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Abstract: Precisely identifying interior decoration styles holds substantial significance in directing
interior decoration practices. Nevertheless, constructing accurate models for the automatic classi-
fication of interior decoration styles remains challenging due to the scarcity of expert annotations.
To address this problem, we propose a novel pseudo-label-guided contrastive mutual learning
framework (PCML) for semi-supervised interior decoration style classification by harnessing large
amounts of unlabeled data. Specifically, PCML introduces two distinct subnetworks and selectively
utilizes the diversified pseudo-labels generated by each for mutual supervision, thereby mitigating
the issue of confirmation bias. For labeled images, the inconsistent pseudo-labels generated by the
two subnetworks are employed to identify images that are prone to misclassification. We then devise
an inconsistency-aware relearning (ICR) regularization model to perform a review training process.
For unlabeled images, we introduce a class-aware contrastive learning (CCL) regularization to learn
their discriminative feature representations using the corresponding pseudo-labels. Since the use of
distinct subnetworks reduces the risk of both models producing identical erroneous pseudo-labels,
CCL can reduce the possibility of noise data sampling to enhance the effectiveness of contrastive
learning. The performance of PCML is evaluated on five interior decoration style image datasets. For
the average AUC, accuracy, sensitivity, specificity, precision, and F1 scores, PCML obtains improve-
ments of 1.67%, 1.72%, 3.65%, 1.0%, 4.61%, and 4.66% in comparison with the state-of-the-art method,
demonstrating the superiority of our method.

Keywords: semi-supervised learning; contrastive learning; interior decoration style

MSC: 68T45; 68T07; 68T30

1. Introduction

With the progressive improvement of living standards, there is an increasing focus
on the aesthetic and functional aspects of interior decoration. Accordingly, the precise
identification of interior decoration styles is of great significance for the guidance and
instruction of interior design practice [1–3]. To date, many supervised learning methods
based on deep neural networks have achieved great performances in interior design prac-
tice, such as interior decoration style (e.g., four images from different types of interior
decoration styles in Figure 1) recognition [4,5], interior decoration style colorization [6],
and interior decoration style design [7]. The success of deep learning models in this field is
predominantly attributed to the availability of large amounts of labeled interior decoration
images. Nevertheless, it is difficult to obtain a large number of labeled interior decora-
tion images due to the requirements of professional knowledge and time consumption
on labeling. Semi-supervised learning paradigm enables models leverage both limited
labeled data and extensive unlabeled data, which significantly reduces the dependence
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on annotations and progressively emerges as the mainstream paradigm for the interior
decoration style recognition.

(a) (b)

(c) (d)

Figure 1. Examples of four types of interior decoration styles: (a) country style, (b) Chinese style,
(c) European style, and (d) simple style.

The semi-supervised learning (SSL) paradigm aims to explore and leverage the in-
ternal knowledge underlying unlabeled data to enhance the performance of the model.
To date, consistency learning [8] and pseudo-labeling [9] are two mainstream techniques
that can be used for exploiting unlabeled data. The consistency-learning-based SSL meth-
ods enforce the model to generate consistent predictions for the same input under small
perturbations [10]. The pseudo-labeling-based SSL methods generate pseudo-labels for un-
labeled data, which are subsequently integrated with labeled data to retrain the model [11].
Furthermore, some other SSL methods attempt to integrate both consistency learning and
pseudo-labeling techniques to boost the learning performance [12–14].

Although SSL methods based on above techniques have achieved promising results,
several challenges significantly affect their robustness and may result in the degradation
of model performance. First of all, most of consistency-learning-based SSL methods
are based on the self-ensemble framework, which usually takes two subnetworks with
identical architecture and enforces their predictions to be consistent. For instance, the mean
teacher (MT) framework [15] is a typical consistency-learning-based SSL method which
has a teacher subnetwork and a student subnetwork. Generally, the MT method and its
extensions possess the following three characteristics: (1) the student and teacher networks
share the same architecture; (2) the parameters of the teacher network are updated as
the exponential moving average of those of the student network; and (3) consistency
learning regularization is employed to ensure consistent predictions between the student
and teacher networks. It is evident that the shared architecture leads to the homogenization
of subnetworks. The model parameters of teacher network is a weighted mixture of the
historical states of the student network; that means that the predictions of the teacher
network are constrained by those of the student network. In addition, the consistency
learning regularization enforces the consensus predictions of student and teacher networks,
further limiting the diversity of the predictions of them. In summary, the coupling issue
constrains MT-like SSL methods from generating diverse predictions, making the models
prone to trapping confirmation bias and meaning that it is difficult for them to self-correct.

The second challenge arises from the unreliable pseudo-labels. In practice, unlabeled
images usually cover different equipment and environments, thereby increasing the risk of
the model making unreliable predictions. Potentially inaccurate pseudo-labels make the
SSL’s training and labeling loop collapse and degrade the performance of SSL methods.
Furthermore, the inaccurate pseudo-labels will adversely affect the learning of internal
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correlations among unlabeled images. The supervised contrastive learning strategy [16] has
been demonstrated to have a superior performance in the discriminative feature learning
of images. The core principle of supervised contrastive learning is that representations
of similar samples should be closely aligned, while representations of different types of
samples should be distinct. For unlabeled images, the pseudo-labels are usually employed
to determine their categories. For instance, the authors of [17] leveraged the spatial consis-
tency of weakly augmented images to generate similar samples, while dissimilar samples
were constructed using a straightforward cross-image and pseudo-label weighting heuristic.
However, utilizing pseudo-labels to generate samples may not align with actual semantic
categories, potentially resulting in noisy sampling in contrastive learning. Due to the
unreliability of predictions of unlabeled images, the use of self-generated pseudo-labels
disrupts model training, leading to a progressive deterioration of model performance.

To tackle the aforementioned challenges, we propose a novel pseudo-label-guided con-
trastive mutual learning (PCML) framework for semi-supervised interior decoration style
classification. Specifically, PCML employs two subnetworks with different architectures,
thus directing the model generate diverse predictions. For labeled images, the inconsistent
pseudo-labels generated by the two subnetworks are employed to identify images that are
prone to misclassification. We then devise an inconsistency-aware relearning (ICR) regular-
ization to perform a review training for these images. For unlabeled images, we introduce
a class-aware contrastive learning (CCL) regularization to learn their discriminative feature
representations using the corresponding pseudo-labels. Since the use of distinct subnet-
works reduces the risk of both models producing identical erroneous pseudo-labels, CCL
can reduce the possibility of noise data sampling to enhance the effectiveness of contrastive
learning. We introduce a weighting module to CCL that emphasizes learning from highly
probable samples within the same category while reducing the impact of unreliable noisy
samples. The synergistic learning among the mutual learning framework, ICR regular-
ization, and CCL regularization during the training process enables each subnetwork to
selectively incorporate the reliable knowledge imparted by the other subnetwork, thereby
mitigating the issue of confirmation bias. The primary contributions of this work can be
summarized as follows:

• We propose a novel PCML framework to facilitate semi-supervised interior deco-
ration style classification by exploiting the diversified pseudo-labels generated by
distinct subnetworks.

• PCML integrates two novel modules: ICR regularization to direct the subnetworks
review the labeled imaged with inconsistent predictions, and CCL regularization to
learn discriminative feature representations of unlabeled images.

• The synergistic learning among the distinct subnetworks, ICR regularization, and CCL
regularization helps the model overcome confirmation bias. Extensive experimental
results demonstrate the superiority of PCML.

2. Related Works
2.1. Semi-Supervised Learning

By leveraging a large amount of unlabeled data, SSL methods can significantly improve
the model performance. Current SSL approaches mainly focus on the consistency learning
paradigm, the pseudo-labeling paradigm, or a combination of both to effectively exploit
the extensive unlabeled data. Consistency-learning-based SSL methods [8,10,12–15,18–21]
encourage the model to generate consistent predictions for the same input under small
perturbations, such as input perturbations [8], feature perturbations [19], or network
perturbations [14]. For instance, the π model presented in [16] directly uses the network’s
predictions of the same input under stochastic augmentation and dropout perturbations as
the consistency targets. Based on [16], MT model introduces an additional teacher network
with the same architecture. In [22], a sample relation consistency regularization is proposed
to be integrated into the MT framework, which enables the model to capture the additional
internal correlation information between unlabeled data. In addition, the local and global



Mathematics 2024, 12, 2980 4 of 19

structural consistencies [21] were developed to jointly learn spatial and geometric structural
information, thereby enhancing the generalization capability of the MT model. In [14],
three types of perturbations, i.e., input data, network, and feature perturbations, were
employed to enhance model training and further improve the generalization of consistency
learning. Despite the advancements, consistency-learning-based SSL methods typically
employ two subnetworks with identical architectures and encourage consensus in their
predictions, making the models prone to falling into confirmation bias and making it so
that they find it difficult to self-correct.

Pseudo-labeling-based SSL methods follow the self-training [23] and pseudo-labeling [24]
techniques to generate the pseudo-labels for unlabeled data by leveraging the model trained
on labeled data. Subsequently, these pseudo-labels are incorporated into the labeled dataset
to retrain the model [9,24–27]. To filter out the low quality pseudo-labels, most current SSL
methods simply employ a predefined confidence threshold (e.g., 0.95) to discard potentially
unreliable pseudo-labels with low confidence [24]. However, it is difficult to determine a
reasonable confidence threshold for filtering out all the unreliable pseudo-labels. To address
this, an entropy-based module [28] was designed to enable the model to generate low-
entropy predictions for unlabeled data. In addition, a curriculum pseudo-labeling method
was developed to adjust thresholds for different classes, thereby filtering out unreliable
pseudo-labels [29]. Another SSL method introduced an uncertainty-aware pseudo-label
selection strategy [30], which accounts for the effects of inadequate network calibration.

Some SSL methods integrated consistency learning and pseudo-labeling techniques.
For example, [8] selected partially reliable pseudo-labels and guided the student network
to learn from these reliable targets. The authors of [31] developed a cycled pseudo-label
scheme to promote mutual consistency for challenging unlabeled data, thereby minimizing
uncertain predictions. Despite the notable success of these SSL methods, most of them
utilize subnetworks with identical architectures, thereby resulting in the homogenization
problem. In view of this, some studies employed distinct subnetworks to enhance the
diversity between them. For instance, the authors of [32] proposed the use of a convolu-
tional neural network and a transformer as subnetworks. In addition, the authors of [33]
developed a mutual correction framework utilizing two structurally distinct subnets with
independent parameter updates for semi-supervised learning.

2.2. Contrastive Learning

The contrastive learning technique significantly advanced self-supervised representation
learning [34–37]. The fundamental concept of contrastive learning is to draw together an
anchor and a “positive” sample within the embedding space while simultaneously pushing
the anchor away from the “negative” samples. In SSL, contrastive learning can fully leverage
unlabeled data to learn discriminative visual representations. For example, a pseudo group
contrast method [38] was developed to automatically rectify incorrect pseudo-labels. Based
on [38], a reliability-aware contrastive self-ensemble framework [39] was proposed to select
in-distribution unlabeled data to exploit the reliable internal correlation information, thereby
enhancing the robustness of the SSL method. In addition, contrastive learning [40] was used
to model pairwise similarities according to their pseudo-labels, which is beneficial for better
prediction and avoids being trapped in local minimum. In [41], a graph-based contrastive
learning scheme was developed to regularize the structure of the embeddings by using
pseudo-labels of unlabeled data. Furthermore, contrastive learning regularization [42] was
also used to improve the classification performance of the consistency regularization by well-
clustered features of unlabeled data. In this paper, we extend the unsupervised contrastive
learning technique to supervised scenarios [16] by using the diverse predictions generated
from two distinct subnetworks, thereby facilitating the learning from samples within the same
category while reducing the impact of unreliable noisy samples.
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3. Pseudo-Label-Guided Contrastive Mutual Learning Framework

In this section, we first briefly introduce our pseudo-label-guided contrastive mutual
learning framework. Subsequently, we elaborate on the techniques of inconsistency-aware
re-learning and category-aware contrastive learning to enhance the semi-supervised interior
decoration style classification performance, respectively.

3.1. Architecture Overview

We firstly introduce the basic formulations of SSL for interior decoration style clas-
sification. We have a set of training dataset D, which contains N fully labeled images

Dl =
{(

xl
i , yl

i

)}N

i=1
and M unlabeled images Du =

{
xu

i
}N+M

i=N+1. In practice, we have

N ≪ M. xl
i ∈ X denotes the i-th training image in Dl and yl

i ∈ Y={1, 2, · · · , C} denotes
the corresponding one-hot ground-truth label of xl

i .
In PCML, we employ two networks with different architectures, i.e., subnetwork

A ( fA(·)) and subnetwork B ( fB(·) ). We denote θA and θB as the model parameters of
subnetworks A and B, respectively. The subnetwork f can be decomposed into a feature
extractor h(·) : X → Z and a classifier g(·) : Z → Y , parameterized by θh and θg,
respectively. Here, Z ⊂ RZ represents the feature space of dimension. For subnetwork A,
we have fA = gA ◦ hA and θA =

{
θ

g
A, θh

A

}
. For subnetwork B, we have fB = gB ◦ hB with

θB =
{

θ
g
B, θh

B

}
. Our goal is to accurately predict the style of interior decoration images by

using training dataset D.
The overall framework of the proposed PCML is shown in Figure 2. PCML employs

subnetwork A and subnetwork B with different architectures to direct the model gener-
ate diverse predictions, thereby mitigating the homogenization problem. Utilizing the
diverse predictions, PCML takes ICR regularization to conduct review training on labeled
images that are prone to misprediction. For unlabeled images, PCML introduces CCL
regularization to learn their discriminative feature representations using the corresponding
pseudo-labels. Since the diverse predictions reduce the risk of both models producing
identical erroneous pseudo-labels, CCL can reduce the possibility of noise data sampling to
enhance the effectiveness of contrastive learning. Below, we introduce the main components
of PCML, i.e., ICR regularization, and CCL regularization.

ICR regularization

Labeled 
images 

Unlabeled 
images 

l
AP

l
BP

IN

ˆ l
AP

ˆ l
BP

ˆ ly

GT

CE

CE

A
ICRL

B
ICRL

Ah

Bh

l
Az

l
Bz

Ag

Bg
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Bh
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Bp

u
Bz

ˆu
Bz

u
Az

ˆu
Az

Ag

Bg

u
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u
Bp

M M̂
B
CCLL

A
CCLL

A
ICRL B
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B
CCLLA

CCLL ,
CCL regularization

A
CPSL

B
CPSL

A
CPSL B

CPSL,

CPS regularization

CE

Cross-entropy loss

Figure 2. The architecture of PCML for medical image segmentation. A mini-batch input containing
labeled data and unlabeled images are fed into subnetwork A and subnetwork B, respectively.
The predictions Pl

A and Pl
B are used to calculate the ICR regularization and cross-entropy loss,

respectively. The predictions Pu
A and Pu

B are used to calculated the CPS loss and the class-aware
matrix, which is then used to guide the calculation of the CCL regularization.
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3.2. Inconsistency-Aware Relearning

Assume that the input min-batch of data M contains N samples xM, comprising
labeled image xl randomly sampled from Dl and unlabeled image xu randomly sampled
from Du. The input min-batch of images xM are fed into feature extractors hA(·) and hB(·),
respectively. Then, we can obtain the feature representations as follows:

zl
A, zu

A = hA

(
xM, θh

A

)
, (1)

zl
B, zu

B = hB

(
xM, θh

B

)
. (2)

For labeled images, the probability outputs of subnetworks A and B can be obtained
by using softmax function σ(·), which can be formulated as follows:

pl
A = σ

(
gA

(
zl

A, θ
g
A

))
, (3)

pl
B = σ

(
gB

(
zl

B, θ
g
B

))
. (4)

Since Pl
A and Pl

B originate from two different subnetworks, their consistency suggests
that the corresponding pseudo-labels are highly accurate. If the two subnetworks yield
different predictions for the same image, it indicates that at least one of the predictions
is incorrect. As a result, we use the inconsistent predictions as indicators to identify the
images that are prone to misclassification. Consequently, the subnetworks need to relearn
these images to fully leverage the knowledge within the limited labeled data.

To this end, we propose an ICR regularization approach to selectively leverage the
images with inconsistent predictions to retrain the two subnetworks. Specifically, the pre-
dicted one-hot label of annotated images obtained from subnetwork A and subnetwork B
can be expressed as follows:

yl
A = One-hot

(
pl

A

)
, yl

B = One-hot
(

pl
B

)
, (5)

where One-hot(·) transforms the predictions pl
A and pl

B to the responding hard labels yl
A

and yl
B. The indexes of images with inconsistent predictions can be expressed as follows:

IN = I
(

yl
A ̸= yl

B

)
. (6)

Here, I(·) is the indicator function. Thus, the predictions corresponding to these images
obtained from subnetworks A and B can be identified using operation F(·):

P̂l
A = F

(
IN, Pl

A

)
, P̂l

B = F
(

IN, Pl
B

)
. (7)

Similarly, the truth labels corresponding to these images can be expressed as follows:

ŷl = F
(

IN, yl
)

. (8)

To facilitate the relearning of samples prone to misprediction, we introduce the ICR
regularization, which directs the two subnetworks to focus more on these images. Thus,
the ICR regularization employed for subnetworks A and B can be expressed as follows:

LA
ICR = MSE

(
P̂l

A, ŷl
)

, LB
ICR = MSE

(
P̂l

B, ŷl
)

. (9)

where MSE(·) denotes the mean squared error loss.
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3.3. Class-Aware Contrastive Learning

In the SSL paradigm, supervised contrastive learning [40,41] is often employed to
guide the model to focus on the pairwise similarities of unlabeled data based on their
pseudo-labels, thereby facilitating discriminative feature learning. Although this is ef-
fective, it is difficult to use it to guarantee the reliability of self-generated pseudo-labels,
which can adversely affect the performance of semi-supervised classification. In view of
this, we propose a class-aware contrastive learning (CCL) scheme to learn discriminative
feature representations of unlabeled images by selectively leveraging reliable pseudo-labels.
Different from [43], we employ two subnetworks with distinct architectures which can help
the model reduce the risk of producing identical erroneous pseudo-labels and dispose of
confirmation bias. Hence, CCL can reduce the possibility of noise data sampling to enhance
the effectiveness of contrastive learning.

Specifically, the objective of classical supervised contrastive learning can be mathemat-
ically expressed as follows:

LSCL = −∑
i

1
J + 1 ∑

p∈P(i)
log

exp
(

ẑu
A,i · ẑu

B,p

/
τ
)

∑N
j=1 Ii ̸=j exp

(
ẑu

A,i · ẑu
B,j

/
τ
) . (10)

Here, ẑu
A,i and ẑu

B,j, ∀i, j = 1, 2, · · · , N represent the normalized embeddings output by the

projection networks pA(·) and pB(·), respectively. Thus, we have ẑu
A,i = pA

(
zu

A,i

)
and

ẑu
B,i = pB

(
zu

B,i

)
. P(i) is the set of indices of all positives according to their pseudo-labels. τ

is a hyper-parameter for temperature scaling.
In practice, unlabeled images usually come different equipment and environments,

thereby increasing the risk of the model making unreliable predictions. The positive sam-
ples identified by pseudo-labels in Equation (10) may be inaccurate due to their incorrect
predictions. In view of this, we introduce CCL regularization for supervised contrastive
learning among the reliable unlabeled images. Specifically, the probability outputs of
unlabeled images from subnetwork A and subnetwork B can be expressed as follows:

pu
A = σ

(
gA

(
zu

A, θ
g
A

))
, (11)

pu
B = σ

(
gB

(
zu

B, θ
g
B

))
. (12)

We then use a threshold T to filter out some potentially unreliable unlabeled images. If pu
A,i > T,

we assume the i-th unlabeled image has a high probability to be a reliable data and should
be pulled closer with the same class. To achieve this, we define a class-aware matrix M,
each element of which can be formulated as follows:

mij =


1, if i = j
1, if yzu

A,i
= yzu

B,j
and pu

A,i, pu
B,j > T

0, otherwise

(13)

where yzu
A,i

and yzu
B,j

denote the self-generated pseudo-labels. Although use class-aware
matrix M can filter out most of unreliable samples, the predictions of unlabeled images
above threshold T still might be wrong. In view of this, we propose to reweigh these
potentially unreliable unlabeled images to minimize the impact of them and maximize
the utilization of their valuable information. Specifically, we direct the model to focus on
high-confidence unlabeled images while diminishing the potential bias originating from
unreliable ones. Thus, the class-aware matrix M can be reformulated as M̂ through simply
multiply their probability outputs. Each element m̂ij of M̂ can be defined as follows:
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m̂ij =

{
pu

A,i · pu
B,j · mij, if i ̸= j

mij, otherwise
(14)

Thus, the CCL regularization can be obtained by combining the class-aware matrix M̂
and supervised contrastive learning scheme, which can be formulated as follows:

LA
CCL = −∑

i

1
J + 1 ∑

p∈P(i)
log

m̂ij · exp
(

ẑu
A,i · ẑu

B,p

/
τ
)

∑N
j=1 Ii ̸=j exp

(
ẑu

A,i · ẑu
B,j

/
τ
) , (15)

LB
CCL = −∑

i

1
J + 1 ∑

p∈P(i)
log

m̂ij · exp
(

ẑu
B,i · ẑu

A,p

/
τ
)

∑N
j=1 Ii ̸=j exp

(
ẑu

B,i · ẑu
A,j

/
τ
) . (16)

3.4. Objective Function

Overall, the total objective function of subnetworks in PCML can be formulated
as follows:

LA = LA
sup + LA

unsup, LB = LB
sup + LB

unsup (17)

where LA
sup, LB

sup, and LA
unsup, LB

unsup denote the supervised loss and the unsupervised loss
for subnetwork A or subnetwork B, respectively. The supervised losses for subnetwork A
and subnetwork B can be expressed as follows:

LA
sup = CE

(
Pl

A, y
)
+ LA

ICR, (18)

LB
sup = CE

(
Pl

B, y
)
+ LB

ICR. (19)

where CE(·) denotes the cross-entropy loss. The unsupervised losses for subnetwork A
and subnetwork B can be formulated as follows:

LA
unsup = λu · LA

CPS + λc · LA
CCL, (20)

LB
unsup = λu · LB

CPS + λc · LB
CCL. (21)

Here, LA
CPS and LB

CPS denote the cross pseudo supervision (CPS) losses, e.g., LA
CPS =

CE
(
Pu

A, yu
B
)
. λu and λc are hyper-parameters to balance the cross pseudo supervision loss

and CCL regularization.
Compared with regular optimization of a single network, PCML needs to jointly opti-

mize two different subnetworks. Therefore, compared with the regular training procedures
of network backbone, PCML needs approximately 2 × training time. Finally, we summarize
the thorough optimization process of PCML framework in Algorithm 1.
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Algorithm 1: Optimization of PCML Framework

Input: Labeled dataset Dl , unlabeled dataset Du, trade-off coefficients λu and λc,
max iteration IT, batch size.

Output: Parameters θT
A and θT

B of subnetworks A and B.
1 Initialize: Parameters θ0

A and θ0
B

2 for t = 0 to T − 1 do
3 for each mini-batch M, do
4 Compute zl

A, zu
A, zl

B and zu
B using Equations (1) and (2);

5 Compute Pl
A and Pl

B using Equations (3) and (4);
6 Compute yl

A, yl
B and IN using Equations (5) and (6);

7 Compute P̂l
A, P̂l

B and ŷl using Equations (7) and (8);
8 Compute LA

ICR and LB
ICR using Equation (9);

9 Compute pu
A and pu

B using Equations (11) and (12);
10 Compute matrix M̂ using Equation (14);
11 Compute ẑu

A,i and ẑu
B,i, ∀i;

12 Compute LA
CCL and LB

CCL using Equations (15) and (16);
// Optimize model parameter for subnetwork A

13 ;

14 Compute supervised loss LA
sup with LA

ICR and CE
(

Pl
A, Yl

)
using

Equation (18);
15 Compute unsupervised loss LA

unsup using Equation (20);
16 Optimize θt

A using Equation (17);
// Optimize model parameter for subnetwork B

17 Compute supervised loss LB
sup with LB

ICR and CE
(

Pl
B, Yl

)
using

Equation (19);
18 Compute unsupervised loss LB

unsup using Equation (21);
19 Optimize θt

B using Equation (17).
20 end
21 end

4. Experiments

In this section, we evaluate PCML using five real-world interior decoration style
image datasets: (1) TV background wall, (2) chandelier, (3) living room, (4) dining room,
and (5) bedroom (shown in Figure 3). First of all, we provide descriptions of the five
datasets. Subsequently, we outline the comparison methods and offer the implementation
details of the experiments. Finally, we present and analyze the experimental results.

4.1. Datasets and Pre-Processing

(1) TV background wall dataset: The available training dataset contains 1643 images of in-
terior decoration style, labeled by four different types of styles (country style, Chinese style,
European style, and simple style). Each type has 250, 270, 322, and 801 images, respectively,
with each image having a resolution of 900 × 700 pixels. (2) Chandelier dataset: This dataset
consists of 969 interior decoration style images. It contains 295, 169, 351, and 154 images for
four types of styles, respectively. (3) Living room dataset: This dataset consists of 1489 interior
decoration style images, involving 138 country style images, 248 Chinese style images, 523
European style images, and 580 simple style images, respectively. (4) Dining room dataset:
This dataset consists of 520 images, involving 91 country style images, 98 Chinese style
images, 178 European style images, and 153 simple style images, respectively. (5) Bedroom
dataset: This dataset contains 643 interior decoration style images, involving 149 country
style images, 119 Chinese style images, 191 European style images, and 184 simple style
images, respectively.
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(a) (b) (c) (d) (e)

Figure 3. Images from five datasets: (a) TV background wall, (b) chandelier, (c) living room, (d) dining
room, and (e) bedroom. The first to the fourth rows denote the country style, Chinese style, European
style, and simple style, respectively.

In the experiment, each dataset was randomly partitioned into three subsets: 70% for
training, 10% for validation, and 20% for testing.

4.2. Experimental Setup

To validate the effectiveness of the proposed SSL framework for medical image segmen-
tation, we conducted a comparison between our PCML and state-of-the-art SSL methods.
The comparison methods include the following: (1) ResNet [44]; (2) DenseNet121 [45];
(3) MixMatch [26]; (4) ReMixMatch [46]; (5) CoMatch [41]; (6) FixMatch [27]; (7) MT
model [15]; (8) SRC-MT [22]; (9) the proposed PCML.

In the experiment, we re-implemented all comparison methods using open-source
code. We used DenseNet as the network backbone for the comparison methods Mix-
Match, ReMixMatch, CoMatch, FixMatch, MT, and SRC-MT, due to its superior perfor-
mance. For the proposed PCML, we employed ResNet and DenseNet as subnetwork
A and subnetwork B, respectively. For pseudo-labeling-based SSL comparison methods
MixMatch, ReMixMatch, CoMatch, FixMatch, we applied a weak augmentation and a
strong augmentation on the input data, respectively. For consistency-learning-based SSL
methods MT and SRC-MT, the input image perturbation and random transformations,
i.e., rotation, translation, horizontal flips, were applied to each image [22]. For pseudo-
labeling-based SSL methods, we set the confidence threshold to 0.95 to keep consistency
with other pseudo-labeling-based SSL comparison methods [27,29,30,32,38]. In addition,
for consistency-learning-based SSL methods, the smoothing parameter exponential moving
average was set to 0.99. All other settings of the comparison methods remained consistent
with the original work. For the proposed PCML, the projection network contains two linear
layers with 2048 and 64 hidden neurons. The trade-off coefficients λu and λc were set to 0.5
and 0.1 for all datasets. In addition, the threshold was set to 0.9 for living room dataset,
and 0.8 for the rest datasets. For the used five datasets, subnetworks were trained by Adam
optimizer for 10K iterations, with the fixed learning rate 0.0001. The batch size was set
to 24, comprising 12 labeled image and 12 unlabeled images. The implementation of the
proposed PCML framework was performed using PyTorch 2.4.1 on a two RTX 4090 GPUs.

We adopted AUC, accuracy (ACC), sensitivity (SEN), specificity (SPE), precision
(PREC), and F1 score (F1) as the evaluation metrics to comprehensively evaluate the
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classification performance of all comparison methods. The higher values of these metrics
indicate better performance of the model.

4.3. Comparison with State-of-the-Art Methods

Tables 1–5 present the classification performance of all SSL comparison methods using
20% labeled images and 80% unlabeled images in training set on five image datasets. In our
experiment, the classification results obtained by training the fully supervised models,
i.e., ResNet and DenseNet, with 100% labeled data, are regarded as the upper-bound per-
formance. Meanwhile, the classification results achieved by ResNet and DenseNet trained
with only 20% labeled images serve as the baseline performance. The best classification
results for each evaluation metric were highlighted in bold. Additionally, we listed the
performance improvements achieved by all SSL methods relative to the better baseline
method, DenseNet, with these enhancements presented in parentheses. Based on the
experimental results provided in Tables 1–5, the following observations can be obtained.

Table 1. Performance comparison with different semi-supervised learning methods on TV back-
ground wall dataset.

Methods
Percentage Metrics

Labeled Unlabeled AUC (%)↑ ACC (%)↑ SEN (%)↑ SPE (%)↑ PREC (%)↑ F1 (%)↑

DenseNet [45] 100% 0 97.44 94.04 86.12 95.09 86.18 86.08
ResNet [44] 100% 0 97.30 93.73 85.47 95.30 83.55 84.23

DenseNet [45] 20% 0 93.76 88.53 73.84 91.45 72.73 72.90
ResNet [44] 20% 0 93.31 89.30 76.39 91.22 75.50 75.58

MixMatch [26] 20% 80% 94.77 (1.01) 90.83 (2.29) 78.98 (5.14) 91.81 (0.36) 80.85 (8.12) 79.48 (6.58)
ReMixMatch [46] 20% 80% 95.48 (1.72) 90.52 (1.99) 76.11 (2.27) 92.10 (0.65) 80.42 (7.69) 77.55 (4.65)

CoMatch [41] 20% 80% 95.43 (1.67) 91.28 (2.75) 78.67 (4.48) 92.53 (1.08) 82.05 (9.32) 79.85 (6.95)
FixMatch [27] 20% 80% 95.29 (1.53) 89.76 (1.22) 77.26 (3.42) 91.81 (0.36) 77.19 (4.46) 76.90 (4.00)

MT [15] 20% 80% 95.55 (1.79) 90.06 (1.53) 74.03 (0.20) 91.51 (0.06) 81.07 (8.34) 75.98 (3.08)
SRC-MT [22] 20% 80% 95.84 (2.08) 91.36 (2.83) 80.11 (6.27) 93.08 (1.63) 81.33 (8.60) 79.76 (6.86)
PCML (Ours) 20% 80% 96.82 (3.06) 93.58 (5.05) 84.12 (10.3) 94.48 (3.03) 87.27 (14.5) 85.36 (12.5)

Table 2. Performance comparison with different semi-supervised learning methods on chandelier dataset.

Methods
Percentage Metrics

Labeled Unlabeled AUC (%)↑ ACC (%)↑ SEN (%)↑ SPE (%)↑ PREC (%)↑ F1 (%)↑

DenseNet [45] 100% 0 99.61 97.28 95.58 97.91 93.85 94.61
ResNet [44] 100% 0 99.33 96.11 92.39 97.11 92.37 92.34

DenseNet [45] 20% 0 93.96 87.69 78.75 91.09 77.72 76.53
ResNet [44] 20% 0 93.71 86.92 75.01 90.37 75.97 73.51

MixMatch [26] 20% 80% 95.75 (1.79) 91.58 (3.89) 84.72 (5.97) 93.55 (2.47) 83.14 (5.42) 83.63 (7.10)
ReMixMatch [46] 20% 80% 96.51 (2.55) 92.10 (4.40) 86.13 (7.37) 93.86 (2.78) 85.22 (7.50) 85.03 (8.50)

CoMatch [41] 20% 80% 97.57 (3.61) 92.75 (5.05) 86.55 (7.80) 94.42 (3.33) 85.90 (8.18) 85.85 (9.32)
FixMatch [27] 20% 80% 97.66 (3.70) 93.39 (5.70) 86.86 (8.10) 95.07 (3.98) 85.54 (7.82) 86.11 (9.58)

MT [15] 20% 80% 96.38 (2.42) 92.75 (5.05) 87.45 (8.70) 94.55 (3.46) 86.38 (8.66) 86.70 (10.2)
SRC-MT [22] 20% 80% 97.35 (3.39) 92.49 (4.79) 88.66 (9.91) 94.42 (3.33) 84.50 (6.77) 84.07 (7.54)
PCML (Ours) 20% 80% 98.25 (4.29) 95.21 (7.51) 90.88 (12.1) 96.65 (5.56) 90.47 (12.8) 90.55 (14.0)

Table 3. Performance comparison with different semi-supervised learning methods on living
room dataset.

Methods
Percentage Metrics

Labeled Unlabeled AUC (%)↑ ACC (%)↑ SEN (%)↑ SPE (%)↑ PREC (%)↑ F1 (%)↑

DenseNet [45] 100% 0 94.31 92.42 83.30 94.26 83.91 83.52
ResNet [44] 100% 0 94.86 92.09 81.81 93.90 84.50 82.52

DenseNet [45] 20% 0 89.74 86.95 69.34 89.78 69.45 67.28
ResNet [44] 20% 0 91.06 87.88 70.41 90.89 68.94 67.81

MixMatch [26] 20% 80% 91.26 (1.53) 88.89 (1.94) 72.91 (3.57) 91.63 (1.85) 77.07 (7.62) 73.36 (6.07)
ReMixMatch [46] 20% 80% 92.12 (2.38) 89.39 (2.44) 72.91 (3.57) 92.19 (2.41) 74.09 (4.64) 75.81 (8.53)

CoMatch [41] 20% 80% 91.58 (1.84) 89.65 (2.69) 74.69 (5.36) 92.17 (2.38) 77.54 (8.08) 74.06 (6.77)
FixMatch [27] 20% 80% 92.53 (2.80) 88.72 (1.77) 70.55 (1.21) 91.63 (1.85) 76.60 (7.15) 69.57 (2.29)

MT [15] 20% 80% 91.91 (2.17) 87.96 (1.01) 71.77 (2.44) 91.16 (1.38) 73.74 (4.29) 69.70 (2.42)
SRC-MT [22] 20% 80% 92.41 (2.67) 88.22 (1.26) 71.98 (2.64) 91.07 (1.29) 74.23 (4.78) 70.43 (3.15)
PCML (Ours) 20% 80% 93.92 (4.19) 91.25 (4.29) 77.27 (7.93) 93.33 (3.55) 79.74 (10.3) 76.74 (9.46)
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Table 4. Performance comparison with different semi-supervised learning methods on dining
room dataset.

Methods
Percentage Metrics

Labeled Unlabeled AUC (%)↑ ACC (%)↑ SEN (%)↑ SPE (%)↑ PREC (%)↑ F1 (%)↑

DenseNet [45] 100% 0 98.03 94.71 91.66 95.67 89.27 90.2
ResNet [44] 100% 0 97.87 93.75 89.48 95.12 86.94 88.06

DenseNet [45] 20% 0 91.89 87.26 76.37 89.71 74.64 75.24
ResNet [44] 20% 0 91.29 83.89 72.65 87.08 68.83 69.04

MixMatch [26] 20% 80% 95.20 (3.31) 89.18 (1.92) 79.68 (3.31) 90.46 (0.75) 80.20 (5.55) 78.60 (3.37)
ReMixMatch [46] 20% 80% 95.89 (4.00) 91.11 (3.85) 82.60 (6.23) 92.82 (3.11) 78.12 (3.48) 80.27 (5.03)

CoMatch [41] 20% 80% 96.08 (4.18) 89.66 (2.40) 82.20 (5.83) 91.93 (2.22) 75.89 (1.24) 76.62 (1.38)
FixMatch [27] 20% 80% 94.93 (3.04) 89.90 (2.64) 83.21 (6.85) 91.74 (2.03) 82.01 (7.36) 81.72 (6.48)

MT [15] 20% 80% 93.97 (2.08) 88.46 (1.20) 81.76 (5.39) 91.92 (2.21) 76.00 (1.36) 77.65 (2.41)
SRC-MT [22] 20% 80% 95.45 (3.56) 91.11 (3.85) 85.17 (8.80) 94.09 (4.39) 77.86 (3.22) 79.53 (4.29)
PCML (Ours) 20% 80% 97.23 (5.34) 93.51 (6.25) 88.96 (12.6) 94.75 (5.05) 86.35 (11.7) 87.59 (12.4)

Table 5. Performance comparison with different semi-supervised learning methods on bed-
room dataset.

Methods
Percentage Metrics

Labeled Unlabeled AUC (%)↑ ACC (%)↑ SEN (%)↑ SPE (%)↑ PREC (%)↑ F1 (%)↑

DenseNet [45] 100% 0 88.40 85.74 72.55 89.59 72.35 71.95
ResNet [44] 100% 0 88.57 85.16 72.58 89.03 71.12 70.68

DenseNet [45] 20% 0 81.35 78.71 57.78 84.75 59.35 56.82
ResNet [44] 20% 0 82.45 78.32 57.60 84.86 61.64 56.12

MixMatch [26] 20% 80% 84.04 (2.69) 81.84 (3.13) 65.42 (7.64) 86.67 (1.92) 63.59 (4.24) 64.01 (7.20)
ReMixMatch [46] 20% 80% 85.23 (3.88) 81.25 (2.54) 63.51 (5.74) 86.34 (1.58) 62.17 (2.82) 62.11 (5.30)

CoMatch [41] 20% 80% 85.20 (3.85) 80.86 (2.15) 65.62 (7.84) 86.32 (1.56) 62.25 (2.90) 62.25 (5.43)
FixMatch [27] 20% 80% 84.96 (3.61) 81.45 (2.73) 67.54 (9.77) 86.34 (1.58) 63.89 (4.54) 63.97 (7.16)

MT [15] 20% 80% 84.44 (3.09) 80.86 (2.15) 64.05 (6.27) 86.67 (1.92) 61.37 (2.02) 61.67 (4.86)
SRC-MT [22] 20% 80% 86.01 (4.66) 80.08 (1.37) 60.23 (2.46) 86.60 (1.84) 61.64 (2.29) 60.04 (3.23)
PCML (Ours) 20% 80% 86.71 (5.36) 82.42 (3.71) 69.26 (11.5) 86.80 (2.05) 65.10 (5.75) 66.52 (9.71)

In general, SSL methods consistently achieved improved classification performance
compared to the baseline methods ResNet and DenseNet by leveraging unlabeled images.
This verifies the efficacy of exploring the internal knowledge underlying unlabeled data.
The proposed PCML framework exhibits superior classification results com-pared to other
SSL methods across all evaluative metrics. These results confirm the effectiveness of
integrating ICR regularization, which directs the two subnetworks to review labeled images
with inconsistent predictions, and CCL regularization, which facilitates the learning of
discriminative feature representations for unlabeled images in the training procedure.

The proposed method PCML exhibits promising classification results across five real-
world interior decoration style image datasets. Compared to the baseline method DenseNet,
it demonstrates average improvements of 4.45%, 5.36%, 10.9%, 3.85%, 11.0%, and 11.6%
on AUC, ACC, SEN, SPE, PREC, and F1, respectively. Specifically, PCML can achieve
consistent improvements over all the comparison methods across all metrics on the five
image datasets. For the TV background wall dataset, PCML surpasses the classification
performance of the most competitive method SRC-MT by 0.98%, 2.22%, 4.01%, 1.4%, 5.94%,
and 5.6% on AUC, ACC, SEN, SPE, PREC, and F1, respectively. For the chandelier dataset,
compared to the most competitive method FixMatch, PCML achieved the improvements of
0.59%, 1.82%, 4.02%, 1.58%, 4.93%, and 4.44%, respectively. For the living room dataset,
PCML surpasses the classification performance of the most competitive method CoMatch
by 2.34%, 1.6%, 2.58%, 1.16%, 2.2%, and 2.68% on AUC, ACC, SEN, SPE, PREC, and F1,
respectively. For the dining room dataset, compared to the most competitive method
SRC-MT, PCML achieved the improvements of 1.78%, 2.4%, 3.78%, 0.66%, 8.49%, and
8.06%, respectively. In addition, for the bedroom dataset, PCML surpasses the classification
performance of the most competitive method MixMatch by 2.67%, 0.58%, 3.84%, 0.13%,
1.51%, and 2.51% on AUC, ACC, SEN, SPE, PREC, and F1, respectively. It is noteworthy
to observe that the classification performance of our PCML surpasses the upper-bound
performance on some evaluative metrics. For example, on TV background wall dataset,
PCML outperforms the fully supervised DenseNet with 100% labeled data in terms of
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PREC metric. In addition, the classification results of PCML closely approaches the upper-
bound performance. The disparities between certain metrics are minimal, with less than
1% differences, such as the SPE and F1 classification metrics for the TV background wall
dataset. This observation further validates the advantages gained by reviewing the labeled
imaged with inconsistent predictions and learning discriminative feature representations
of unlabeled images, which also explains our significant performance gains.

4.4. Analysis of the Proposed PCML Framework
4.4.1. Efficacy of Different Components

To obtain a better insight into the performance of the proposed PCML method, we
conducted an ablation study to investigate the impact of different components in PCML.
We listed the classification results of ablation study on the TV background wall dataset
and the living room dataset, as shown in Tables 6 and 7. The ablation study includes
the following models: (a) backbone network ResNet (Baseline 1); (b) backbone network
DenseNet (Baseline 2); (c) subnetworks ResNet and DenseNet with CPS regularization
(Scenario 1); (d) subnetworks ResNet and DenseNet with CPS and ICR regularizations
(Scenario 2); (e) subnetworks ResNet and DenseNet with ICR and CCL regularizations
(Scenario 3, PCML).

Table 6. Ablation study of different components on the segmentation performance of the TV back-
ground wall dataset.

ResNet DenseNet CPS ICR CCL
TV Background Wall Dataset

AUC (%)↑ ACC (%)↑ SEN (%)↑ SPE (%)↑ PREC (%)↑ F1 (%)↑

✓ 93.31 89.30 76.39 91.22 75.50 75.58
✓ 93.76 88.53 73.84 91.45 72.73 72.90

✓ ✓ ✓ 96.17 91.44 79.42 93.00 81.84 79.52
✓ ✓ ✓ ✓ 96.40 92.28 83.15 93.29 81.94 82.40
✓ ✓ ✓ ✓ ✓ 96.82 93.58 84.12 94.48 87.27 85.36

Table 7. Ablation study of different components on the segmentation performance of the living
room dataset.

ResNet DenseNet CPS ICR CCL
TV Background Wall Dataset

AUC (%)↑ ACC (%)↑ SEN (%)↑ SPE (%)↑ PREC (%)↑ F1 (%)↑

✓ 91.06 87.88 70.41 90.89 68.94 67.81
✓ 89.74 86.95 69.34 89.78 69.45 67.28

✓ ✓ ✓ 92.35 88.97 70.71 91.88 78.68 68.26
✓ ✓ ✓ ✓ 93.91 88.64 72.41 90.90 79.50 72.33
✓ ✓ ✓ ✓ ✓ 93.92 91.25 77.27 93.33 79.74 76.74

As shown in Tables 6 and 7, Scenario 1 yields better classification performance than
Baseline 1 and Baseline 2, which demonstrates the effectiveness of different subnetworks
with CPS regularization. The architecture of different subnetworks can promote the di-
versified predictions, thereby preventing the two subnetworks from collapsing into each
other. Scenario 2 can obtain better classification performance than Scenario 1, which verifies
ICR regularization can conduct review training on the potential mis-predicted labeled
images that enables the SSL model to leverage the limited reliable knowledge underlying
labeled images. Moreover, compared to Scenario 2, Scenario 3 (PCML) demonstrates fur-
ther enhancement in classification performance. These results underscore the importance
of selectively utilizing more reliable unlabeled images for contrastive learning, which
contributes to the overall robustness of the model.

In addition, we used Gradient Weighted Class Activation Mapping (Grad-CAM) [47]
to visualize and localize the salient image regions that exert a substantial influence on the
model’s prediction score for a given class. To provide better interpretability of the proposed
framework, we visualized Grad-CAMs of Scenario 1, Scenario 2, and PCML. As illustrated
in Figures 4 and 5, the first row represents the Chinese style in the TV background wall
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dataset and the living room dataset, respectively. The second row represents the European
style in the TV background wall dataset and the living room dataset, respectively. We
listed the original images in Figures 4a and 5a. In addition, Figures 4b and 5b display
the Grad-CAM visualizations of Scenario 1. Figures 4c and 5c display the Grad-CAM
visualizations of Scenario 2. Figures 4d and 5d display the Grad-CAM visualizations of
PCML. The visualizations show that the proposed PCML method can learn the features of
salient regions exhibiting style changes and focuses on the distinctive features associated
with specific decoration style.

(a) (b) (c) (d) 

Figure 4. Grad-CAMs visualization of interior decoration style image attention regions from the TV
background wall dataset: (a) original images; (b) Scenario 1; (c) Scenario 2; (d) Scenario 3. The first
row denotes Chinese style and the second row denotes European style.

(a) (b) (c) (d) 

Figure 5. Grad-CAMs visualization of interior decoration style image attention regions from the
Living room dataset: (a) Original images; (b) Scenario 1; (c) Scenario 2; (d) Scenario 3. The first row
denotes Chinese style and the second row denotes European style.

4.4.2. Impact of Hyper-Parameters

We further investigated the influence of hyper-parameters on the classification per-
formance of the proposed PCML. PCML contains three hyper-parameters—T, λu, and
λc—where T is used to filter out the noise unlabeled images, λu is the weight for cross
pseudo supervision loss, and λc is the weight for CCL regularization. In the experiment,
we fixed two of the parameters and varied the other parameter to observe the classification
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performance of PCML. The classification results were given in Table 8. The threshold T
was used to filter out some potentially unreliable unlabeled images with low confidence.
When λu = 0.5, λc = 0.1, with the increase in T, the classification performance is improved
accordingly, demonstrating that threshold T can effectively filter out unreliable unlabeled
images. As T keeps increasing, the classification performance degrades, which means
that some reliable unlabeled images were excluded. In addition, for parameters λu and
λc, we can observe the similar phenomena, as shown in Table 8. In total, PCML exhibits
stable predictions despite variations in both parameters λu and λc, which demonstrates the
effectiveness of the proposed pseudo-label-guided contrastive mutual learning framework.

Table 8. Sensitivity of trade-off coefficients on the classification performance (%) of the TV background
wall dataset.

λu = 0.5 Metrics

λc = 0.1 AUC ACC SEN SPE PREC F1

T = 0.5 96.24 91.28 78.46 92.58 82.79 79.37
T = 0.6 96.12 91.97 82.01 92.58 82.55 81.71
T = 0.7 96.50 91.97 80.21 92.89 84.75 81.86
T = 0.8 96.82 93.58 84.12 94.48 87.27 85.36
T = 0.9 96.51 91.67 81.17 93.00 82.19 80.74

T = 0.8 Metrics

λc = 0.1 AUC ACC SEN SPE PREC F1

λu = 0.05 95.31 90.37 78.91 91.62 78.53 78.23
λu = 0.1 95.59 91.67 81.53 92.18 82.20 81.46
λu = 0.3 96.50 92.81 82.24 93.88 84.80 82.79
λu = 0.5 96.82 93.58 84.12 94.48 87.27 85.36
λu = 0.7 95.94 92.97 82.06 94.44 83.84 82.34

T = 0.8 Metrics

λu = 0.5 AUC ACC SEN SPE PREC F1

λc = 0.05 96.30 92.28 80.61 93.18 85.32 82.11
λc = 0.1 96.82 93.58 84.12 94.48 87.27 85.36
λc = 0.3 96.51 92.58 82.24 93.87 82.91 82.26
λc = 0.5 95.23 91.82 81.19 93.70 81.03 80.61
λc = 0.7 94.95 90.67 79.40 92.97 78.49 78.05

4.4.3. Impact of Input Noise

To evaluate the influence of noise on the classification performance of the proposed
PCML framework, we utilize different kinds of input image perturbations as input noise to
evaluate the performance of our PCML. Specifically, random transformations including
rotation, translation, and horizontal flips were applied to each input image. The rotation
angle was randomly set in the range of −10 to 10 degrees. Horizontal and vertical transla-
tions for pixels were applied within a range of −2% to 2% of the image width. Additionally,
the input image was randomly flipped horizontally and vertically with a probability of
50%. We use the above input noise into one subnetwork and two subnetworks to evaluate
the performance of the proposed method. It includes the following scenarios: (a) without
input noise (setting 1); (b) with input noise to one subnetwork (setting 2); (c) with input
noise to two subnetworks (setting 3). As illustrated in Table 9, the experimental results
across different settings show minimal variation, which indicates that the proposed PCML
is robust to the input perturbation noise.
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Table 9. Impact of input perturbation noise on the classification results (%) obtained by PCML.

Settings
TV Background Wall

AUC ACC SEN SPE PREC F1

1 96.82 93.58 84.12 94.48 87.27 85.36
2 96.24 92.13 80.82 93.47 82.63 81.02
3 96.09 91.67 81.93 93.26 80.11 80.64

Settings
Chandelier

AUC ACC SEN SPE PREC F1

1 98.25 95.21 90.88 96.65 90.47 90.55
2 97.96 94.43 89.38 96.29 89.63 89.11
3 98.90 95.47 91.73 96.71 90.16 90.78

Settings
Living Room

AUC ACC SEN SPE PREC F1

1 93.92 91.25 77.27 93.33 79.74 76.74
2 93.34 90.91 78.47 93.03 79.02 77.58
3 93.16 91.25 79.19 93.12 79.07 78.26

Settings
Dining Room

AUC ACC SEN SPE PREC F1

1 97.23 93.51 88.96 94.75 86.35 87.59

2 97.84 94.71 88.08 95.46 89.71 88.68

3 98.15 93.99 85.16 94.30 87.59 85.86

Settings
Bedroom

AUC ACC SEN SPE PREC F1

1 86.71 82.42 69.26 86.80 65.10 66.52

2 87.68 82.03 67.81 87.7 70.43 63.14

3 88.32 82.23 68.81 86.98 70.58 64.37

5. Conclusions

In this paper, we propose a pseudo-label-guided contrastive mutual learning frame-
work, named PCML, to facilitate semi-supervised interior decoration style classification
by harnessing reliable knowledge within limited labeled data and selectively utilizing the
reliable unlabeled data for learning discriminative feature representations. The framework
employs two subnetworks with different architectures, and integrates two novel mod-
ules: inconsistency-aware relearning regularization, and class-aware contrastive learning
regularization. The different subnetworks can direct the model generate diverse predic-
tions. Thus, inconsistency-aware relearning regularization to can perform a review training
for these images with different predictions. In addition, class-aware contrastive learning
regularization can learn the discriminative feature representations of unlabeled images
using the corresponding reliable pseudo-labels. More importantly, the synergistic learning
among the mutual learning framework, inconsistency-aware relearning regularization,
and class-aware contrastive learning regularization during the training process enables
each subnetwork to selectively incorporate the reliable knowledge imparted by the other
subnetwork, thereby mitigating the issue of confirmation bias. The comprehensive perfor-
mance evaluations on multiple interior decoration style image datasets demonstrate the
superiority of the proposed PCML over existing SSL methods. In future work, we plan to
further comprehensively evaluate our PCML on more complex interior decoration tasks.
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