Lasso estimator.
We find evidence of in-sample predictability but scarce evidence that multi-task forecasting improves
out-of-sample forecasts relative to a classic univariate heterogeneous autoregressive (HAR)-RV model.
This lack of systematic evidence of out-of-sample forecasting gains is corroborated by extensive
robustness checks, including an in-depth study of the quantiles of the distributions of the RVs
and subsample periods that account for increases in the total spillovers among the RVs. We also
study an extended model that features the RVs of energy commodities and precious metals, but our
conclusions remain unaffected. Besides offering important lessons for future research, our results
are interesting for financial market participants, who rely on accurate forecasts of RVs when solving
portfolio optimization and derivatives pricing problems, and policymakers, who need accurate
forecasts of RVs when designing policies to mitigate the potential adverse effects of a rise in the RVs
of agricultural commodity prices and the concomitant economic and political uncertainty.
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1. Introduction

Quite a number of empirical studies have been undertaken to shed light on the con-
nectedness of volatility across agricultural commodities (see, for example, refs. [1–7],
with [8] highlighting that accounting for co-volatility of Chinese futures of five agricultural
commodities (corn, cotton, palm, wheat, and soybeans) improved the accuracy of volatility
forecasts—in particular for corn, cotton, and wheat. It must be noted that the underlying
spillovers of risk across agricultural commodities is not surprising, given that behavioral,
macroeconomic, and financial shocks, which define the underlying state of these markets,
tend to be common and that the commonality has grown stronger in recent years (see the
detailed discussions in [9–11] in this regard). We contribute to this area of research by
exploring whether stacking algorithms that have been developed in the recent bioinformat-
ics literature can help to improve the accuracy of out-of-sample forecasts of the intraday
data-based realized volatility (RV) of 15 important agricultural commodities during the
daily sample period of July 2015 to April 2023.

An important advantage of using RV for our empirical analyses derives from the
rich information contained in intraday data, besides being a consistent and asymptotically
unbiased estimator of volatility [12–14]. In addition, RV is an observable and unconditional
metric of “volatility”. This, in turn, is unlike the latent processes underlying the class

Mathematics 2024, 12, 2952. https://doi.org/10.3390/math12182952 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12182952
https://doi.org/10.3390/math12182952
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5002-3428
https://doi.org/10.3390/math12182952
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12182952?type=check_update&version=1


Mathematics 2024, 12, 2952 2 of 26

of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Stochastic
Volatility (SV) models that have been widely used in predicting agricultural commodity
price volatility (see [15,16] for reviews of this extensive literature). Moreover, the dynamics
of RV can be easily modeled by means of the heterogeneous autoregressive (HAR)-RV
model [17]. The HAR-RV model has been extensively studied in research on realized
volatility, including that of agricultural commodities (as reviewed in [18–20]) because
it is able to capture long-memory and multi-scaling properties of realized volatility, as
reported by [21–23]. Because the HAR-RV model employs RVs at different time resolutions
to model and predict RV, it can be interpreted as a simple empirical representation of the
heterogeneous market hypothesis (HMH; Ref. [24], which stipulates that asset markets (in
our case, markets for agricultural commodities) are populated by various types of market
participants, such as investors, speculators and traders, who, in turn, in turn, vary in their
sensitivity to information flows at high and low frequencies.

Another advantage of the HAR-RV model is that it can easily be adapted to a multi-
task forecasting setting, i.e., a setting where a forecaster seeks to forecast not only the RV of
a single agricultural commodity but the RVs of several agricultural commodities simulta-
neously. One possibility to address such a multi-task forecasting problem is to consider
as a modeling framework one of the multivariate HAR-RV models with heteroskedastic
error structures, as has been studied by, for instance, refs. [5,8,25–28]. The focus of many
studies in this area, however, has been on modeling and forecasting co-volatilities (see,
for example, refs. [5,27,29–32]). Moreover, applications of HAR-RV cum heteroskedastic
error models are often restricted to settings where the number of RVs to be analyzed is
relatively small, as was the case in [5,8], involving seven and five agricultural commodities,
respectively. This is due to the fact that, in a multivariate setting, the number of parameters
to be estimated rapidly increases in the dimension of the model unless a researcher is
willing to impose restrictions on parameters and/or functional forms so as to obtain a
parsimonious representation of the heteroskedastic error structures.

In our case, the dataset comprises the RVs of 15 agricultural commodities (and, in an
extended model, the RVs of three additional important energy commodities and the RVs
of five precious metals), so we use various computationally efficient multi-task stacking
algorithms that have been proposed in the recent bioinformatics literature (along with a
multivariate shrinkage estimator) to re-examine the out-of-sample predictability of the
RVs of the commodities in our sample (for a recent application of stacking in a univariate
forecasting exercise of stock returns, see [33]). We also focus on direct spillovers among
the RVs as captured by a multi-task HAR-RV model and do not consider the issue of
forecasting co-volatility, which requires the imposition of further structure on the residuals.
The multi-task stacking algorithms are easy to implement, even when the dimension of the
model is large. Moreover, they make it possible to employ and combine alternative popular
machine learning algorithms that make it possible to estimate a multi-task HAR-RV model
in a data-driven way, that is, without imposing any specific structure that restricts the
spillover dynamics across the RVs a priori. Finally, the multi-task stacking algorithms can
be set up in a way such that the resulting statistical model captures potential nonlinear
structures in the data, an issue that certainly deserves special attention in the wake of
the type of sudden outbreaks and clustering of volatility typical of financial markets and
of markets for agricultural commodities as well. In the process, our paper adds to the
growing literature on modeling and predicting the RVs of agricultural commodities by
investigating the role of volatility spillovers; thus far, researchers in this literature have
otherwise relied on realized moments (such as realized kurtosis and realized jumps) and
various other predictors that relate, for example, to the state of financial and other (non-
agricultural) commodity markets, investor sentiment, climate change-related risks, and
infectious disease-related uncertainty (see, for example, [8,15,16,18–20,34–39]).

Agricultural commodities have become increasingly financialized [40–42]. This pro-
cess has caused institutional investors to increase their holdings in agricultural commodities
relative to traditional assets. Naturally, besides the academic value of our work, accurate
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forecasts of the volatility of agricultural commodity prices are of key importance for in-
vestors because volatility is a core input in investment and portfolio allocation decisions,
risk management, derivatives pricing, and assessments of hedging performance [43,44]. In
addition, agricultural commodities comprise a large proportion of household consumption
spending, implying that price volatility in agricultural commodities markets is likely to
have substantial consequences for food security, especially as far as the economically vul-
nerable groups of the population are concerned [45–47]. Hence, from a policy perspective, it
is important to produce accurate high-frequency forecasts of agricultural commodity price
volatility so that policies can be discussed and implemented in a timely manner to protect
vulnerable groups, in particular, from large and adverse food price fluctuations [48,49].

In order to present our empirical findings, we organize the rest of the paper as follows.
In Section 2, we provide a description of the data we use in our study, while in Section 3,
we outline our methods. In Section 4, we present our empirical results. In Section 5,
we conclude the paper.

2. Data

In our empirical analysis, we use data on the RVs of 15 agricultural commodities. The
data are available publicly for download from the Internet page of Professor Dacheng Xiu.
(Internet address: https://dachxiu.chicagobooth.edu/#risklab. Data downloaded on 4 May
2024). The data are based on (Globex) data for the following 15 agricultural commodity
futures: soybean oil futures (BO), cocoa futures (CC), corn futures (C), cotton no. 2 futures
(CT), feeder cattle futures (FC), coffee C futures (KC), lumber futures (LB), live cattle futures
(LC), lean hog futures (LH), orange juice futures (OJ), oat futures (O), sugar #11 futures
(SB), soybean meal futures (SM), soybean futures (S), and CBOT wheat futures (W). After
matching the data by date, the matched dataset starts on 27 July 2015 and ends on 28 April
2023. We plot the RV data of the agricultural commodities in Figure 1. The RVs display a
discernible heterogeneity across the agricultural commodities, and they also exhibit the
type of clusters and sudden outbursts characteristic of many financial market volatilities.
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Figure 1. RVs of agricultural commodities.
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In order to obtain a first glimpse of the comovement of the RVs, we plot their full-
sample contemporaneous correlation matrix in Figure 2. The contemporaneous correlations
vary from weakly negative to strongly positive, with the positive correlations mainly
collected in the lower part of the matrix. For example, we observe strong positive con-
temporaneous correlations between C and S, S and SM, and LC and FC, among others.
While the full-sample contemporaneous correlations shed light on an important feature of
the data, one should bear in mind that the correlations do not inform about the question
as to whether the comovement of the RVs can be exploited in a multi-task out-of-sample
forecasting exercise to improve predictive accuracy at various forecast horizons.
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Figure 2. Full−sample correlation matrix.

3. Methods
3.1. Forecasting Models

We frame our empirical analysis in terms of the popular HAR-RV model developed
by [17]. This model can be specified by the following equation:

RVt+h = β0 + β1RVt + β2RVIF,t + β3RVLF,t + ut+h, (1)

which we estimate using the ordinary least squares (OLS) technique, where β j, j = 0, . . . , 3
are the coefficients to be estimated, ut+h denotes a disturbance term, and RVt+h denotes
the average realized volatility over the forecast horizon (h). In our empirical research, we
study one short, two intermediate, and one long forecast horizon. To this end, we specify
h = 1, 5, 10, 22. The predictors are the daily realized volatility (RVt), the intermediate-
frequency (IF) realized volatility, (RVt,IF), and the low-frequency (LF) realized volatility,
(RVt,LF). We define IF realized volatility as the average realized volatility from period t − 5
to period t − 1 and LF realized volatility as the average realized volatility from period
t − 22 to period t − 1, as computed using the matched data.

We emphasize that in order to avoid non-negativity constraints and to bring the data
closer to normality, we use the natural logarithm of the RV to estimate the HAR-RV model
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(and its extension to the HAR-RV-S model), which accounts for potential spillover effects.
However, we evaluate the resulting forecasts in terms of the anti-log of the RV.

The variant of the HAR-RV model that accounts for spillover effects, the HAR-RV-S
model, is expressed by the following equation:

RVt+h,i = β0 + β1RVt,i + β2RVIF,t,i + β3RVLF,t,i

+∑
j ̸=i

(
β4,jRVt,j + β5,jRVIF,t,j + β6,jRVLF,t,j

)
+ ut+h, (2)

where i is the agricultural commodity being studied and the index j denotes the other
agricultural commodities. Hence, we obtain the HAR-RV-S model by adding the daily,
intermediate-frequency, and low-frequency realized volatilities of the other agricultural
commodities and, thereby, account for potential spillover effects at different time resolutions.
We emphasize that the HAR-RV-S model captures direct spillover effects among the RVs,
not the dynamics of co-volatilities.

We use the R language and environment for statistical computing ([50]; R version 4.3.1)
to estimate our forecasting models and to compute all other results that we lay out in this
research. We estimate the forecasting models either by means of a recursively expanding
estimation window or by means of a rolling estimation window. We use 50% of the data to
initialize the recursive estimations. Similarly, we use 50% of the data to define the length
of a rolling estimation window. Finally, we use the root mean squared forecasting error
(RMSFE) and the mean absolute forecasting error (MAFE) to evaluate the out-of-sample
performance of the forecasting models, where we compute the ratio of the RMSFE (MAFE)
of the HAR-RV-S model and the HAR-RV model to alleviate the interpretation of our
empirical results. Hence, an RMSFE (MAFE) ratio smaller than unity implies that the
HAR-RV-S model outperforms the HAR-RV model, while a ratio larger than unity signals
that the HAR-RV model is the better forecasting model.

3.2. Stacking Algorithms

Given that our sample comprises 15 agricultural commodities and we have to consider
(leaving the intercept term apart) a total of 15 × 3 = 45 predictors, we use computationally
efficient stacking algorithms to estimate the forecasting model given in Equation (2).

The first stacking algorithm that we use (we call this algorithm the baseline stacking
algorithm) was studied recently by [51]. This baseline stacking algorithm requires that
we treat the forecasting model given in Equation (2) as a base learner. Accordingly, we
estimate 15 base learners—one for every agricultural commodity. Given the large number
of parameters to be estimated, we estimate the base learners either by means of the Lasso
estimator, as an elastic net, or by means of the Ridge regression estimator (see [52,53]),
where we choose the corresponding shrinkage parameter using 10-fold cross validation
(CV). We use the CV-based out-of-fold predictions from the base learners to construct a
matrix (ĤCV) with 15 columns—one for every agricultural commodity. Finally, we construct
a meta learner by estimating a regression model—one for every agricultural commodity—
of RVt+h on all predictors in ĤCV . Hence, the baseline stacking algorithm implies that
the second-stage meta learners extract the information embedded in the predictors of the
base learners in a way such that the forecast of RVt+h combines the first-stage estimated
effects on all RVs in a linear way. We use the shrinkage estimator that we apply to the base
learners to estimate the meta learners. We use R add-on package “joinet” [51] to implement
the baseline stacking algorithm.

In addition, we use a modified stacking algorithm that was proposed recently by [54].
Specifically, we use their residual stacking algorithm and corresponding R add-on pack-
age“MTPS”. The modified stacking algorithm requires that we fit base learners in the first
stage and compute the resulting fitted values of the RVs. One then models the residuals
one obtains for agricultural commodity k using the fitted first-stage RVs (excluding the one
for k) and obtains a meta learner using the first-stage base learner plus the fitted residual
function. As a result, one can combine, for example, a first-stage Lasso estimator with a
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another Lasso estimator or, in case one suspects that the data feature nonlinear patterns
that are worthwhile studying, regression trees [55] to obtain a meta learner. We call the
latter a Lasso-RF model because a regression tree represents a general (rather than a linear)
residual function.

4. Empirical Results
4.1. Full-Sample Results

We start the discussion of our empirical results by eyeballing the heat maps we plot
in Figure 3, which show the full-sample coefficients of the HAR-RV-S model for the four
different forecasting horizons. The results are based on the Lasso version of the baseline
stacking algorithm. The upper-left heat map shows that at the short forecasting horizon
(h = 1), the coefficients of the classic HAR-RV model (that is, the diagonal cells of the map)
dominate the scenery. The colors of most of the off-diagonal cells indicate that the spillover
coefficients are close to zero and, in some cases, negative. The coefficients of the HAR-RV-S
model somewhat gain in prominence as we move on to one of the intermediate forecast
horizons (h = 5, 10) plotted in the upper-right and lower-left heat maps. While there are
several positive off-diagonal coefficients, we also observe various negative estimated coeffi-
cients, especially when we consider the off-diagonal (RVLF) coefficients in the upper part of
the heat maps. Finally, at the long forecast horizon (h = 20), it appears that, while there are
still some noticeable spillover effects, the own RVLF coefficients gain somewhat in relative
importance again (lower-right panel). Taken together, the estimated coefficients indicate
that it may be possible to improve in-sample model fit by accounting for spillover effects.

Figure 3. Cont.
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Figure 3. Full−sample estimated coefficients (baseline stacking algorithm). The forecast horizons are
h = 1, 5, 10, 20 (starting in the upper-left panel).

The results we summarize in Figure 4 illustrate that this is, indeed, the case. Figure 4
plots in-sample ratios of the RMSFE for a comparison of the HAR-RV-S model with the
HAR-RV model. An RMSFE ratio smaller than unity indicates that the HAR-RV-S model
produces a smaller in-sample RMSFE than the HAR-RV model. The results, irrespective of
whether we study a Lasso estimator, an elastic net, or a Ridge regression estimator, indicate
that the in-sample fit of the HAR-RV-S model relative to the classic HAR-RV model tends
to improve as we increase the length of the forecast horizon.
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Figure 4. Cont.
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Figure 4. RMSFE ratios for the full sample (baseline stacking algorithm). RMSFE ratios for a
comparison of the HAR-RV-S model (meta learner) with the HAR-RV model. An RMSFE ratio smaller
than unity indicates that the meta learner produces a smaller in-sample RMSFE than the HAR-RV
model. The forecast horizons are h = 1, 5, 10, 20.

4.2. Forecasting Results

In-sample fit does not necessarily carry over to an out-of-sample analysis. We start
our comparison of the out-of-sample performance of the HAR-RV-S model, as estimated by
the baseline stacking estimator, with that of the HAR-RV model, as estimated by the OLS
technique. Figure 5 depicts the resulting RMSFE ratios that we obtain when we consider
a recursive estimation window, while Figure 6 depicts the corresponding RMSFE ratios
for a rolling estimation window. The key result for both types of estimation windows is
that the classic HAR-RV model outperforms the HAR-RV-S model for the vast majority
of commodities, especially when we increase the length of the forecasting horizon. This
key result is not sensitive to the specific choice of the shrinkage estimator (Lasso estimator,
elastic net, or ridge regression).

Figure 7 shows, for the example of a recursive estimation window, that we observe the
superior performance of the HAR-RV model relative to the HAR-RV-S model when we also
consider the MAFE as our metric of forecasting accuracy. The MAFE ratios should be less
sensitive to large forecasting error in the wake of a sudden outburst of RV (see Figure 1)
than the RMSFE ratio, but the results clearly demonstrate that our key result is robust to
changes in the metric of forecast accuracy.

Figure 8 (for a recursive estimation window) and Figure 9 (for a rolling estimation win-
dow) summarize the results we obtain when we study the modified stacking algorithm. For
the modified stacking algorithm, we consider the following four alternative combinations
of estimators: a Lasso–Lasso estimator, a Lasso-RF (that is, a general regression tree-based
residual function) estimator, a ridge–ridge estimator, and a ridge-RF estimator. Four all
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four combinations of estimators, we use the RMSFE ratio to quantify relative forecasting
performance. Across the four combinations of estimators, we observe that the HAR-RV-S
model does not outperform the classic HAR-RV model. Quite to the contrary, the HAR-RV
model exhibits a robustly superior performance, especially as the length of the forecasting
horizon increases.
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Figure 5. RMSFE ratios for a recursive window (baseline stacking algorithm). RMSFE ratios for a
comparison of the HAR-RV-S model (meta learner) with the HAR-RV model. An RMSFE ratio smaller
than unity indicates that the meta learner produces a smaller in-sample RMSFE than the HAR-RV
model. The forecast horizons are h = 1, 5, 10, 20.
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Figure 6. RMSFE ratios for a rolling window (baseline stacking algorithm). RMSFE ratios for a
comparison of the HAR-RV-S model (meta learner) with the HAR-RV model. An RMSFE ratio smaller
than unity indicates that the meta learner produces a smaller in-sample RMSFE than the HAR-RV
model. The forecast horizons are h = 1, 5, 10, 20.
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Figure 7. MAFE ratios for a recursive window (baseline stacking algorithm). MAFE ratios for a
comparison of the HAR-RV-S model (meta learner) with the HAR-RV model. A MAFE ratio smaller
than unity indicates that the meta learner produces a smaller in-sample MAFE than the HAR-RV
model. The forecast horizons are h = 1, 5, 10, 20.
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Figure 8. RMSFE ratios for a recursive window (modified stacking algorithm). RMSFE ratios for a
comparison of the HAR-RV-S model (meta learner) with the HAR-RV model. An RMSFE ratio smaller
than unity indicates that the meta learner produces a smaller in-sample RMSFE than the HAR-RV
model. The forecast horizons are h = 1, 5, 10, 20.
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Figure 9. RMSFE ratios for a rolling window (modified stacking algorithm). RMSFE ratios for a
comparison of the HAR-RV-S model (meta learner) with the HAR-RV model. An RMSFE ratio smaller
than unity indicates that the meta learner produces a smaller in-sample RMSFE than the HAR-RV
model. The forecast horizons are h = 1, 5, 10, 20.

4.3. Robustness Checks

As our first robustness check, in Figure 10 (recursive estimation window) and Figure 11
(rolling estimation window) we summarize the results for multivariate Lasso, multivariate
elastic net, and multivariate ridge regression estimators. For estimation of the multivariate
shrinkage estimators, we use R add-on package “glmnet” [56]. For the short forecast
horizon, we observe a few cases for which the HAR-RV-S model performs better than the
classic HAR-RV model, but the general message conveyed by the results is in line with
the results for the stacking algorithms. The classic HAR-RV model performs well for the
majority of agricultural commodities at the short forecast horizon, and it performs better
than the HAR-RV-S model at the intermediate and long forecast horizons.
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Figure 10. RMSFE ratios for a recursive window (multivariate shrinkage estimator). RMSFE ratios
for a comparison of the HAR-RV-S model (meta learner) with the HAR-RV model. An RMSFE ratio
smaller than unity indicates that the meta learner produces a smaller in-sample RMSFE than the
HAR-RV model. The forecast horizons are h = 1, 5, 10, 20.

As another robustness check, we study the relative performance of the HAR-RV-S
model along the quantiles of the distribution of the actual realizations of RV during the
out-of-sample period. We plot the results in Figure 12 (recursivce estimation window)
and Figure 13 (rolling estimation window), where we focus on the baseline stacking
algorithm for the sake of space. We observe that the HAR-RV-S model slightly outperforms
the HAR-RV model at the short forecast horizon for intermediate quantiles close to the
median, mainly when we consider a Lasso estimator. For the intermediate and long
forecast horizons, in contrast, the HAR-RV model clearly outperforms the HAR-RV-S
model. The relative performance of the HAR-RV-S model only starts improving at some of
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the very upper quantiles, but this improvement is not strong enough to beat the forecasting
performance of the HAR-RV model in a robust way.
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Figure 11. RMSFE ratios for a rolling window (multivariate shrinkage estimator). RMSFE ratios for a
comparison of the HAR-RV-S model (meta learner) with the HAR-RV model. An RMSFE ratio smaller
than unity indicates that the meta learner produces a smaller in-sample RMSFE than the HAR-RV
model. The forecast horizons are h = 1, 5, 10, 20.
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Figure 12. Quantile-based RMSFE ratios for a recursive window (baseline stacking algorithm).
RMSFE ratios for different quantiles of the realizations of RV. RMSFE ratios for a comparison of
the HAR-RV-S model (meta learner) with the HAR-RV model. An RMSFE ratio smaller than unity
indicates that the meta learner produces a smaller in-sample RMSFE than the HAR-RV model. The
forecast horizons are h = 1, 5, 10, 20.

As yet another robustness check, we consider the possibility that the strength of
spillover effects between the RVs varies over time. If so, the performance of the HAR-RV-S
model relative to that of the classic HAR-RV model may have undergone corresponding
changes over time. In order to study this question in some more detail, in Figure 14, we
plot rolling-window estimates of the Diebold–Yilmaz [57,58] total dynamic spillover index
(implemented using the add-on package “Spillover”; see [25,59] for a discussion of the link
between the multivariate HAR-RV model and the Diebold–Yilmaz index). The estimation
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results clearly reveal that the strength of the total spillover effects among the RVs of the
agricultural commodities in our sample has increased over time. This increase in the
strength of the total spillover effects warrants a closer inspection of the relative forecasting
performance of the HAR-RV-S and HAR-RV models during subsample periods.
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Figure 13. Quantile-based RMSFE ratios for a rolling window (baseline stacking algorithm). RMSFE
ratios for different quantiles of the realizations of RV. RMSFE ratios for a comparison of the HAR-RV-S
model (meta learner) with the HAR-RV model. An RMSFE ratio smaller than unity indicates that the
meta learner produces a smaller in-sample RMSFE than the HAR-RV model. The forecast horizons
are h = 1, 5, 10, 20.

While providing a detailed examination of the sources of the increase in the strength
of the total spillover effects is beyond the scope of this research, a plausible economic
conjecture is that factors like increased geopolitical tensions and war attention, as well as
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climate policy uncertainty, are factors that have contributed to the increase in the strength
of the total spillover effects. These global factors are likely to have had an impact on the
agricultural commodities in our sample, although perhaps different in magnitude and
timing. Furthermore, the trends towards a deeper financialization of commodity markets
may have strengthened the importance of behavioral aspects like investor sentiment and
investor panic for the total spillover effects. With respecto the roles played by war attention,
climate risks, and investor panic for financial markets, as well as financial and economic
stability, see the recent research by [59–61]. Also see the remarks on the relevant literature
in the introductory section.
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Figure 14. Rolling-window estimates of a spillover index. The total dynamic spillover index is derived
from a VAR(5) model estimated using a rolling estimation window with a length of 1000 observations
and a 10-step-ahead generalized forecast error variance decomposition.

We summarize the results of such a subsample analysis in Figure 15 (recursive es-
timation window) and Figure 16 (rolling estimation window), where we use the first
450 out-of-sample forecasts to define the first subsample period and the remaining forecasts
to define the second subsample period (the exact number of out-of-sample forecasts de-
pends on the forecast horizon). While we find the superior performance of the HAR-RV-S
model in terms of the RMSFE ratio for some combinations of agricultural commodities and
forecast horizons, the general picture that emerges from the analysis of the subsamples
is that the relative forecasting performance of the HAR-RV-S model is not systematically
better in the second than in the first subsample. There are a few exceptions to this general
picture. For example, in some model configurations, the HAR-RV-S model outperform
the HAR-RV model in the second but not in the first subsample when we consider the
RVs of CC and KC, but not at all forecast horizons and not for all four combinations of
estimators. Moreover, as in the case of the full-sample analysis, the relative performance of
the HAR-RV model, in general, strengthens with the length of the forecast horizon. It is also
interesting to observe that in the first subsample, the HAR-RV-S-model outperforms the
HAR-RV model for C and S (in the case of the latter, only for the rolling estimation window)
when we use the Lasso–Lasso and the ridge–ridge estimators, where the performance of
the HAR-RV-S model tends to strengthen with the length of the forecast horizon. Thus,
our results for the first subsample partially overlap (that is, for C and S) with the results
reported by [8], who reported results for the sample period of 2013–2018 (using Chinese
data, so it is clear that the results are not directly comparable).
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Figure 15. Subsample analysis for a recursive window (modified stacking algorithm). The
panels on the left-hand side summarize the results for the first subsample. The panels on the
right-hand side summarize the results for the first subsample. The first subsample comprises
the first 450 out-of-sample forecasts. The second subsample is obtained upon deleting the first
450 out-of-sample forecasts. RMSFE ratios for a comparison of the HAR-RV-S model (meta learner)
with the HAR-RV model. An RMSFE ratio smaller than unity indicates that the meta learner produces
a smaller in-sample RMSFE than the HAR-RV model. The forecast horizons are h = 1, 5, 10, 20.
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Figure 16. Cont.
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Figure 16. Subsample analysis for a rolling window (modified stacking algorithm). The panels on the
left-hand side summarize the results for the first subsample. The panels on the right-hand side sum-
marize the results for the first subsample. The first subsample comprises the first 450 out-of-sample
forecasts. The second subsample is obtained upon deleting the first 450 out-of-sample forecasts.
RMSFE ratios for a comparison of the HAR-RV-S model (meta learner) with the HAR-RV model. An
RMSFE ratio smaller than unity indicates that the meta learner produces a smaller in-sample RMSFE
than the HAR-RV model. The forecast horizons are h = 1, 5, 10, 20.

4.4. Extension to Energy Commodities and Precious Metals

It is interesting to study whether the out-of-sample results obtained when we extend
our HAR-RV-S model for agricultural commodities to include other important commodities.
In extending the model in this way, we can account for the potential impact of spillover
effects across different classes of commodities, as noted in a number of studies involving
the agriculture, energy, and precious metals markets, (see, for example, refs. [62–71]) on
out-of-sample forecasting performance. In order to extend the HAR-RV-S model in this way,
we consider the RVs of several energy commodities (natural gas (NG), heating oil (HO),
and coal (CL)) and precious metals (gold (GC), copper (HG), palladium (PA), platinum (PL),
and silver (SI)). The data source is the same as that described in detail in Section 2, so we can
directly match the RVs of the agricultural commodities with those of the energy commodi-
ties and the precious metals by date. We plot the RVs of the energy commodities and the
precious metals at the end of the paper (Appendix A; Figures A1 and A2), where we also
report the full-sample correlation matrix for the members of the three commodity groups
(Figure A3). We also plot the corresponding total dynamic spillover index (Figure A4),
which shows that the spillover effects among the three members of the three commodity
groups increased towards the end of the sample period. As in the agricultural-commodities-
only model, the spillover effects are also visible in the full-sample RMSFE ratios (based on
the modified stacking algorithm; Figure A5). The RMSFE ratios clearly decrease with the
length of the forecast horizon, especially when we combine the shrinkage estimators with
regression trees. Finally, the results that we report in Figure A6 (for a recursive estimation
window) and in Figure A7 (for a rolling estimation window) corroborate the main finding
of our empirical research that the HAR-RV-S model—with only a few exceptions—does
not outperform out-of-sample the forecasting performance of the classic HAR-RV model,
especially as the length of the forecasting horizon increases.

5. Concluding Remarks

Modeling and forecasting realized volatilities of financial asset prices, in general, and
of commodity price fluctuations, in particular, is of key importance for financial market
participants and policymakers. Financial market participants rely on accurate forecasts of
realized volatilities when solving portfolio optimization problems and pricing derivative
securities. Policymakers, in turn, need accurate forecasts of realized volatilities when
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designing policies to mitigate the potential adverse effects of a rise in economic and—
in case of agricultural commodities—perhaps even political uncertainty associated with
sudden increases in the volatility of price fluctuations. A natural and important research
question, therefore, is whether forecasts of the realized volatilities of commodity price
fluctuations can benefit when a forecaster takes into account spillover effects across the
realized volatilities of agricultural commodities. The results we report in this research
clearly demonstrate that such spillover effects exist, that they can be strong, that they
may vary over time, and that accounting for spillover effects by means of a simple HAR-
RV-S model has beneficial effects in an in-sample analysis. However, we do not observe
systematic out-of-sample forecasting gains relative to a classic HAR-RV model.

In order to obtain out-of-sample forecasts of the RVs of 15 agricultural commodities
(and, in an extended model, three energy commodities and five precious metals), we use
various multi-task stacking algorithms, as well as a multivariate shrinkage estimator. The
multi-task stacking algorithms, in particular, have the advantage of being straightforward to
implement in high-dimensional multi-task forecasting problems. Modeling and forecasting
the realized volatilities of the various agricultural commodities that we studied in this
research can be interpreted as belonging to this class of problems. While the multivariate
shrinkage estimator retains a simple linear structure of the forecasting model, the multi-task
stacking algorithm opens up the possibility of combining different base and meta learners,
where for the latter, we also have use regression trees so as to explore potential nonlinear
structures in the data. Irrespective of the algorithm or combination of base and meta
learners that we studied, we obtained the same main finding that spillover effects do not
leverage out-of-sample forecast accuracy relative to the classic HAR-RV model. Our main
finding implies that the research strategy used by some researchers in recent papers (see,
for example, refs. [18–20]) to forecast the RVs of agricultural commodities in an univariate
modeling approach is likely to be a good starting point for further analysis and can be
also considered beneficial from the perspective of investors looking for optimal portfolio
allocations and policymakers aiming to stabilize food prices.

This does not mean that a multivariate modeling approach cannot yield important
additional and novel insights. In fact, in future research, it would be interesting to study
whether other algorithms developed in the large and rapidly growing machine learning
literature corroborate our main finding or whether the application of other algorithms
brings to the forefront features of the data that the algorithms and estimators we applied
in our research fail to detect. In technical terms, it is also interesting to explore how
the stacking algorithms we studied in this research can be combined with the type of
multivariate HAR-RV cum GARCH models discussed in related earlier literature. Such
an extension would also render it possible to more directly compare the results we report
in this paper with the results that [8] reported in their recent empirical study of a small
set of agricultural commodities (with a shorter sample period and using Chinese data).
Furthermore, against the background of the much discussed financialization of commodity
markets, it is worthwhile to investigate whether accounting for spillover effects across
the realized volatilities of different asset classes (for example, agricultural commodities
and stock markets) yields insights that can help to improve the accuracy of out-of-sample
forecasts of realized volatilities (as in, for example, ref. [26]).
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Figure A3. Full−sample correlation matrix (extended sample of commodities).
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Figure A4. Rolling-window estimates of a spillover index (extended sample of commodities). The
total dynamic spillover index is derived from a VAR(5) model estimated using a rolling estima-
tion window with a length of 1000 observations and a 10-step-ahead generalized forecast error
variance decomposition.
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Figure A5. Full-sample RMSFE ratios (modified stacking estimator). RMSFE ratios for a comparison
of the HAR-RV-S model (meta learner) with the HAR-RV model. An RMSFE ratio smaller than unity
indicates that the meta learner produces a smaller in-sample RMSFE than the HAR-RV model. The
forecast horizons are h = 1, 5, 10, 20.
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Figure A6. RMSFE ratios for a recursive window (modified stacking estimator). RMSFE ratios for a
comparison of the HAR-RV-S model (meta learner) with the HAR-RV model. An RMSFE ratio smaller
than unity indicates that the meta learner produces a smaller in-sample RMSFE than the HAR-RV
model. The forecast horizons are h = 1, 5, 10, 20.
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Figure A7. RMSFE ratios for a rolling window (modified stacking estimator). RMSFE ratios for a
comparison of the HAR-RV-S model (meta learner) with the HAR-RV model. An RMSFE ratio smaller
than unity indicates that the meta learner produces a smaller in-sample RMSFE than the HAR-RV
model. The forecast horizons are h = 1, 5, 10, 20.
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