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1. Introduction

We will analyze the following Cauchy problem for the nonlinear defocusing magnetic
Schrödinger equation with non-local nonlinearity in the high dimensional frame d ≥ 4:{

i∂tu + ∆A
x u + ib(t)u − k[| · |−(d−γ) ∗ |u|2]u = 0, (t, x) ∈ [0, ∞)×Rd,

u(0, x) = f (x) ∈ H1(Rd),
(1)

with k ∈ R, where u = u(t, x) : [0, ∞)× Rd → C, ∇A
x = ∇− iA, A =

(
A1, . . . , Ad

)
∈

C1
loc(R

d \ {0};R), so that div A = 0, −∆A
x = −∇A

x · ∇A
x is self-adjoint on L2(Rd) and

b : [0, ∞) → C is a measurable function that contains dissipative and oscillatory terms. We
shall also assume that

|A|2 − 2iA · ∇ ∈ L
d
2 ,∞(Rd), A ∈ Ld,∞(Rd). (2)

Moreover,
∥|x|xB∥2

L∞(Rd) ≤ (d − 1)(d − 3), (3)

where the magnetic field B : Rd → Md×d(R) is defined by

B := DA − (DA)t,

with
(DA)ij = ∂i Aj, (DA)t

ij = (DA)ji.
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We will impose further the conditions on the nonlinear terms:

d − 2 ≤ γ < d, (4)

ℜb(t),ℑb(t) ∈ C([0, ∞)) with ℜb(t) ≥ 0 and

B(t) =
∫ t

0
b(s)ds, inf

t>0

(
ℜB(t)

t

)
≥ 0. (5)

The last of the two conditions above, roughly speaking, means that every global
solution of (1) behaves like the solution of the associated free equation (that is, b(t) = k = 0)
as t → +∞. The main goal of this paper is to show the decay of the solutions to (1) in the
energy space. More explicitly, we will prove the following theorem.

Theorem 1. Let d ≥ 4 and k = 1, and let u ∈ C([0, ∞); H1(Rd)) be a global solution to (1) with
radial initial data f ∈ H1(Rd) such that (2) and the strict inequality in (3)–(5) are satisfied. Then,
for 2 < r < 2d

d−2 , one achieves

lim
t→∞

eℜB(t)∥u(t, x)∥Lr(Rd) = 0. (6)

Equation (1) is significant in many mathematical physics models. For instance, it was
introduced in quantum mechanics to analyze the behavior of Bose–Einstein condensates by
considering the self-interactions of charged particles, as discussed in [1–3], and the refer-
ences therein. This has spurred numerous studies on the Schrödinger–Hartree equation.
For example, Ref. [4] demonstrates the asymptotic completeness and the existence of wave
operators for both the nonlinear Schrödinger equation with L2 − H1 intercritical nonlin-
earity and the Schrödinger–Hartree equation. Subsequent improvements on these results
for the Schrödinger–Hartree equation are found in [5]. Additionally, Refs. [6,7] employed
the pseudo-conformal transform to study scattering solutions of the Schrödinger–Hartree
equation in spaces with higher regularity than H1. In the critical case, Ref. [8] established
scattering for general data with d ≥ 5. Scattering in the focusing case was achieved in [9,10]
for small and radial data. Further references for the NLS in a general setting include [11,12].
A principal tool in studying the dynamics of solutions to (1) is the Morawetz multiplier
technique and its associated estimates. In our recent work [13], we developed a method
combining Morawetz inequalities, a localization step, and interpolation with a contradic-
tion argument to achieve the decay of solutions for the Schrödinger–Hartree equation.
This robust property is crucial in scattering theory, as highlighted in [12–14]. Motivated
by these developments, we present a generalization of this method for the damped mag-
netic Schrödinger equation with Hartree-type nonlinearity. The linearly damped nonlinear
Schrödinger equation plays a significant role across multiple scientific disciplines, including
nonlinear optics, plasma physics, and fluid mechanics. This equation is fundamental for
understanding various complex phenomena, such as the propagation of optical pulses
in nonlinear media, the behavior of plasma waves in magnetized environments, and the
dynamics of fluid flows under certain conditions. We quote here, for example, [15,16].
Our result is novel in the literature, and we make minimal assumptions on the magnetic
function A(x). Furthermore, our strategy simplifies and extends the damped magnetic
Schrödinger equation to the approach used in [17–20]. We emphasize also that the ap-
proaches previously proposed, for instance, in [21–23] (see also references therein), are
outperformed since we coped with the complex-valued function b(t) in (1).

2. Preliminaries

Before outlining our main achievements, we will unveil some necessary notations
and several useful results. For any two positive real numbers a, b, we write a ≲ b (resp.
a ≳ b) to denote a ≤ Cb (resp. Ca ≥ b), with C > 0, and we unravel the constant only when



Mathematics 2024, 12, 2975 3 of 13

it is necessary. We introduce the Banach space Lr(Rd) = Lr
x for 1 ≤ r ≤ ∞. In addition,

we introduce
H1,r(Rd) = (1 − ∆x)

− 1
2 Lr(Rd), H1,r(Rd) = H1,r

x ,

and denote it with H1,2(Rd) = H1(Rd) = H1
x . Given any Banach space X, we define

∥ f ∥L∞
t X = ess sup

t∈R
∥ f (x)∥X .

We adopt the notation L∞
T X when one restricts t ∈ [0, T), for T > 0. The following

results are also useful (see [9,17,19], respectively).

Lemma 1. Let f be a radial function in H1
x . Then,∥∥∥|x| d−1

2 f
∥∥∥2

L∞
x
≲ ∥ f ∥L2

x
∥∇x f ∥L2

x
. (7)

Proposition 1. Let A be as in (2) and (3). For any 1 < r < d, one obtains∥∥∥(−∆A
x )

1
2 f
∥∥∥

Lr
x
≲
∥∥∥(−∆x)

1
2 f
∥∥∥

Lr
x

(8)

and ∥∥∥(−∆x)
1
2 f
∥∥∥

L2
x
≲
∥∥∥(−∆A

x )
1
2 f
∥∥∥

L2
x
. (9)

We also have the following maximal estimate (see, for example, [24]), as a straightfor-
ward consequence of the Hardy inequality.

Proposition 2. Let 0 < γ < d. We have∥∥∥[| · |d−γ ∗ |u|2]
∥∥∥

L∞
x
≤ C(d, γ)∥u∥2

Ḣ
d−γ

2
x

. (10)

We recall also that the solutions to (1) satisfy the conservation laws. We summarize
them in the following.

Proposition 3. Let d ≥ 1. Then, a sufficiently smooth solution to (1) satisfies the following
identities:

∥u(t)∥L2
x
= e−ℜB(t)∥ f ∥L2

x
, H(u(t)) = H( f ), (11)

where

H(u(t)) = e2ℜB(t)
∫
Rd

|∇A
x u(t, x)|2 dx + ke2ℜB(t)

∫
Rd

∫
Rd

|u(t, x)|2|u(t, y)|2
|x − y|d−γ

dxdy

+2k
∫ t

0

∫
Rd

∫
Rd

ℜb(s)e2ℜB(t) |u(t, x)|2|u(t, y)|2
|x − y|d−γ

dxdy. (12)

Proof. We utilize the change in variable

v(t, x) := eB(t)u(t, x) (13)

and see that u satisfies (1) if v solves{
i∂tv + ∆A

x v = ke−2ℜB(t)[| · |−d+γ ∗ |v|2]v, (t, x) ∈ [0, ∞)×Rd,
v(0, x) = u0(x).

(14)
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We multiply the above equation by ū(t, x), integrate with respect to the x-variable,
and take the imaginary part, obtaining the following, since div A = 0:

i
1
2

d
dt

∫
Rd

|v(t, x)|2dx +
∫
Rd

v̄(t, x)
(
−∆u(t, x) + |A|2u(t, x)− 2iA · ∇v(t, x)

)
dx

+
∫
Rd

ke−2ℜB(t)[|x|−d+γ ∗ |v(t, x)|2]|v(t, x)|2dx

= i
1
2

d
dt

∫
Rd

|v(t, x)|2dx − 2i
∫
R2

A · ∇
(
|v(t, x)|2

)
dx = 0.

Thus, solutions local in time satisfy the conservation of mass

∥v(t)∥2
L2 = ∥ f ∥2

L2 .

that is, the first identity in (11). We multiply now Equation (14) by ū(t, x), integrate with
respect to the x-variable, and take the imaginary equation part. We have

ℜ
∫
Rd

(
∇Av(t, x)∇A∂tv̄(t, x) + ke−2ℜB(t)[|x|−d+γ ∗ |v(t, x)|2]v(t, x)∂tv̄(t, x)

)
dx = 0.

The previous identity is enhanced to∫
Rd

(
1
2

∂t|∇Av(t, x)|2 + 1
2

ke−2ℜB(t)[|x|−d+γ ∗ |v(t, x)|2]∂t|v(t, x)|2
)

dx = 0

and then to

∂t

∫
Rd

(
1
2
|∇Av(t, x)|2 + 1

2
ke−2ℜB(t)[|x|−d+γ ∗ |v(t, x)|2]|v(t, x)|2

)
dx (15)

= −k
∫
Rd

ℜb(t)e−2ℜB(t)[|x|−d+γ ∗ |v(t, x)|2]|v(t, x)|2dx.

Integrating with respect to the t-variable identity (15), we obtain∫
Rd

(
|∇Av(t, x)|2 + ke−2ℜB(t)[|x|−d+γ ∗ |v(t, x)|2]|v(t, x)|2

)
dx

+2k
∫ t

0

∫
Rd

ℜb(s)e−2ℜB(s)[|x|−d+γ ∗ |v(s, x)|2]|v(s, x)|2dxds

=
∫
Rd

(
|∇Av(0, x)|2 + k[|x|−d+γ ∗ |v(0, x)|2]|v(0, x)|2

)
dx.

The above relation suggests that the quantity

H̃(v(t)) =
∫
Rd

(
|∇Av(t, x)|2 + ke−2ℜB(t)[|x|−d+γ ∗ |v(t, x)|2]|v(t, x)|2

)
dx

+2k
∫ t

0

∫
Rd

ℜb(s)e−2ℜB(s)[|x|−d+γ ∗ |v(s, x)|2]|v(s, x)|2dxds

is conserved. Hence, this implies the local conservation of the Hamiltonian in (11) with
H(u(t)) as in (12).

3. Well-Posedness

Here, we present the following existence and uniqueness result, which is crucial for
the proof of (6). Specifically, we prove the following proposition.

Proposition 4. Let d ≥ 3. Assume that (2)–(5) are satisfied. Then, for all f ∈ H1
x , there exists

T > 0 such that problem (1) has a unique local solution u ∈ C([0, T); H1
x) with∥∥∥eB(t)u(t, x)u

∥∥∥
L∞

T H1
x
≲ ∥ f ∥H1

x
.

Moreover, the solution can be extended globally in time if k > 0.
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Proof. We shall accomplish a fixed-point argument. Namely, consider the integral operator
associated with (14) to be defined for all f ∈ H1

x as

T f (eB(t)u) = eit∆A
x +B(t) f + k

∫ t

0
e−2ℜB(t)ei(t−τ)∆A

x
(
[| · |−(d−γ) ∗ |eB(t)u|2]eB(t)u

)
(τ) dτ.

We need to show that it is possible to find a T = T
(
∥ f ∥H1

x

)
> 0 and a unique

eB(t)u(t, x) ∈ L∞
T H1

x

satisfying the property
T f (eB(t)u(t)) = eB(t)u(t), (16)

for t ∈ [0, T). For the sake of simplicity, we will divide the proof into different steps.

Step One: For any eB(t)u ∈ H1
x , there exist T = T

(
∥ f ∥H1

x

)
> 0 and R = R

(
∥ f ∥H1

x

)
> 0

such that
T f (BL∞

T′ H1
x
(0, R)) ⊂ BL∞

T′ H1
x
(0, R),

for any T′ < T.
By the classical Hardy–Littlewood–Sobolev inequality combined with (8) and (9),

we have

∥T f (eB(t)u)∥L∞
T L2

x
+ ∥∇xT f (eB(t)u)∥L∞

T L2
x
≲ ∥T f (eB(t)u)∥L∞

T L2
x
+ ∥∇A

x T f (eB(t)u)∥L∞
T L2

x

≲ ∥ f ∥H1
x
+
∫ T

0
∥e−2ℜB(·)[| · |−d+γ ∗ |eB(·)u|2]eB(·)u∥L∞

T H1
x
dτ.

At this point, by condition (5), the last term in the above chain of inequalities can be
controlled as follows:

∥ f ∥H1
x
+
∫ T

0
∥e−2ℜB(·)[| · |d−γ ∗ |eB(·)u|2]eB(·)u∥L∞

T H1
x
dτ

≲ ∥ f ∥H1
x
+ T

∥∥∥e−2ℜB(·)
∥∥∥

L∞
t

∥[| · |−d+γ ∗ |eB(·)u|2]eB(·)u∥L∞
T H1

x

≲ ∥ f ∥H1
x
+ T

∥∥∥[| · |−d+γ ∗ |eB(·)u|2]
∥∥∥

L∞
T L∞

x
∥eB(·)u∥L∞

T H1
x

+T
∥∥∥[| · |−d+γ ∗ |eB(·)u|2]

∥∥∥
L∞

T H
1, 2d

d−γ
x

∥eB(·)u∥
L∞

T L
2d
γ

x

≲ ∥ f ∥H1
x
+ T∥eB(·)u∥2

L∞
T Ḣ

d−γ
2

x

∥eB(·)u∥L∞
T H1

x
+ T

∥∥∥|eB(·)u|2
∥∥∥

L∞
T H

1, 2d
d+γ

x

∥eB(·)u∥
L∞

T L
2d
γ

x

≲ ∥ f ∥H1
x
+ T∥eB(·)u∥2

L∞
T Ḣ

d−γ
2

x

∥eB(·)u∥L∞
T H1

x
+ T∥eB(·)u∥L∞

T H1
x
∥eB(·)u∥2

L∞
T L

2d
γ

x

≲ ∥ f ∥H1
x
+ T∥eB(·)u∥2

L∞
T Ḣ

d−γ
2

x

∥eB(·)u∥L∞
T H1

x
≲ ∥ f ∥H1

x
+ TR3.

By selecting R and T so that

2∥ f ∥H1
x
= R, 2CTR2 ≤ 1,

we finish the proof of this step.

Step Two: Let T, R > 0 be as in the above step. Then, there exists T = T
(
∥ f ∥H1

x

)
< T such that

T f is a contraction on BL∞
T

H1
x
(0, R), equipped with the norm ∥.∥L∞

T
L2

x
.
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Consider eB(·)v1, eB(·)v2 ∈ BL∞
T H1

x
(0, R). We obtain, by arguing as in the previous lines,

the following chain of inequalities:

∥T f eB(·)v1 − T f eB(·)v2∥L∞
T L2

x

≲ T
∥∥∥e−2ℜB(·)

∥∥∥
L∞

t

∥∥∥[| · |−d+γ ∗ |eB(·)v1|2]eB(·)v1 − [| · |−d+γ ∗ |eB(·)v2|2]eB(·)v2

∥∥∥
L∞

T L2
x

≲ T
∥∥∥[| · |−d+γ ∗ |eB(·)v1|2](eB(·)v1 − eB(·)v2)

∥∥∥
L∞

T L2
x

+T
∥∥∥[| · |−d+γ ∗ (|eB(·)v1|2 − |eB(·)v2|2)]eB(·)v2

∥∥∥
L∞

T L2
x

≲ T∥eB(·)v1∥2

L∞
T H

−d+γ
2

x

∥eB(·)v1 − eB(·)v2∥L∞
T L2

x

+T
∥∥∥[| · |−d+γ ∗ (|eB(·)v1|2 − |eB(·)v2|2)]

∥∥∥
L∞

T L
2d

d−γ
x

∥eB(·)v2∥
L∞

T L
2d
γ

x

≲ T

(
R2∥eB(·)v1 − eB(·)v2∥L∞

T L2
x
+ R∥v1 + v2∥

L∞
T L

2d
γ

x

∥eB(·)v1 − eB(·)v2∥L∞
T L2

x

)
≲ TR2∥v1 − v2∥L∞

T L2
x
.

Then, we arrive at

∥T f eB(·)v1 − T f eB(·)v2∥L∞
T L2

x
≲ TR2∥eB(·)v1 − eB(·)v2∥L∞

T L2
x
.

This inequality allows us to say that T f is a contraction on BL∞
T H1

x
(0, R) if T is chosen

in a suitable manner.

Step Three: The solution exists and is unique in L∞
T

H1
x , where T is as in the above step.

We can exhibit the existence and uniqueness of the solution using the contraction
principle for the map T f defined on the complete metric space BL∞

T
H1

x
(0, R), endowed with

the topology induced by ∥.∥L∞
T

L2
x
.

Step Four: The solution can be extended globally.
We obtain, by conservation laws (11), (8), and (9), that∥∥∥eB(t)u

∥∥∥
H1

x
≲
∥∥∥eB(t)u

∥∥∥
L2

x
+
∥∥∥∇A

x eB(t)u
∥∥∥

L2
x
≲ H(u(0)) + ∥ f ∥L2

x
. (17)

The previous bound leads to the global well-posedness for (1).

4. Morawetz Identities and Inequalities

Our first contribution is the Morawetz equalities associated to (1). They are presented
in the following.

Lemma 2. Let d ≥ 1 and u ∈ C([0, ∞); H1
x) denote a global solution to (1) with radial initial data

f ∈ H1
x such that (2) and the strict inequality in (3)–(5) are satisfied. Moreover, let ψ = ψ(x) :

Rd → R be a sufficiently regular and decaying function, denoted by

V(t) :=
∫
Rd

ψ(x)|eB(t)u(t, x)|2 dx.

Then, the following identities hold:

V̇(t) = 2ℑ
∫
Rd

e2ℜB(t)ū(t, x)∇xψ(x) · ∇A
x u(t, x) dx (18)

and



Mathematics 2024, 12, 2975 7 of 13

V̈(t) = −
∫
Rd

∆2
xψ(x)|eB(t)u(t, x)|2 dx

+4
∫
Rd

e2ℜB(t)∇A
x u(t, x)D2

xψ(x) · ∇A
x u(t, x) dx

−4ℑ
∫
Rd

e2ℜB(t)u(t, x)∇xψ(x) · B(x)∇A
x u(t, x) dx

−2k
∫
Rd

e−2ℜB(t)∇xψ(x) · ∇x

[
|x|−(d−γ) ∗ |eB(t)u(t, x)|2

]
|eB(t)u(t, x)|2 dx,

(19)

where D2
xψ ∈ Md×d(R) is the Hessian matrix of ψ, and ∆2

xψ = ∆x(∆xψ), the bi-Laplacian
operator.

Proof. We will prove the identities for a smooth, rapidly decreasing solution u = u(t, x),
recovering the general case eB(t)u ∈ C(R; H1

x) via a density argument. The proof of (18) is
similar to the one given in [20], since we can use transformation (13) and then Equation (14).
We present details for obtaining (19). We have the following identity for the linear terms,
using Theorem 1.2 in [20] and the v(t, x) defined in (13) and (14) again. We obtain

2ℜ
∫
Rd

(
−∆A

x v(t, x)
)(

∆xψ(x)v̄(t, x) + 2∇xψ(x) · ∇A
x v(t, x)

)
dx

= −
∫
Rd

∆2
xψ(x)|v(t, x)|2 dx − 4ℑ

∫
Rd

v(t, x)∇xψ(x) · B(x)∇A
x v(t, x) dx

+4
∫
Rd

∇A
x v(t, x)D2

xψ(x)∇A
x v(t, x) dx.

(20)

In addition, for the nonlinear terms, one has

2ℜ
∫
Rd

e−2ℜB(t)[|x|−(d−γ) ∗ ||2]|v(t, x)|2∆xψ(x) dx

+4ℜ
∫
Rd

e−2ℜB(t)[|x|−(d−γ) ∗ |v(t, x)|2]v(t, x)∇xψ(x) · ∇A
x v(t, x) dx

= 2ℜ
∫
Rd

e−2ℜB(t)[|x|−(d−γ) ∗ |v(t, x)|2]|v(t, x)|2∆xψ(x) dx

+4ℜ
∫
Rd

e−2ℜB(t)[|x|−(d−γ) ∗ |v(t, x)|2]v(t, x)∇xψ(x) · ∇xv(t, x) dx.

The last term of the above identity is equal to

2ℜ
∫
Rd

e−2ℜB(t)[|x|−(d−γ) ∗ |v(t, x)|2]|v(t, x)|2∆xψ(x) dx

+2ℜ
∫
Rd

e−2ℜB(t)[|x|−(d−γ) ∗ |v(t, x)|2]∇xψ(x) · ∇x|v(t, x)|2 dx.

Then, through integration by parts of the second term in the last line above, one
arrives at

2ℜ
∫
Rd

e−2ℜB(t)[|x|−(d−γ) ∗ |v(t, x)|2]|v(t, x)|2∆xψ(x) dx

+4ℜ
∫
Rd

e−2ℜB(t)[|x|−(d−γ) ∗ |v(t, x)|2]v(t, x)∇xψ(x) · ∇A
x v(t, x) dx

= −2
∫
Rd

e−2ℜB(t)∇xψ(x) · ∇x

[
|x|−(d−γ) ∗ |v(t, x)|2

]
|v(t, x))|2 dx.

(21)

Combining now identities (20) and (21) and turning back to eB(t)u(t, x), we
obtain (19).

A Localized Morawetz Inequality

We start this section with a result that is a consequence of Lemma 2. More precisely,
we have the following lemma
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Lemma 3. Assume d ≥ 4 and let u ∈ C([0, ∞); H1
x) be a global solution to (1) with radial initial

data f ∈ H1
x such that (2) and the strict inequality in (3)–(5) are satisfied. Then, it holds that∫
Rd

1
|x|3 |e

B(t)u(t, x)|2 dx ≲ ℑ
∫
Rd

e2ℜB(t)ū(t, x)∇xψ(x) · ∇A
x u(t, x) dx. (22)

Proof. We pick ψ = ψ(x) = |x|. This gives

∇xψ =
x
|x| , ∆xψ =

d − 1
|x| , ∆2

xψ = − (d − 1)(d − 3)
|x|3 , (23)

if d ≥ 4. A change in variable (13), Equation (14), and an application of identity (19) allow
us to write the following:

2∂tℑ
∫
Rd

v̄(t, x)∇xψ(x) · ∇A
x v(t, x) dx = −2

∫
Rd

∫
Rd

∆2
xψ(x)|v(t, x)|2 dx

−4ℑ
∫
Rd

v(t, x)∇xψ(x) · B(x)∇A
x v(t, x) dx

+4
∫
Rd

∇A
x v(t, x)D2

xψ(x)∇A
x v(t, x) dx

+k(d − γ)e−2ℜB(t)
∫
Rd

∫
Rd

1
|x − z|d−γ+2 |v(t, x)|2|v(t, z)|2K(x, z) dxdz,

(24)

with

K(x, z) = (x − z) ·
(

x
|x| −

z
|z|

)
.

By the elementary inequality

(x − z) ·
(

x
|x| −

z
|z|

)
= (|x||z| − (x) · (z))

(
|x|+ |z|
|x||z|

)
≥ 0,

we have that K(x, z) ≥ 0. Therefore, one can drop the last term on the right-hand side
of (24). We shall focus now on the linear terms in (24), following the method utilized in [20].
Observe that the relations (23) relate to

∇A
x v(t, x)D2ψ(x)∇A

x v(t, x) =

∣∣∇τ
Av(t, x)

∣∣2
|x| , (25)

(see identity (3.9) in [20]) where the operator ∇τ
A is defined as

∇τ
Av(t, x) = ∇A

x v(t, x)−
(
∇A

x v(t, x) · x
|x|

)
x
|x| .

Therefore, utilizing (23), we have the following identity:

−2
∫
Rd

∫
Rd

∆2
xψ(x)|v(t, x)|2 dx

−4ℑ
∫
Rd

v(t, x)∇xψ(x) · B(x)∇A
x v(t, x) dx

+4
∫
Rd

∇A
x v(t, x)D2

xψ(x)∇A
x v(t, x) dx

= 4
∫
Rd

∣∣∇τ
Av(t, x)

∣∣2
|x| dx + (d − 1)(d − 3)

∫
Rd

|v(t, x)|2
|x|3 dx

+4ℑ
∫
Rd

v(t, x)
x
|x|B(x) · ∇A

x v(t, x) dx.

(26)
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The last term of the identity above can be estimated as

−
∣∣∣∣ℑ ∫Rd

v(t, x)
x
|x|B(x) · ∇A

x v(t, x) dx
∣∣∣∣

≥ −
(∫

Rd

|v(t, x)|2
|x|3 dx

) 1
2
(∫

Rd
|x|2|xB(x)|2|∇τ

Av(t, x)|2 dx
) 1

2

≥ −C∗

(∫
Rd

|v(t, x)|2
|x|3 dx

) 1
2
(∫

Rd

∣∣∇τ
Av(t, x)

∣∣2
|x| dx

) 1
2

,

(27)

where
C2
∗ = (d − 1)(d − 3).

As a result, the right-hand side of (26) can be bounded as

4
∫
Rd

∣∣∇τ
Av(t, x)

∣∣2
|x| dx + (d − 1)(d − 3)

∫
Rd

|v(t, x)|2
|x|3 dx

+4ℑ
∫
Rd

v(t, x)
x
|x|B(x) · ∇A

x v(t, x) dx

≥ 4
∫
Rd

∣∣∇τ
Av(t, x)

∣∣2
|x| dx + (d − 1)(d − 3)

∫
Rd

|v(t, x)|2
|x|3 dx

−4C̃
(∫

Rd

|v(t, x)|2
|x|3 dx

) 1
2
(∫

Rd

∣∣∇τ
Av(t, x)

∣∣2
|x| dx

) 1
2

> 0.

(28)

Notice also that the previous inequality and a continuity argument guarantee that

4
∫
Rd

∣∣∇τ
Av(t, x)

∣∣2
|x| dx + (d − 1)(d − 3)

∫
Rd

|v(t, x)|2
|x|3 dx

+4ℑ
∫
Rd

v(t, x)
x
|x|B(x) · ∇A

x v(t, x) dx

> η̃(d − 1)(d − 3)
∫
Rd

|v(t, x)|2
|x|3 dx,

(29)

for a η̃ > 0. The above bound in combination with (24), the fact that K(x, z) ≥ 0, and (26)
give the proof of (22).

We have the following corollary, which is a consequence of (22).

Corollary 1. Let u ∈ C([0, ∞); H1
x) be a global solution to (1) with radial initial data f ∈ H1

x
such that (2) and the strict inequality in (3)–(5) are satisfied. Moreover, let Qd

x̃(r) = x̃ + [−r, r]d,
with r > 0 and x̃ ∈ Rd. Hence, one obtains∫ ∞

0

∫
Qd

x̃(r)

1
|x|3 |e

B(t)u(t, x)|2 dxdt < ∞. (30)

Proof. By integrating (22) with ψ(x) as in (23) with respect to the time variable on the
interval J = [t1, t2], with t1, t2 ∈ [0, ∞), one arrives at[

ℑ
∫
Rd

e2ℜB(t)ū(t, x)∇xψ(x) · ∇A
x u(t, x) dx

]t=t2

t=t1

≳
∫ t2

t1

∫
Rd

1
|x|3 |e

B(t)u(t, x)|2 dxdt ≳
∫ t2

t1

∫
Qd

x̃(r)

1
|x|3 |e

B(t)u(t, x)|2 dxdydt.
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Applying the Cauchy–Schwartz inequality and Proposition 1, we also infer that

2
[
ℑ
∫
Rd

e2ℜB(t)ū(t, x)∇xψ(x) · ∇A
x u(t, x) dx

]t=t2

t=t1

≲ ∥ f ∥2
H1

x
< ∞, (31)

since the H1
x-norm is a quantity conserved by (17). Finally, we obtain (30) when t1 = 0,

t2 → ∞.

5. The Decay of Solutions

This section is devoted to demonstrating the main Theorem 1.

Proof. It is sufficient to prove property (6) for a suitable 2 < q < 2d
d−2 because the thesis

for the general case follows conservation law (11) and interpolation. More precisely, it is
enough to show that

lim
t→±∞

∥eB(t)u(t, x)∥
L

2+ 4
d

x

= 0. (32)

Then, property (6) follows for all 2 < q < 2d
d−2 by combining (32) with

sup
t∈R

∥eB(t)u(t, x)∥H1
x
< ∞. (33)

We recall the following localized Gagliardo–Nirenberg inequality (see [13]):

∥ζ∥
2d+4

d

L
2d+4

d
x

≤ C

(
sup
x∈Rd

∥ζ∥L2(Qx(1))

) 4
d

∥ζ∥2
H1

x
, (34)

where Qd
x(r) = x + [−1, 1]d. Next, assume by contradiction that (32) is not true; then,

by (33) and by (34), we deduce the existence of a sequence (tn, xn) ∈ R×Rd with tn → ∞
and ϵ0 > 0 such that

inf
n
∥eB(tn)u(tn, x)∥2

L2(Qxn (1))
= ϵ2

0. (35)

Notice that by (18) in conjunction with (33), we obtain

sup
n,t

∣∣∣∣ d
dt

∫
ϕ(x − xn)|eB(t)u(t, x)|2 dx

∣∣∣∣ < ∞,

where χ(x) is a smooth and non-negative cut-off function, such that ϕ(x) = 1 for x ∈
Q0(1) = [−1, 1]d and ϕ(x) = 0 for x /∈ Q0(2) = [−2, 2]d. Consequently, by the Fundamen-
tal Theorem of calculus, we deduce the inequality∣∣∣∣∫Rd

ϕ(x − xn)|eB(σ)u(σ, x)|2dx −
∫
Rd

ϕ(x − xn)|eB(t)u(t, x)|2dx
∣∣∣∣ ≤ C̃|t − σ|, (36)

for a C̃ > 0 that does not depend on n. By choosing t = tn, we have∫
Rd

ϕ(x − xn)|eB(σ)u(σ, x)|2dx ≥
∫
Rd

ϕ(x − xn)|eB(tn)u(tn, x)|2dx − C̃|tn − σ|, (37)

which implies the following, considering the support property of function ϕ:∫
Qd

xn (2)
|eB(σ)u(σ, x)|2dx ≥

∫
Qd

xn (1)
|eB(tn)u(tn, x)|2dx − C̃|tn − σ|, (38)

for a C̃ > 0 independent form n. By combining this fact with (35), we have the existence of
T > 0 such that

inf
n

(
inf

t∈(tn ,tn+T)
∥eB(t)u(t, x)∥2

L2(Qxn (2))

)
≳ ϵ2

1, (39)
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for some ϵ1 > 0. Notice that the previous estimate (39) provides, in combination with the
Strauss radial inequality (7), that the sequence of centers (xn)n∈N is uniformly bounded.
Observe also that since tn → ∞, we can assume that the intervals (eventually passing to a
subsequence) (tn, tn + T) are disjoint. In particular, we acquire the following for d ≥ 4:

∑
n

Tϵ2
1 ≲ ∑

n

∫ tn+T

tn

∫
Qd

xn (2)
|eB(t)u(t, x)|2 dxdt (40)

≲
∫ ∞

0
sup
x̃∈Rd

∫
Qd

x̃(2)

1
|x|3 |e

B(t)u(t, x)|2 dxdt, (41)

So, we obtain a contradiction because the right-hand side of the above (40) is bounded
by (30).

Remark 1. Note that (10) and (12) introduce

∥eB(t)u(t)∥H1 ≲ ∥ f ∥H1 +
∫ t

0
∥eB(τu(τ)∥2

Ḣ
γ
2
∥eB(τ)u(τ)∥H1 dτ

≲ ∥eB(t)u(t)∥H1 + C
∫ t

0
∥eB(τu(τ)∥H1 dτ.

Then, by Gronwall’s inequality, we have∥∥∥eB(t)u(t)
∥∥∥

H1
x
≲ ∥ f ∥H1

x
eKt,

with K > 0 depending on ∥ f ∥L2
x

and H(u(0)). Then, the Sobolev embedding and interpolation
with the conservation of mass in (11) lead to

∥eB(t)u(t)∥Lr
x ≲ eεKt,

with 0 < ε < 1 and 2 < r ≤ 2d
d−2 , which is not sufficient to guarantee a behavior like the one

disclosed by (6) in Theorem 1 upon letting t → +∞.

Remark 2. We also highlight that one can achieve an exponential decay just by interpolating the
conservation of mass in (11) and the estimate arising from the Sobolev embedding and (17). Namely,
one has

∥eB(t)u(t)∥Lr
x ≲ 1.

However, it is not enough to ensure a behavior such as in (6) in Theorem 1, which is a stronger
property of the solutions to (1). Moreover, the case ℜB(t) = 0, that is, when ib(t) is a real function,
cannot be included in the previous analysis.

Remark 3. It is important to notice that our results can be used to deal with a class of damped
nonlinearities fulfilling (5), particularly when

b(t) ∼ ã
1 + t

, for t > 1, ã > 0,

as considered in [25]. Also, we can address more general damping terms, leading to equations of
the form

i∂tu + ∆A
x u +

iã
(1 + t)α

u + b̃(t)− k[| · |−(d−γ) ∗ |u|2]u = 0.

with α ≥ 0 and where b̃(t) ∈ C([0, ∞)) is a real-valued function (see [22]).

6. Conclusions

We broaden the outcomes achieved in [17–20] to the damped scenario. The assump-
tions formulated for the time-depending function ib(t) are more general than the ones
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found for the example in [21–23]. This is because we include an oscillatory part in the
perturbed propagator eB(t)+it∆A

x , which can not be treated if one uses the techniques devel-
oped in the aforementioned works. We underline that assumptions (2) and (3) related to
the operator ∇A

x and the function A(x) are less restrictive than those imposed in [17,19,20].
This is because our well-posedness analysis relies solely on the energy estimate for (1).
We are not using any Strichartz estimates here, forcing the constraint d − 2 ≤ γ < d. The
obstacle here is that the multipliers utilized in the papers previously mentioned are not well
suited to handle a non-local nonlinearity because their application cannot guarantee the
non-negativity of the last term in (24). This aspect also determines the radial assumption
we made on the initial data. A second problem is the equivalence of the norm result of
Proposition 1, valid only in the L2 framework. We are confident that we will overcome all
these issues and shed light on the lower regularity frame d − 4 ≤ γ < d − 2 in a future
paper. We are also confident that our decay result can greatly simplify the scattering theory
associated with (1), as well as shed light on the case ℜB(t) < 0.

7. Open Problems and Further Developments

The theory established in this paper is general and allows us to obtain, in a straight-
forward manner, the decay in the energy spaces of the solutions to the damped magnetic
Schrödinger equation with non-local nonlinearity. We believe that it can be used for the
following open problems:

• The analysis of the scattering in the energy space for the solution to (1);
• The investigation of the decay properties (and eventually scattering) for the solutions

to the generalized Schrödinger–Hartree equation, that is

i∂tu + ∆A
x u + ib(t)u + u − [| · |−(d−γ) ∗ |u|p]|u|p−2u = 0,

where the positive nonlinear parameter is either p = 2 or satisfies d+γ+2
d < p < d+γ

d−2 ;
• The exploration of the decaying and scattering properties of the solutions on other

nonlinear dispersive equations such as the nonlinear Beam Equation

∂ttu + (∆A
x )

2u + ib(t)u + u − [| · |−(d−γ) ∗ |u|p]|u|p−2u = 0,

where (∆A
x )

2 = ∆A
x (∆A

x ) is the magnetic bi-Laplacian operator, or the nonlinear Klein–
Gordon equation

∂ttu − ∆A
x u + ib(t)u + u + [| · |−(d−γ) ∗ |u|p]|u|p−2u = 0,

with the nonlinear parameter p defined as above, including the special case when
A(x) = 0.

Author Contributions: Conceptualization, T.S., M.T., and G.V.; methodology, T.S., M.T., and G.V.;
formal analysis, T.S., M.T., and G.V.; investigation, T.S., M.T., and G.V.; writing—original draft
preparation, T.S., M.T., and G.V.; writing—review and editing, T.S., M.T., and G.V. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Elgart, A.; Schlein, B. Mean field dynamics of boson stars. Comm. Pure Appl. Math. 2007, 60, 500–545. [CrossRef]
2. Lenzmann, E. Well-posedness for semi-relativistic Hartree equations of critical type. Math. Phys. Anal. Geom. 2007, 10, 43–64.

[CrossRef]

https://doi.org/10.1002/cpa.20134
https://doi.org/10.1007/s11040-007-9020-9


Mathematics 2024, 12, 2975 13 of 13

3. Lewin, M.; Rougerie, N. Derivation of Pekar’s polarons from a microscopic model of quantum crystal. SIAM J. Math. Anal. 2013,
45, 1267–1301. [CrossRef]

4. Ginibre, J.; Velo, G. Quadratic Morawetz inequalities and asymptotic completeness in the energy space for nonlinear Schrödinger
and Hartree equations. Quart. Appl. Math. 2010, 68, 113–134. [CrossRef]

5. Nakanishi, K. Energy scattering for Hartree equations. Math. Res. Lett. 1999, 6, 107–118. [CrossRef]
6. Ginibre, J.; Ozawa, T. Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n ≥ 2. Comm.

Math. Phys. 1993, 151, 619–645. [CrossRef]
7. Nawa, H.; Ozawa, T. Nonlinear scattering with nonlocal interactions. Comm. Math. Phys. 1992, 146, 259–275. [CrossRef]
8. Miao, C.; Xu, G.; Zhao, L. Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial

data. J. Funct. Anal. 2007, 252, 605–627. [CrossRef]
9. Arora, A. Scattering of radial data in the focusing NLS and generalized Hartree equation. Discrete Contin. Dyn. Syst. 2019, 39,

6643–6668. [CrossRef]
10. Arora, A.; Roudenko, S. Global behavior of solutions to the focusing generalized Hartree equation. Michigan Math. J. 2021, 71,

619–672. [CrossRef]
11. Tarulli, M. H2-scattering for Systems of Weakly Coupled Fourth-order NLS Equations in Low Space Dimensions. Potential Anal.

2019, 51, 291–313. [CrossRef]
12. Tarulli, M.; Venkov, G. Decay in energy space for the solution of fourth-order Hartree-Fock equations with general non-local

interactions. J. Math. Anal. Appl. 2022, 516, 126533. [CrossRef]
13. Tarulli, M.; Venkov, G. Decay and scattering in energy space for the solution of weakly coupled Schrödinger-Choquard and

Hartree-Fock equations. J. Evol. Equ. 2021, 21, 1149–1178. [CrossRef]
14. Cazenave, T. Semilinear Schrödinger Equations; Courant Lecture Notes in Mathematics, 10; New York University Courant Institute

of Mathematical Sciences: New York, NY, USA, 2003.
15. Chen, G.; Zhang, J.; Wei, Y. A small initial data criterion of global existence for the damped nonlinear Schrödinger equation.

J. Phys. A Math. Theor. 2009, 42, 055205. [CrossRef]
16. Goldman, M.V.; Rypdal, K.; Hafizi, B. Dimensionality and dissipation in Langmuir collapse. Phys. Fluids 1980, 23, 945–955.

[CrossRef]
17. Colliander, J.; Czubak, M.; Lee, J.J. Interaction Morawetz estimate for the magnetic Schrödinger equation and applications. Adv.

Differ. Equ. 2014, 1, 805–832. [CrossRef]
18. Nikolova, E.; Tarulli, M.; Venkov, G. On the magnetic radial Schrödinger-Hartree equation. Int. J. Appl. Math. 2022, 35, 795–809.

[CrossRef]
19. D’Ancona, P.; Fanelli, L.; Vega, L.; Visciglia, N. Endpoint Strichartz estimates for the magnetic Schrödinger equation. J. Funct.

Anal. 2020, 258, 3227–3240. [CrossRef]
20. Fanelli, L.; Vega, L. Magnetic virial identities, weak dispersion and Strichartz inequalities. Math. Ann. 2009, 344, 249–278.

[CrossRef]
21. Dinh, V.D. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evol. Equ. Control Theory 2021, 10, 599–617.

[CrossRef]
22. Hamouda, M.; Majdoub, M. Energy scattering for the unsteady damped nonlinear Schrödinger equation. arXiv 2024,

arXiv:2311.14980.
23. Inui, T. Asymptotic behavior of the nonlinear damped Schrödinger equation. Proc. Amer. Math. Soc. 2019, 147, 763–773. [CrossRef]
24. Kato, T. Pertubation Theory for Linear Operators, 2; Springer: Berlin, Germany, 1980.
25. Bamri, C.; Tayachi, S. Global existence and scattering for nonlinear Schrödinger equations with time-dependent damping.

Commun. Pure Appl. Anal. 2023, 22, 2365–2399. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1137/110846312
https://doi.org/10.1090/S0033-569X-09-01141-9
https://doi.org/10.4310/MRL.1999.v6.n1.a8
https://doi.org/10.1007/BF02097031
https://doi.org/10.1007/BF02102628
https://doi.org/10.1016/j.jfa.2007.09.008
https://doi.org/10.3934/dcds.2019289
https://doi.org/10.1307/mmj/20205855
https://doi.org/10.1007/s11118-018-9712-8
https://doi.org/10.1016/j.jmaa.2022.126533
https://doi.org/10.1007/s00028-020-00621-x
https://doi.org/10.1088/1751-8113/42/5/055205
https://doi.org/10.1063/1.863074
https://doi.org/10.57262/ade/1404230124
https://doi.org/10.12732/ijam.v35i5.11
https://doi.org/10.1016/j.jfa.2010.02.007
https://doi.org/10.1007/s00208-008-0303-7
https://doi.org/10.3934/eect.2020082
https://doi.org/10.1090/proc/14276
https://doi.org/10.3934/cpaa.2023069

	Introduction
	Preliminaries
	Well-Posedness
	 Morawetz Identities and Inequalities
	The Decay of Solutions
	Conclusions
	Open Problems and Further Developments
	References

