Synchronization of Chaotic Extremum-Coded Random Number Generators and Its Application to Segmented Image Encryption
Abstract
:1. Introduction
2. Design of Image Secure Transmission System and Problem Formulation
Synchronization of Extremum-Coded Random Number Generators
3. Image Encryption Performance Analysis
4. Implementation of the High-Security Image Transmission System
5. Future Research Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soua, R.; Palattella, M.R.; Stemper, A.; Engel, T. MQTT-MFA: A message filter aggregator to support massive IoT traffic over satellite. IEEE Internet Things J. 2022, 9, 14928–14937. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, L.; Berretti, S.; Wan, S. Medical Image Encryption by Content-Aware DNA Computing for Secure Healthcare. IEEE Trans. Ind. Inform. 2023, 19, 2089–2098. [Google Scholar] [CrossRef]
- Yegireddi, R.; Kumar, R.K. A survey on conventional encryption algorithms of Cryptography. In Proceedings of the 2016 International Conference on ICT in Business Industry & Government (ICTBIG), Indore, India, 18–19 November 2016; pp. 1–4. [Google Scholar]
- Rohhila, S.; Singh, A.K. Deep learning-based encryption for secure transmission of digital images: A survey. Comput. Electr. Eng. 2024, 116, 109236. [Google Scholar] [CrossRef]
- Fernández-Caramès, T.M.; Fraga-Lamas, P. Towards post-quantum blockchain: A review on blockchain cryptography resistant to quantum computing attacks. IEEE Access 2020, 8, 21091–21116. [Google Scholar] [CrossRef]
- Gupta, S.; Sau, K.; Pramanick, J.; Pyne, S.; Ahamed, R.; Biswas, R. Quantum computation of perfect time-eavesdropping in position-based quantum cryptography: Quantum computing and eavesdropping over perfect key distribution. In Proceedings of the 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference, Bangkok, Thailand, 16–18 August 2017; pp. 162–167. [Google Scholar]
- Ambika, S.; Balaji, V.; Rajasekaran, R.T.; Periyasamy, P.N.; Kamal, N. Explore the Impact of Quantum Computing to Enhance Cryptographic Protocols and Network Security Measures. In Proceedings of the 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), Greater Noida, India, 9–10 February 2024; pp. 1603–1607. [Google Scholar]
- Mavroeidis, V.; Vishi, K.; Zych, M.; Josang, A. The impact of quantum computing on present cryptography. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 405–414. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, H. An image encryption algorithm based on a compound-coupled chaotic system. Digit. Signal Process. 2024, 146, 104367. [Google Scholar] [CrossRef]
- Araki, S.; Wu, J.-H.; Yan, J.-J. A Novel Design of Random Number Generators Using Chaos-Based Extremum Coding. IEEE Access 2024, 12, 24039–24047. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, M. Color Image Encryption Algorithm Using DNA Encoding and Fuzzy Single Neurons. IEEE Access 2022, 10, 127770–127782. [Google Scholar] [CrossRef]
- Zhao, H.; Xie, S.; Zhang, J.; Wu, T. A dynamic block image encryption using variable-length secret key and modified Henon map. Optik 2021, 230, 166307. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Wu, Y.; Qi, Y.; Ren, F.; Li, S. A high-speed pseudo-random bit generator driven by 2D-discrete hyperchaos. Chaos Solitons Fractals 2023, 167, 113039. [Google Scholar] [CrossRef]
- Wen, H.; Wu, J.; Ma, L.; Liu, Z.; Lin, Y.; Zhou, L.; Jian, H.; Lin, W.; Liu, L.; Zheng, T.; et al. Secure optical image communication using double random transformation and memristive Chaos. IEEE Photonics J. 2023, 15, 7900111. [Google Scholar] [CrossRef]
- Qin, Q.; Liang, Z.; Liu, S.; Zhou, C. A self-adaptive image encryption scheme based on chaos and gravitation model. IEEE Access 2023, 11, 47873–47883. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Wang, Y. Secure communication via chaotic synchronization based on reservoir computing. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Hu, G.H.; Chan, C.Y.; Yan, J.J. Chaos-based synchronized dynamic keys and their application to image encryption with an improved AES algorithm. Appl. Sci. 2021, 11, 1329. [Google Scholar] [CrossRef]
- Nestor, T.; Belazi, A.; Abd-El-Atty, B.; Aslam, M.N.; Volos, C.; De Dieu, N.J.; Abd El-Latif, A.A. A new 4D hyperchaotic system with dynamics analysis, synchronization, and application to image encryption. Symmetry 2022, 14, 424. [Google Scholar] [CrossRef]
- Guillén-Fernández, O.; Tlelo-Cuautle, E.; de la Fraga, L.G.; Sandoval-Ibarra, Y.; Nuñez-Perez, J.C. An image encryption scheme synchronizing optimized chaotic systems implemented on Raspberry Pis. Mathematics 2022, 10, 1907. [Google Scholar] [CrossRef]
- Prasanth, V.; Munikumar, M.; Ganesh, M.; Kumar, G.; Akhther, A. Chaotic Technique for High Information Security based on Dual-Hiding Asynchronous-Logic AES Accelerator with High Resistance to Prevent Side-Channel Attacks. In Proceedings of the 2024 10th International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 12–14 April 2024; pp. 1684–1689. [Google Scholar]
- Açikkapi, M.Ş.; Özkaynak, F.; Özer, A.B. Side-Channel Analysis of Chaos-Based Substitution Box Structures. IEEE Access 2019, 7, 79030–79043. [Google Scholar] [CrossRef]
- Karthikeyan, M.; Selvan, V. FPGA Centric Attention Based Deep Learning Network Evoked Chaotic Encryption to Mitigate Side Channel Attacks, C.R. Acad. Bulg. Sci. 2023, 76, 936–945. [Google Scholar] [CrossRef]
- Zhang, W.; Wong, K.; Yu, H.; Zhu, Z.L. An image encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2066–2080. [Google Scholar] [CrossRef]
- Dong, H.; Bai, E.; Jiang, X.Q.; Wu, Y. Color image compression-encryption using fractional-order hyperchaotic system and DNA coding. IEEE Access 2020, 8, 163524–163540. [Google Scholar] [CrossRef]
- Ge, B.; Shen, Z.; Wang, X. Symmetric Color Image Encryption Using a Novel Cross–Plane Joint Scrambling–Diffusion Method. Symmetry 2023, 15, 1499. [Google Scholar] [CrossRef]
- Winarno, E.; Nugroho, K.; Adi, P.W.; Setiadi, D.R.I.M. Combined Interleaved Pattern to Improve Confusion-Diffusion Image Encryption based on Hyperchaotic System. IEEE Access 2023, 11, 69005–69021. [Google Scholar] [CrossRef]
- Chen, L.P.; Yin, H.; Yuan, L.G.; Lopes, A.M.; Machado, J.A.T.; Wu, R.C. A novel color image encryption algorithm based on a fractional-order discrete chaotic neural network and DNA sequence operations. Front. Inf. Technol. Electron. Eng. 2020, 21, 866–879. [Google Scholar] [CrossRef]
- Wang, X.; Du, X. Pixel-level and bit-level image encryption method based on Logistic-Chebyshev dynamic coupled map lattices. Chaos Solitons Fractals 2022, 155, 111629. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Feng, S.; Liu, C. Color image encryption scheme combining cross-plane Zigzag scrambling and pseudo-random combination RGB component diffusion. Optik 2022, 269, 169933. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, J. A novel color image encryption algorithm based on image hashing, 6D hyperchaotic and DNA coding. Multimed. Tools Appl. 2021, 80, 13841–13864. [Google Scholar] [CrossRef]
- Li, Z.; Peng, C.; Tan, W.; Li, L. A novel chaos-based color image encryption scheme using bit-level permutation. Symmetry 2020, 12, 1497. [Google Scholar] [CrossRef]
- Chen, J.; Tang, J.; Zhang, F.; Ni, H.; Tang, Y. A novel digital color image encryption algorithm based on a new 4-D hyper-chaotic system and an improved S-box. Int. J. Innov. Comput. Inf. Control 2022, 18, 73–92. [Google Scholar]
- Demirtaş, M. A new RGB color image encryption scheme based on cross-channel pixel and bit scrambling using chaos. Optik 2022, 265, 169430. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, N.R.; Gong, L.H. Fast color image encryption scheme based on 3D orthogonal Latin squares and matching matrix. Opt. Laser Technol. 2020, 131, 106437. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Wang, C.; Zhou, S.; Xia, Z.; Li, Q. Color image encryption based on 2D enhanced hyperchaotic logistic-sine map and two-way Josephus traversing. Digit. Signal Process. 2023, 132, 103818. [Google Scholar] [CrossRef]
- Xiao, M.; Guo, J.; Sun, B.; Zhang, C. A color image encryption based on 5d hyper chaos-based system and DNA dynamic coding. In Proceedings of the 2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC), Guiyang, China, 23–25 July 2021; pp. 190–195. [Google Scholar]
- Xuejing, K.; Zihui, G. A new color image encryption scheme based on DNA encoding and spatiotemporal chaotic system. Signal Process. Image Commun. 2020, 80, 115670. [Google Scholar] [CrossRef]
- Malik, M.G.A.; Bashir, Z.; Iqbal, N.; Imtiaz, M.A. Color image encryption algorithm based on hyper-chaos and DNA computing. IEEE Access 2020, 8, 88093–88107. [Google Scholar] [CrossRef]
- Tanveer, M.; Shah, T.; Rehman, A.; Ali, A.; Siddiqui, G.F.; Saba, T.; Tariq, U. Multi-images encryption scheme based on 3D chaotic map and substitution box. IEEE Access 2021, 9, 73924–73937. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, C.H.; Hua, C. A novel color image encryption algorithm based on hyperchaotic system and permutation-diffusion architecture. Int. J. Bifurc. Chaos 2019, 29, 1950115. [Google Scholar] [CrossRef]
- Es-Sabry, M.; El Akksd, N.; Merras, M.; Saaidi, A.; Satori, K. A new color image encryption algorithm using multiple chaotic maps with the intersecting planes method. Sci. Afr. 2022, 16, e01217. [Google Scholar] [CrossRef]
- Yi, Z.; Lian, J.; Liu, Q.; Zhu, H.; Liu, J. Learning rules in spiking neural networks: A survey. Neurocomputing 2023, 531, 163–179. [Google Scholar] [CrossRef]
- Panwar, K.; Kukreja, S.; Singh, A.; Singh, K.K. Towards Deep Learning for Efficient Image Encryption. Procedia Comput. Sci. 2023, 218, 644–650. [Google Scholar] [CrossRef]
- Erkan, U.; Toktas, A.; Enginoğlu, S.; Akbacak, E.; Thanh, D.N.H. An image encryption scheme based on chaotic logarithmic map and key generation using deep CNN. Multimed. Tools Appl. 2022, 81, 7365–7391. [Google Scholar] [CrossRef]
Image: Lena Color (256 × 256), N = 10,000 | |||||
---|---|---|---|---|---|
Channels | Direction | Plain Image | 1 Pair | 4 Pairs | 16 Pairs |
R | Horizontal | 0.9156 | 0.0056 | −0.0023 | 0.0008 |
Vertical | 0.9470 | 0.0125 | 0.0120 | −0.0007 | |
Diagonal | 0.8979 | −0.0037 | −0.0019 | −0.0012 | |
Total | 2.7605 | 0.0218 | 0.0162 | −0.0027 | |
G | Horizontal | 0.9413 | −0.0104 | 0.0030 | −0.0015 |
Vertical | 0.9686 | 0.0014 | −0.0018 | −0.0006 | |
Diagonal | 0.9101 | −0.002 | 0.0061 | 0.0005 | |
Total | 2.8200 | 0.0138 | 0.0109 | 0.0027 | |
B | Horizontal | 0.9522 | −0.0115 | 0.0052 | 0.0001 |
Vertical | 0.9780 | −0.0033 | −0.0052 | −0.0025 | |
Diagonal | 0.9337 | −0.0043 | 0.0059 | −0.0009 | |
Total | 2.8639 | 0.0191 | 0.0163 | 0.0035 | |
(a) | |||||
Image: Lena color (512 × 512), N = 10,000 | |||||
Channels | Direction | Plain image | 1 pair | 4 pairs | 16 pairs |
R | Horizontal | 0.9156 | 0.0012 | 0.0009 | 0.0003 |
Vertical | 0.9470 | −0.0059 | −0.0035 | 0.0003 | |
Diagonal | 0.8979 | 0.0035 | 0.0005 | −0.0008 | |
Total | 2.7605 | 0.0106 | 0.0049 | 0.0014 | |
G | Horizontal | 0.9413 | 0.0014 | −0.0042 | 0.0005 |
Vertical | 0.9686 | −0.0077 | 0.0007 | −0.0002 | |
Diagonal | 0.9101 | −0.0041 | 0.0007 | 0.0021 | |
Total | 2.82 | 0.0132 | 0.0056 | 0.0028 | |
B | Horizontal | 0.9522 | −0.0002 | 0.0021 | −0.0018 |
Vertical | 0.9780 | −0.00001 | 0.0047 | −0.0004 | |
Diagonal | 0.9337 | −0.0096 | 0.0007 | 0.0014 | |
Total | 2.8639 | 0.0098 | 0.0075 | 0.0036 | |
(b) |
Number of Key and IV Pairs | Lena Color (256 × 256) | Lena Color (512 × 512) | ||||
---|---|---|---|---|---|---|
Key and IV Generation Time (s) | Encryption Time (s) | Decryption Time (s) | Key and IV Generation Time (s) | Encryption Time (s) | Decryption Time (s) | |
1 pair | 0.00199 | 0.00205 | 0.00601 | 0.00101 | 0.00501 | 0.00699 |
4 pairs | 0.06172 | 0.03002 | 0.01709 | 0.06042 | 0.04649 | 0.01821 |
16 pairs | 0.08012 | 0.03497 | 0.05683 | 0.10475 | 0.07515 | 0.05760 |
Image: Lena Color (256 × 256), N = 10,000 | |||||||
---|---|---|---|---|---|---|---|
Channels | Direction | [24] | [25] | [26] | [27] | [28] | Our 16 Pairs |
R | Horizontal | 0.0071 | −0.0024 | 0.0002 | 0.0001 | −0.0025 | 0.0008 |
Vertical | 0.0089 | −0.0017 | 0.0018 | −0.0091 | −0.0020 | −0.0007 | |
Diagonal | −0.0006 | 0.0024 | −0.0015 | −0.0023 | 0.0027 | −0.0012 | |
Total | 0.0016 | 0.0065 | 0.0035 | 0.0015 | 0.0072 | 0.0027 | |
G | Horizontal | −0.0012 | −0.0015 | −0.0010 | −0.0025 | −0.0029 | −0.0015 |
Vertical | −0.0018 | −0.0007 | 0.0017 | −0.0061 | −0.0036 | −0.0006 | |
Diagonal | −0.0043 | 0.0015 | 0.0013 | 0.0058 | −0.0015 | 0.0005 | |
Total | 0.0073 | 0.0037 | 0.0040 | 0.0144 | 0.0080 | 0.0027 | |
B | Horizontal | −0.0015 | −0.0016 | −0.0018 | −0.0074 | 0.0027 | 0.0001 |
Vertical | 0.0041 | 0.0024 | 0.0001 | −0.0059 | −0.0018 | −0.0025 | |
Diagonal | −0.0041 | −0.0005 | −0.0017 | 0.0015 | −0.0024 | −0.0009 | |
Total | 0.0097 | 0.0045 | 0.0036 | 0.0148 | 0.0069 | 0.0035 | |
(a) | |||||||
Image: Lena color (512 × 512), N = 10,000 | |||||||
Channels | Direction | [29] | [30] | [31] | [32] | [33] | Our 16 pairs |
R | Horizontal | 0.0035 | −0.00028054 | −0.0022 | −0.00215 | −0.0040 | 0.0003 |
Vertical | −0.0014 | −0.00236150 | 0.0009 | 0.00276 | 0.0015 | 0.0003 | |
Diagonal | −0.0092 | −0.00215030 | 0.0013 | −0.00032 | 0.0025 | −0.0008 | |
Total | 0.0141 | 0.0048 | 0.0044 | 0.0052 | 0.0080 | 0.0014 | |
G | Horizontal | −0.0052 | −0.00029569 | 0.0057 | 0.00179 | 0.0074 | 0.0005 |
Vertical | 0.0006 | −0.00432950 | −0.0041 | 0.00232 | −0.0016 | −0.0002 | |
Diagonal | 0.0002 | 0.000777590 | 0.0017 | 0.00102 | −0.0024 | 0.0021 | |
Total | 0.0060 | 0.0054 | 0.0115 | 0.0051 | 0.0014 | 0.0028 | |
B | Horizontal | −0.0038 | −0.00743010 | 0.00007 | 0.00121 | −0.0002 | −0.0018 |
Vertical | 0.0105 | −0.00106270 | 0.00004 | −0.00113 | −0.0041 | −0.0004 | |
Diagonal | 0.0061 | −0.00070684 | 0.0104 | 0.00069 | 0.0011 | 0.0014 | |
Total | 0.0204 | 0.0092 | 0.0105 | 0.0030 | 0.0054 | 0.0036 | |
(b) |
Image: Lena Color (256 × 256) | |||||
---|---|---|---|---|---|
R | G | B | Average | ||
Plain image | 6.3712 | 6.6362 | 6.9176 | 6.6417 | |
1 pair | 7.9972 | 7.9971 | 7.9968 | 7.9970 | |
4 pairs | 7.9973 | 7.9967 | 7.9974 | 7.9971 | |
16 pairs | 7.9972 | 7.9976 | 7.9977 | 7.9975 | |
(a) | |||||
Image: Lena color (512 × 512) | |||||
R | G | B | Average | ||
Plain image | 6.87920 | 6.92623 | 6.96843 | 6.924619 | |
1 pair | 7.99920 | 7.99926 | 7.99925 | 7.999237 | |
4 pairs | 7.99933 | 7.99931 | 7.99934 | 7.99324 | |
16 pairs | 7.99932 | 7.99933 | 7.99936 | 7.999334 | |
(b) |
Image: Lena Color (256 × 256) | ||||
---|---|---|---|---|
Ref. | R | G | B | Average |
[24] | 7.9970 | 7.9972 | 7.9967 | 7.9970 |
[25] | 7.99739 | 7.99738 | 7.99736 | 7.9973 |
[28] | 7.9974 | 7.9971 | 7.9975 | 7.9973 |
[34] | 7.9972 | 7.9972 | 7.9975 | 7.9973 |
[35] | 7.9974 | 7.9977 | 7.9970 | 7.9973 |
Our | 7.9972 | 7.9976 | 7.9977 | 7.9975 |
(a) | ||||
Image: Lena color (512 × 512) | ||||
Ref. | R | G | B | Average |
[31] | 7.999279 | 7.999264 | 7.999353 | 7.999299 |
[32] | 7.99942 | 7.99929 | 7.99929 | 7.999233 |
[33] | 7.9991 | 7.9993 | 7.9993 | 7.999233 |
[36] | 7.9992 | 7.9993 | 7.9993 | 7.999267 |
[37] | 7.9980 | 7.9979 | 7.9978 | 7.997900 |
Our | 7.99932 | 7.99933 | 7.99936 | 7.999334 |
(b) |
Image: Lena Color (256 × 256) | |||||||||
---|---|---|---|---|---|---|---|---|---|
NPCR (%) | UACI (%) | ||||||||
R | G | B | Average | R | G | B | Average | ||
1 pair | 99.6384 | 99.5392 | 99.5911 | 99.5896 | 33.3101 | 33.3919 | 33.0359 | 33.3360 | |
4 pairs | 99.6170 | 99.6155 | 99.6292 | 99.6206 | 33.5197 | 33.5550 | 33.4046 | 33.4931 | |
16 pairs | 99.6490 | 99.5514 | 99.6246 | 99.6083 | 33.4653 | 33.3758 | 33.5449 | 33.4620 | |
(a) | |||||||||
Image: Lena color (512 × 512) | |||||||||
NPCR (%) | UACI (%) | ||||||||
R | G | B | Average | R | G | B | Average | ||
1 pair | 99.5941 | 99.5964 | 99.6037 | 99.5981 | 33.4401 | 33.4877 | 33.4118 | 33.4465 | |
4 pairs | 99.5834 | 99.6197 | 99.6044 | 99.6025 | 33.4103 | 33.4490 | 33.5045 | 33.4546 | |
16 pairs | 99.5846 | 99.5941 | 99.6391 | 99.6059 | 33.5613 | 33.3647 | 33.4625 | 33.4628 | |
(b) |
Image: Lena Color (256 × 256) | |||||||||
---|---|---|---|---|---|---|---|---|---|
NPCR (%) | UACI (%) | ||||||||
R | G | B | Average | R | G | B | Average | ||
[24] | 99.6033 | 99.6292 | 99.5850 | 99.6058 | 33.4740 | 33.4457 | 33.5339 | 33.4845 | |
[26] | 99.6066 | 99.6040 | 99.6046 | 99.6051 | 33.4887 | 33.4987 | 33.4907 | 33.4927 | |
[38] | 99.6216 | 99.6277 | 99.6189 | 99.6277 | 33.4032 | 33.5397 | 33.4912 | 33.4780 | |
[35] | 99.6048 | 99.6323 | 99.6063 | 99.6145 | 33.4115 | 33.4454 | 33.4640 | 33.4403 | |
[39] | 99.5925 | 99.5921 | 99.5917 | 99.5921 | 33.0371 | 33.3102 | 33.0319 | 33.1264 | |
Our | 99.6490 | 99.5514 | 99.6246 | 99.6083 | 33.4653 | 33.3758 | 33.5449 | 33.4620 | |
(a) | |||||||||
Image: Lena color (512 × 512) | |||||||||
NPCR (%) | UACI (%) | ||||||||
R | G | B | Average | R | G | B | Average | ||
[29] | 99.6101 | 99.6288 | 99.6147 | 99.6178 | 33.4632 | 33.4756 | 33.4623 | 33.4670 | |
[30] | 99.6052 | 99.6120 | 99.6303 | 99.6158 | 33.4025 | 33.4428 | 33.5029 | 33.4494 | |
[31] | 99.6351 | 99.6522 | 99.6518 | 99.6523 | 33.4572 | 33.4715 | 33.4384 | 33.4557 | |
[40] | 99.6404 | 99.6334 | 99.6470 | 99.6403 | 33.4885 | 33.4930 | 33.5089 | 33.4968 | |
[41] | 99.6969 | 99.6278 | 99.6268 | 99.6505 | 33.4299 | 33.4982 | 33.4685 | 33.4863 | |
Our | 99.5846 | 99.5941 | 99.6391 | 99.6059 | 33.5613 | 33.3647 | 33.4625 | 33.4628 | |
(b) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araki, S.; Wu, J.-H.; Yan, J.-J. Synchronization of Chaotic Extremum-Coded Random Number Generators and Its Application to Segmented Image Encryption. Mathematics 2024, 12, 2983. https://doi.org/10.3390/math12192983
Araki S, Wu J-H, Yan J-J. Synchronization of Chaotic Extremum-Coded Random Number Generators and Its Application to Segmented Image Encryption. Mathematics. 2024; 12(19):2983. https://doi.org/10.3390/math12192983
Chicago/Turabian StyleAraki, Shunsuke, Ji-Han Wu, and Jun-Juh Yan. 2024. "Synchronization of Chaotic Extremum-Coded Random Number Generators and Its Application to Segmented Image Encryption" Mathematics 12, no. 19: 2983. https://doi.org/10.3390/math12192983
APA StyleAraki, S., Wu, J. -H., & Yan, J. -J. (2024). Synchronization of Chaotic Extremum-Coded Random Number Generators and Its Application to Segmented Image Encryption. Mathematics, 12(19), 2983. https://doi.org/10.3390/math12192983