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1. Introduction

We know that a basis is one of the most important concepts in a vector space. A
sequence { fk}∞

k=1 in a Hilbert space, H, is a (Schauder) basis if every f ∈ H can be
represented as a (infinite) linear combinations of fks. In recent years, there has been
increasing interest in interval algebra and interval-valued functions and their applications.
Replacing a precise value by an interval value generally reflects the variability or uncertainty
circumstances in an observation process. In signal processing, in general, it is very difficult
to deal with a process with reliable information about the properties of the expected
variations. Such uncertainties in a process lead us to set up a mathematical foundation
of set-valued data and interval-based signal processing, see, for example, ref. [1] and
references therein. Precisely, we want to study the mathematical analysis of set-valued
and, in some special cases, interval-valued functions. In this regard, we will consider
L2(R, Ω(C)) and L2(R, IC), Ω(C)-valued and IC-valued square integrable functions. After
saying that these are Hilbert quasilinear space structures, we will give the concept of basis
in these spaces. Thus, we will talk about one-of-a-kind Fourier expansions in L2(R, Ω(C))
and present some orthonormal basis. We will also prove the version of Shannon’s sampling
theorem for interval-valued functions by constructing the quasi-Paley–Wiener space.

The general motivation of this study is to show how signals with data that are inexact
or corrupted to a limited extent can be re-improved by using the Hilbert quasilinear
space of set-valued and, especially, interval-valued functions. Accordingly, the set-valued
Shannon’s sampling theorem that we have proven provides us with the advantage that
such signals can be reconstructed from digital samples. Casting Representation Theorem
provides a significant contribution to us in achieving this result. Thus, by using the set-
valued Shannon’s sampling theorem, we can reveal a method of recovering signals with
inexact data (for example slightly distorted signals due to some reasons (noise, overlapping,
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etc.)). The limitation or validity of this method is that the amount of distortion must be
within certain limits. The distorted signal, that is, the function, must be confined within
a set-valued or interval-valued function. Otherwise, the reconstruction forecast cannot
be realized.

2. Preliminaries

Any non-empty set, X, is called a quasilinear space on field K = (R or C) if it is a
partially ordered set (poset) with a partial order relation “⪯”, (X,+) is an abelian ordered
monoid with an algebraic sum operation +, and with a scalar multiplication by K with
the following conditions: for any elements x, y, z, v ∈ X and any α, β ∈ K: α(βx) = (αβ)x,
α(x + y) = αx + αy, 1x = x, 0x = θ, (α + β)x ⪯ αx + βx, x + z ⪯ y + v if x ⪯ y and z ⪯ v,
and αx ⪯ αy if x ⪯ y. Here, θ denotes the additive unit (zero) in X.

The most popular examples are Ω(K) and ΩC(K), which are defined as the sets of all
non-empty compact and non-empty compact convex subsets of K, respectively. The set IR
of all closed intervals constitutes the basics of the interval analysis and, for x, y ∈ IR and
λ ∈ R, the Minkowski sum and scalar multiplication operations are defined by

x + y = [x, x] +
[
y, y
]
= [x + y, x + y]

and

λx =

{
[λx, λx]
[λx, λx]

,
,

λ ≥ 0
λ < 0,

respectively. Further, the product of two intervals x = [x, x] and y =
[
y, y
]

is given by

x · y = [x, x]
[
y, y
]
= [min S, max S] (1)

where S = {xy, xy, xy, xy}, [2].
Suppose that X is a quasilinear space and Y ⊆ X. Then Y is called a subspace of X

whenever Y is a quasilinear space with the same partial order on X [3]. Y is subspace of
quasilinear space X if and only if αx + βy ∈ Y, for every x, y ∈ Y and α, β ∈ K [3]. An
element, x, in quasilinear space X is said to be symmetric if −x = x and Xsym denotes the set
of all symmetric elements. An element, x, in X called regular whenever it has an additive
inverse, that is, there exist an element, x′, such that x + x′ = θ. A non-regular element is
called a singular. Also, Xr denotes the set of all regular elements of X, while Xs is the set
of all singular elements with the zero in X. Further, it can be easily shown that Xr, Xsym,
and Xs are subspaces of X. They are called regular, symmetric, and singular subspaces of X,
respectively [4].

A function ∥.∥ is called a norm on the QLS X whenever the classical conditions of
normed linear spaces are satisfied on X and following two extra conditions that are also
satisfied on X:

if x ⪯ y, then ∥x∥ ≤ ∥y∥, (2)

if for any ε > 0 there exists an element xε ∈ X, such that (3)

x ⪯ y + xε and ∥xε∥ ≤ ε, then x ⪯ y,

where x, y, xε ∈ X, and α is any scalar [5]. A quasilinear space, X, with a norm defined on it
is called a normed quasilinear space. A Hausdorff metric or norm metric on X is defined by
the equality

hX(x, y) = inf
{

r ≥ 0 : x ⪯ y + a(r)1 , y ⪯ x + a(r)2 and
∥∥∥a(r)i

∥∥∥ ≤ r, i = 1, 2
}

.
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A norm on Ω(K) is defined by ∥A∥Ω = sup
a∈A

|a|. Hence, ΩC(K) and Ω(K) are normed

quasilinear spaces [5].
Now, let us give an extended definition of the inner product given in [4]. We can

say that the inner product in the following definition is a set-valued inner product on
quasilinear spaces.

Definition 1 ([4]). Let X be a quasilinear space on the field K. A mapping ⟨ , ⟩ : X × X → Ω(K)
is called an inner product on X if for any x, y, z ∈ X and α ∈ K the following conditions
are satisfied:

If x, y ∈ Xr then ⟨x, y⟩ ∈ ΩC(K)r ≡ K, (4)

⟨x + y, z⟩ ⊆ ⟨x, z⟩+ ⟨y, z⟩, (5)

⟨αx, y⟩ = α⟨x, y⟩, (6)

⟨x, y⟩ = ⟨y, x⟩, (7)

⟨x, x⟩ ≥ 0 for x ∈ Xr and ⟨x, x⟩ = 0 ⇔ x = 0, (8)

if x ⪯ y and u ⪯ v then ⟨x, u⟩ ⊆ ⟨y, v⟩, (9)

if for any ε > 0 there exists an element xε ∈ X, such that (10)

x ⪯ y + xε and ⟨xε, xε⟩ ⊆ Sε(θ), then x ⪯ y.

A quasilinear space with an inner product is called as an inner-product quasilinear space.
Every IPQLS X is a normed QLS, with the norm defined by

∥x∥ =
√
∥⟨x, x⟩∥Ω(C)

for every x ∈ X. This norm is called an inner-product norm. Further, xn → x and yn → y
in an IPQLS implies ⟨xn, yn⟩ → ⟨x, y⟩.

An IPQLS is called a Hilbert QLS if it is complete according to the inner-product (norm)
metric. Ω(C) is a Hilbert QLS.

The space L2(R, Ω(C)) consists of all set-valued measurable functions F : R →Ω(C),
such that the Lebesque integral ∫

R

∥F(x)∥2
Ωdx

exists. L2(R, Ω(C)) is a quasilinear space over the field C with the algebraic operations
(F1 + F2)(x) = F1(x) + F2(x), (λF)(x) = λF(x) and the partial order relation F1 ⪯ F2 ⇔
F1(x) ⊆ F1(x) for almost everywhere (a.e.) x ∈ R [6]. L2(R, Ω(C)) is an inner-product
quasilinear space with respect to the inner product

⟨F, G⟩ =
(A)∫
R

⟨F(x), G(x)⟩Ωdx.

Throughout the paper,
(A)∫
R

F(x) means the Aumann integral of the set-valued function F.

Any set, M, in an inner-product QLS is called orthogonal whenever ⟨x, y⟩ = 0 for every
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x, y ∈ M. Further, if the norm of each element in an orthogonal set is 1, the set is called
orthonormal.

Let us give an algebraic concept from [3,4,7]. For any non-empty subset, A, of a QLS
X, the span of A is given by

SpA = {
n

∑
k=1

αkxk : x1, x2, . . . , xn ∈ A, α1, α2, . . . , αn ∈ K, n ∈ N}.

However, QspA, the quasispan (q-span, for short) of A, is defined as

QspA = {x ∈ X :
n

∑
k=1

αkxk ⪯ x, x1, x2, . . . , xn ∈ A, α1, α2, . . . , αn ∈ K, n ∈ N}.

Obviously, SpA ⊆ QspA. Further, SpA = QspA for some linear QLS (linear space); hence,
the notion of QspA is redundant in linear spaces. Moreover, we say A quasispans X
whenever QspA = X.

Definition 2. A quasilinear space, X, is called a consolidate (solid-floored) QLS whenever
y = sup{x ∈ Xr : x ⪯ y} for each y ∈ X. Otherwise, X is called a non-consolidate QLS, briefly,
nc-QLS.

The supremum in this definition is taken on the order relation “⪯” in the definition of
a QLS. The above definition assumes sup{x ∈ Xr : x ⪯ y} exists for each y ∈ X. Implicitly,
we say that X is consolidate if and only if y = sup Fy, for each y ∈ X.

We signify that any linear space is a consolidate QLS: indeed, Xr = X for any linear
space, X, and so

y = sup{x ∈ Xr : x ⪯ y} = sup{x ∈ Xr : x = y} = sup{y} = y

for any element y in X.

Definition 3. A ql-independent subset A of a QLS X that q-spans X is called a basis (or Hamel
basis) for X.

Remark 1. We know from our previous work that only consolidated quasilinear spaces can have
bases; the others cannot. Also, a base of a quasilinear space is a subset of the regular subspace of the
space. That is, the basis vectors of a quasilinear space must be chosen from its regular subspace.

For any a ∈ C, the singleton {{a}} is a basis for ΩC(C) and for Ω(C). Further,
B = {1, i} is a basis for IC on the field R. In general, if {(a1, b1), (a2, b2)} is a basis for
R2, then {{(a1, b1)}, {(a2, b2)}} is a basis for ΩC(R2) and In

R . In general, any basis of Rn

generates a basis for ΩC(Rn) and In
R. Let us give a useful basis for In

C in signal processing
and in applied mathematics.

3. Main Results

Let us start with an easy result. We are inspired by [8] for the following result.

Example 1. (Fourier transform basis in In
C) for 1, 2, . . . , n consider the set B = {b1, b2, . . . , bn} of

regular elements in In
C such that
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b1 =
(
1/

√
n
)
(1, 1, . . . , 1)

b2 =
(
1/

√
n
)(

1, e
2πi
n , e

4πi
n , . . . , e

2πi(n−1)
n

)
b3 =

(
1/

√
n
)(

1, e
4πi
n , e

8πi
n , . . . , e

4πi(n−1)
n

)
...

bn =
(
1/

√
n
)(

1, e
2πi(n−1)

n , e
4πi(n−1)

n , . . . , e
2(n−1)πi(n−1)

n

)
.

Then B is a basis for In
C. In fact, we know that B is the Fourier basis for the uniter linear space Cn,

which is the regular subspace of In
C.

Remark 2. Now, any element x = (x1, x2, . . . , xn) ∈ In
C can be expressed uniquely as

x = sup
⊆

{z ∈ (In
C)r ≡ Cn : z ⊆ x}

= sup
⊆

{
n

∑
k=1

αz
kbk : zk ⊆ xk, k = 1, 2, . . . , n}

where z = (z1, z2, . . . , zn) ∈
(
In
C
)

r ≡ Cn and αz
k, k = 1, 2, . . . , n, are complex scalars depending

on z. This is known as the super position of each element, x, in In
C with respect to the Fourier

transform basis, B.

Remark 3. We should note that only consolidate quasilinear spaces can have a Hamel basis.
Therefore, unlike linear spaces, not every quasilinear space may have a basis. For instance

(IR)sym = {[−a, a] : a is non-negative real},

the symmetric subspace of IR, has no basis. This is because every subset of (IR)sym is quasilinear
dependent. Moreover, we can easily see that the quasilinear space (IR)sym is not consolidate. The
floors, i.e., regular subspaces, of consolidate quasilinear spaces are linear spaces, and this linear space
has a basis. This regular subspace is called the linear part of the quasilinear space. We show that, if
a quasilinear space has a basis, the basis elements must be chosen from the linear part. Moreover,
while the elements of this Hamel basis span the linear part, they quasi-span the quasilinear space. In
a consolidate space, the basis representations of regular elements are like the representations given in
linear spaces. But the representations of singular elements are given in a similar way to the example
above, using the partial order relation on the quasilinear space and the basis vectors.

Proposition 1. Let X be a finite-dimensional consolidate quasilinear space and x be any element of
X. Then X has a basis B = {b1, b2, . . . , bn} and each x ∈ X has the representation

x = sup
⪯

{z ∈ Xr : z ⪯ x}

= sup
⪯

{
n

∑
k=1

αz
kbk : z ⪯ x, k = 1, 2, . . . , n}

where (nr, ns) is the (binary) dimension (see [4]) of X and scalars αz
k, k = 1, 2, . . . , n, are depend

on z, (and are depend of course on x), and the supremum is taken on the partial order relation on X.

We know from [4] that the dimension of a finite-dimensional quasilinear space can be
defined as a binary natural number (nr, ms), where n denotes the usual dimension of the
linear part, and m is just the maximum numbers of cardinality in a quasilinear-independent
subset in singular part, Xs. We know again from [4] that m = n if X is a finite-dimensional
consolidate quasilinear space.
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Definition 4. (Schauder basis) Let X be a normed quasilinear space. A Schauder basis is a sequence
{bn} of elements of X, such that for every element x ∈ X

x = sup
⪯

{z ∈ Xr : z ⪯ x},

and for every element z ∈ Xr, with z ⪯ x, there exists a unique sequence
{

αz
k
}

of scalars so that

z = ∑
k∈Z

αz
kbk.

Remark 4. Let X be a normed linear space, then if X is a normed space this definition turns into
the classical Schauder basis definition in normed spaces. Because in this case the relation ≤ has to
turn into the relation =, there is only one element that will satisfy the relation

x = sup
≤

{z ∈ Xr : z = x} = z.

Thus, there is no need for the supremum, and the first condition in the definition becomes unnecessary.

Definition 5 ([6]). The set-valued Fourier transform of F ∈ L2(R, Ω(C)) is the set-valued
function F̂, defined as

F̂(w) =

(A)∫
R

F(x)e−2πiwxdx = {
∫
R

f (x)e−2πiwxdx : f ∈ S2(F)} (11)

for every w ∈ R. The set-valued Fourier transform of F is also denoted as

(FF)(w) = F̂(w) ,w ∈ R.

Note that the set-valued Fourier transform of F ∈ L2(R, Ω(C)) is the set of Fourier
transforms of integrable selections of F, i.e.,

F̂(w) = { f̂ (w) : F ( f ) = f̂ , f ∈ S2(F)}

where F (F) = F̂ is the set-valued Fourier transform of the function F : R → Ω(C) and
f̂ = F ( f ) is the classical Fourier transform of the function f : R → C. Further, S2(F) denotes
the square integrable selections of F.

Any selection of F is a function R → C, such that f (t) ∈ F(t) for all t ∈ R.

Example 2 ([8]). Function sequence {
1√
2π

eikx
}

k∈Z

form an orthonormal basis for L2([−π, π]).

Now, let us present a main result.

Theorem 1. (Fourier series expansion of set-valued functions) The sequence{
1√
2π

eikx
}

k∈Z
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forms an orthonormal basis for L2([−π, π], Ω(C)). More precisely, each F ∈ L2([−π, π], Ω(C))
can be represented uniquely as

F(x) = lim
N→∞

(
sup

g∈S2(F)

N

∑
k=−N

cg
k eikx

)
= sup

g∈S2(F)

∞

∑
k=−∞

cg
k eikx

where
cg

k =
1√
2π

∫
[−π,π]

g(x)e−ikxdx

is the Fourier coefficient corresponding to g ∈ S2(F).

Proof. Orthonormality is just the same as in the classical case. We have to use the norm
metric in calculations on L2([−π, π], Ω(C)), which is defined as

hL(F, G) = inf
{

r ≥ 0 : F ⪯ G + A(r)
1 , G ⪯ F + A(r)

2 and
∥∥∥A(r)

i

∥∥∥ ≤ r, i = 1, 2
}

= inf


r ≥ 0 : F(x) ⊆ G(x) + A(r)

1 (x), G(x) ⊆ F(x) + A(r)
2 (x)

and
∫

[−π,π]

∥∥∥A(r)
i (x)

∥∥∥2

Ω
dx ≤ r2, i = 1, 2.


=

 π∫
−π

(
hΩ(C)(F(x), G(x))

)2
dx

1/2

Now consider any square-integrable selections f ∈ S2(F) of F. Then, from the above
example, f has the Fourier series expansion

f (x) =
∞

∑
k=−∞

ckeikx,

here, the coefficient ck is computed by

ck =
1√
2π

∫
[−π,π]

f (x)e−ikx.

Let SN be the Nth partial sum of the Fourier series, that is

SN(x) =
N

∑
k=−N

ckeikx.

By the Schauder basis definition and from the above example, any element
F ∈ L2([−π, π], Ω(C)) can be written uniquely

F = sup
≤

{g ∈ L2([−π, π], Ω(C))r : g ≤ F},

= sup{g ∈ L2[−π, π] : g ∈ S2(F), g(x) ∈ F(x)}.

Here, for every element g ∈ L2[−π, π] with g ∈ S2(F), there exists a unique sequence
{

cg
k

}
of scalars, depending only on g, such that

g(x) =
∞

∑
k=−∞

cg
k eikx
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where each
cg

k =
1√
2π

∫
[−π,π]

g(x)e−ikxdx

is the Fourier coefficient corresponding to g. Let Sg
N be the Nth partial sum of the Fourier

series, that is

Sg
N(x) =

N

∑
k=−N

cg
k eikx.

Hence, for any g ∈ S2(F), g(x) ∈ F(x) and∣∣∣g(x)− Sg
N(x)

∣∣∣→ 0 as N → ∞, x ∈ [−π, π].

Let FN(x) = sup{Sg
N(x) : g(x) ∈ F(x)}, where the supremum is taken on the inclusion

relation. We should remark again that g(x) ∈ F(x) means g(x) ⊆ F(x). Then

(hL(F, FN))
2 =

∫
[−π,π]

(
hΩ(C)(F(x), FN(x))

)2
dx

=
∫

[−π,π]

(
hΩ(C)

(
F(x), sup{Sg

N(x) : g(x) ∈ F(x)}
))2

dx

=
∫

[−π,π]

(
hΩ(C)

(
sup{g(x)}, sup{Sg

N(x)
))2

dx

≤ sup
g∈S2(F)

∫
[−π,π]

∣∣∣g(x)− Sg
N(x)

∣∣∣2dx

→ 0 as N → ∞.

Hence

F(x) = lim
N→∞

(
sup{Sg

N(x) : g(x) ∈ F(x)}
)

= lim
N→∞

(
sup

g∈S2(F)

N

∑
k=−N

cg
k eikx

)

= lim
N→∞

(
sup

g∈S2(F)

N

∑
k=−N

cg
k eikx

)
.

This completes the proof.

Now let us prepare another main result.

4. Set-Valued Shannon’s Sampling Theorem

Definition 6 ([8]). Support of a function f : R → C is defined as

Supp f = {x ∈ R : 0 ̸= f (x)}.

The Paley–Wiener space, PW for short, is defined as

PW = { f ∈ L2(R) : Supp f̂ ⊆ [−1/2, 1/2]}

where f̂ is the set-valued Fourier transform of f̂ .

The sinc-function is given by sinc(t) =
{ sin πt

πt ,
1

if t ̸= 0
if t = 0

.
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Theorem 2 ([8]). (Shannon’s sampling theorem) The functions {sinc(. − k)}k∈Z form an orthonor-
mal basis for PW. If f ∈ PW is continuous, then

f (x) = ∑
k∈Z

f (k)sinc(x − k).

A quick generalization of this theorem may be more useful.

Corollary 1. (Shannon’s sampling theorem) If Supp f̂ ⊆ [−α/2, α/2]}, then

f (x) = ∑
k∈Z

f (
k
α
)sinc(αx − k), x ∈ R.

Definition 7. The quasi-support of a function F : R → Ω(C) is defined as

QsuppF = {x ∈ R : 0 /∈ F(x)}.

The quasi-Paley–Wiener space, QPW for short, is defined as

QPW = {F ∈ L2(R, Ω(C)) : QsuppF̂ ⊆ [−1/2, 1/2]}

where F̂ is the set-valued Fourier transform of F.

Lemma 1. QPW is a subspace of L2(R, Ω(C)).

Proof. Suppose that F, G ∈ QPW and α, β ∈ C. Then we can write

QsuppF̂ ⊆ [−1/2, 1/2] and QsuppĜ ⊆ [−1/2, 1/2],

i.e.,
{x ∈ R : 0 /∈ F̂(x)} and {x ∈ R : 0 /∈ Ĝ(x)}

are the subsets of [−1/2, 1/2]. Let us take an arbitrary

x ∈ Qsupp(αF̂ + βĜ).

Then, 0 /∈ αF̂(x) + βĜ(x). Thus we observe that either 0 /∈ αF̂(x) or 0 /∈ βĜ(x). If both
0 ∈ αF̂(x) and 0 ∈ βĜ(x), then we have

0 ∈ αF̂(x) + βĜ(x).

This contradicts the assumption that

x ∈ Qsupp(αF̂ + βĜ).

Therefore, we obtain from the hypothesis that αF + βG ∈ QPW since x ∈ [−1/2, 1/2].

Theorem 3. (Castaing Representation theorem) T is a domain in Rk and F : T → Ω(Rn) is
measurable if and only if there exists a sequence of measurable selections { fi}∞

i=1 of F, such that

F(x) = ∪
i∈N+

fi(x)

for each x ∈ T [9,10].

Proposition 2. T is a domain in Rk and F : T → Ω(Rn) is measurable if it is upper or
lower semi-continuous, hence if it is continuous. Further, such an F has a measurable selection
f : T → Rn [9,10].
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Now we will give the Shannon’s sampling theorem for interval-valued functions. First,
let us give the following lemma, which can be proved usually.

Lemma 2. If F ∈ QPW, then each selection, f , of F is an element of the usual Paley–Wiener space

PW = { f ∈ L2(R) : supp f̂ ⊆ [−1/2, 1/2]}.

Theorem 4. (Shannon’s sampling theorem for set-valued functions) If F ∈ QPW is continu-
ous, then there exists a sequence of measurable continuous selections { fi}∞

i=1 of F, such that for
each i ∈ N+

fi(x) = ∑
k∈Z

fi(k)sinc(x − k)

where x ∈ R. Therefore, F has the representation,

F(x) = ∪
i∈N+

{∑
k∈Z

fi(k)sinc(x − k)}

and this representation is unique, where {sinc(. − k}k∈Z is the set of orthonormal basis functions
for PW.

Proof. By the Castaing Representation theorem and by the above proposition we say that
there exists a sequence of measurable selections { fi}∞

i=1 of F, such that

F(x) = ∪
i∈N+

{ fi(x)}.

Further, the fact that F ∈ QPW implies that each selection, fi, of F is in the space PW by
Lemma (2). These selections are continuous, since the set-valued function, F, is continuous
(see, [10]). Therefore, by the classical Shannon’s sampling theorem we can write that

fi(x) = ∑
k∈Z

fi(k)sinc(x − k)

for each i = 1, 2, . . . and x ∈ R. Consequently, we obtain the representation

F(x) = ∪
i∈N+

{∑
k∈Z

fi(k)sinc(x − k)}

in the quasi-Paley–Wiener space, and this representation is unique since each selection, fi,
is unique.

Remark 5. In signal processing, functions that are elements of the PW are known as band-limited
signals. Moreover, the classical Shannon sampling theorem expresses the following fundamental
law in signal processing: “each band-limited signal can be reconstructed from its samples”. Band
limited means that the frequency band of the signal lays into an interval, for example in [−1/2, 1/2].
When we take the Fourier transform of a time signal, f (t), the resulting function, f (w), becomes
a function of the frequency, w. Thus, the Fourier transform is a function that converts the time
signal into frequency signals, or, in other words, moves it into the frequency band. The theorem we
gave above can be used as follows. Interval valued functions can represent signals with inexact data.
Functions whose value at a point is not exactly known, but whose value is known to be confined
within an interval or a cluster, are called signals with inexact data. The theorem above states that a
quasi-band-limited signal can be approximated step by step by a band-limited signal.

Example 3. Let us consider a piece of music that is 5 min or 300 s long. While listening to this
piece of music, our ear, that is, the receiver, can make sense of frequencies of up to 20,000 Hertz. In
other words, the frequency function of this 300-s f (t) function, that is, the f̂ (w) function, which is
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the Fourier transform of f , should not exceed 20,000 Hz. We can say this to include this situation:
for this function, f we can say that

supp f̂ ⊆ [−20, 000, 20, 000] = [−40, 000
2

,
40, 000

2
].

In this case, f is band-limited and f ∈ PW. Hence, from Corollary 1, f can be represented as

f (t) = ∑
k∈Z

f (
k

40, 000
)sinc(40, 000t − k), t ∈ [0, 300],

= . . . f (
−1

40, 000
)sinc(40, 000t + 1) + f (0)sinc(40, 000t)

+ f (
1

40, 000
)sinc(40, 000t − 1) + . . . .

In other words, function f can be reconstructed from these samples created with the help of the sinc
function. This rebuilding process is done by assimilating or approximating the series

Sn(t) =
n

∑
k=−n

f (
k

40, 000
)sinc(40, 000t − k)

of partial sums to the function f (t) with an acceptable error, according to the norm in the PW space.
Classic CD players work according to this principle.

Now let us assume that for some reason there is distortion in this signal f (music piece) and
that this distortion is in the form of a shift of at most 10% in the f (t) values for each time moment,
t. Such situations may occur for many reasons (for example, due to interference in the signal
transmission environment, overlapping, etc.). Let us denote the distorted signal at this rate as g(t)
and let us create our model interval-valued function

F(t) =
[

f (t)− f (t)
10

, f (t) +
f (t)
10

]
= f (t).

[
9
10

,
11
10

]
.

By the information above, we can write

f (t) ∈ F(t) and g(t) ∈
[

f (t)− f (t)
10

, f (t) +
f (t)
10

]
.

Hence, f (t)− g(t) ∈
[

9
10 , 11

10

]
. For any s ∈

[
9

10 , 11
10

]
u(s) = s f (t)

is a measurable selection of F(t). Furthermore, all measurable selection of F(t) must be of the form
u(s). Therefore, for any s ∈

[
9

10 , 11
10

]
we can write g(t) = s f (t). Now, from Theorem 4 there exists

a sequence (si)i∈N+ with si ∈
[

9
10 , 11

10

]
, such that

Si
n(t) =

n

∑
k=−n

si f (
k

40, 000
)sinc(40, 000t − k)

and
Si

n(t) → f (t) as i, n → ∞
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in the norm of L2(R). We thus show that there is a computable way to correct or filter the distorted
signal, g(t). These calculations are performed by calculating the samples, Si

n(t). Now let us
guarantee that the error in these calculations will go towards zero. Again from Theorem 4, the set(

∪
i∈N+

Si
n(t)

)
n∈N

is dense in F(t) and in the same way we obtain(
∪

i∈N+
Si

n(t)
)

n∈N
= {S1

n(t), S2
n(t), . . . , Si

n(t)} → F(t) as i, n → ∞

in the norm of QPW, hence of L2(R, Ω(C)).

Conclusion 1. We conclude that a certain percentage, say 10%, of faulty or noise-contaminated
signals can be recovered from their digital samples via the set-valued Shannon’s sampling theorem.
Mathematical methods obtained with the help of quasilinear functional analysis allow signals with
inexact data to be processed in signal processing. Moreover, this innovative approach can be used for
many signal processing procedures, such as autocorrelation calculation or filtering, or frequency band
determination. In subsequent studies, we aim to perform some other signal processing procedures
for these signals in Hilbert quasilinear spaces.

5. Applications: Energy Spectral Density Estimation

In this section, we will try to estimate the energy spectral density of a signal with
inexact data, e.g., a signal that is deformed to a certain extent. For example, let us determine
that the signal f (t) is deformed due to noise contamination or other reasons and that the
values of the deformed signal, g(t), in the time interval, t, deviate by at most 1/100. In this
case, we can use interval-valued functions to estimate the energy spectral density of the
deformed signal, g(t), using interval-valued functions. Let us try to see a simple example
of this.

Now, let us give a lemma that is necessary to solve the following problem.

Lemma 3 ([2]). We define the interval integral

∫
[a,b]

F(t)dt =
∞⋂

N=1

SN(F; [a, b])

It follows from the continuity of F that there are two continuous real-valued functions, F and F,
such that, for real t,

F(t) =
[
F(t), F(t)

]
Moreover, the integral defined above is equivalent to

∫
[a,b]

F(t)dt =

 ∫
[a,b]

F(t)dt,
∫

[a,b]

F(t)dt


where F(t) and F(t) are classical functions from [a, b] into R, which are the lower and upper bound
functions of F(t), respectively.

From classical signal processing, we know that energy spectral density can be calcu-
lated for a signal, f , as

ESD f =
∣∣∣ f̂ (s)∣∣∣2

where f̂ (s) is the Fourier transform of f .
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Problem: It is observed that the signal of

f (t) =
{

2, 0 ≤ t ≤ 1
0, otherwise.

is distorted due to interference or noise at the rate of at most 1/100 and assume that the re-
sulting noisy signal is g(t). Then, we can say that g(t) ∈ F(t) =

[
f (t)− 10−2, f (t) + 10−2].

For the solution, we have to calculate the interval-valued Fourier transform of F(t). Now,
firstly, in order to solve this problem we use Lemma 3.

F̂(s) =

1∫
0

[
2 − 10−2, 2 + 10−2

]
e−2πisτdτ

=

1∫
0

[
2 − 10−2, 2 + 10−2

]
(cos(2πsτ)− i sin(2πsτ))dτ

=

1∫
0

[
2 − 10−2, 2 + 10−2

]
cos(2πsτ)dτ − i

1∫
0

[
2 − 10−2, 2 + 10−2

]
sin(2πsτ)dτ

=

 1∫
0

(
2 − 10−2

)
cos(2πsτ)dτ,

1∫
0

(
2 + 10−2

)
cos(2πsτ)dτ


−i

 1∫
0

(
2 − 10−2

)
sin(2πsτ)dτ,

1∫
0

(
2 + 10−2

)
sin(2πsτ)dτ


=

[(
2 − 10−2

)( sin(2πs)
2πs

)
,
(

2 + 10−2
)( sin(2πs)

2πs

)]
−i
[(

2 − 10−2
)(

−cos(2πs)
2πs

+
1

2πs

)
,
(

2 + 10−2
)(

−cos(2πs)
2πs

+
1

2πs

)]
=

sin(2πs)
2πs

.
[(

2 − 10−2
)

,
(

2 + 10−2
)]

−i
(
−cos(2πs)

2πs
+

1
2πs

)[(
2 − 10−2

)
,
(

2 + 10−2
)]

if cos(2πsτ) ≥ 0 and sin(2πsτ) ≥ 0.

Now, for this case, from the interval calculus we obtain ESD

ESDF(s) =
∣∣∣F̂(s)∣∣∣2

=
∣∣∣[(2 − 10−2

)
,
(

2 + 10−2
)]∣∣∣2( sin2(2πs)

2πs
+

(
−cos(2πs)

2πs
+

1
2πs

)2
)

= max
{(

2 − 10−2
)2

,
(

2 + 10−2
)2
}(

sin2(2πs)
2πs

+

(
−cos(2πs)

2πs
+

1
2πs

)2
)

=
(

2 + 10−2
)2
(

sin2(2πs)
2πs

+

(
−cos(2πs)

2πs
+

1
2πs

)2
)

For further cases of cos(2πsτ) and sin(2πsτ), the energy spectral density, ESD, can be
calculated in a similar way. For the first case we can give the comment that the energy
spectral density of the uncertain signal, g(t), must be confined within the complex interval-
valued function, F(s) . Thus, the energy spectral density of g(t), i.e., each value of the ESD
function, is in the interval [u, v].
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Conclusion 2. We conclude that the energy spectral density function of the distorted signal, g(t),
cannot exceed the function ESDF(s). For many signals with inexact data, it is possible to give
similar estimates for the power spectral density as well as the energy spectral density. Although our
results are not precise, it is crucial in many cases to determine the energy density for each value of s
and subsequently an upper bound on the total signal energy. In quasilinear functional analysis, in
particular using some Hilbert quasilinear spaces, we can obtain a procedure to approximate the basic
concepts of classical signal processing for signals with inexact data.
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