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Abstract: This work studies an inhomogeneous generalized Hartree equation with inverse square
potential. The purpose is to prove the existence and strong instability of inter-critical standing waves.
This means that there are infinitely many data near to the ground state, such that the associated
solution blows-up in finite time. The proof combines a variational analysis with the standard
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1. Introduction

This paper addresses the Cauchy problem related to an inhomogeneous generalized
Hartree equation, {

i∂tu −Jνu = −|x|−λ|u|p−2(Rρ ∗ | · |−λ|u|p)u;
u(0, ·) = u0,

(1)

where the wave function is u : R×RN → C for some N ≥ 3. The inhomogeneous singular
term is | · |−λ for a certain λ > 0. The Riesz-potential is defined for x ∈ RN by

Rρ(x) := CN,ρ|x|ρ−N , CN,ρ := π− N
2 2−ρ Γ(N−ρ

2 )

Γ( ρ
2 )

.

Here and hereafter, we assume that

0 < ρ, λ < N, ρ > 2(λ − 1). (2)

Moreover, in order to ensure that the extension of −∆ + ν
|x|2 , labeled as Jν, is a non-

negative operator, we consider the case ν > − (N−2)2

4 . If − (N−2)2

4 < ν < 1 − (N−2)2

4 ,
we can obtain more than one possible extension, so we decide on the extension due to
Friedrichs [1–3].

The Hartree Equation (1) is of physical root [4]. If the source term vanishes, the
equation being examined is significant in quantum mechanics [1]. Otherwise, particularly
for ν = 0, the Choquard Equation (1) captures the non-relativistic bosonic molecules and
atoms [5–9].

The inhomogeneous generalized Hartree Equation (1) was first studied by the sec-
ond author [10]. The existence of L2 solutions in the mass-sub-critical non-linearity and
H1 solutions for an energy-sub-critical source term were obtained thanks to an adapted

Mathematics 2024, 12, 2999. https://doi.org/10.3390/math12192999 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12192999
https://doi.org/10.3390/math12192999
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9399-3253
https://orcid.org/0000-0003-1433-3650
https://doi.org/10.3390/math12192999
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12192999?type=check_update&version=1


Mathematics 2024, 12, 2999 2 of 12

Gagliardo–Nirenberg-type inequality. Then, the second author established the locally
well-posedness of (1) in Ḣ1 ∩ Ḣsc ; 0 < sc < 1. The long time asymptotics under the
ground state energy was obtained by the second author [11], and then [12,13] removed the
spherically symmetric assumption. The energy-critical well-posedness was investigated
recently [14,15].

To the authors’ knowledge, this article is the first one dealing with the instability
of ground states to inhomogeneous Hatree equation with an inverse square potential,
precisely (1) with ν ̸= 0. The key innovation here is the inclusion of the strongly singular
potential |x|−2, which maintains the same scaling as the Laplacian operator. The proof
combines a variational analysis and the standard variance identity; this follows ideas
in [16].

The purpose of this paper is to establish the existence and strong instability of inter-
critical ground states to the inhomogeneous generalized Hartree Equation (1). This comple-
ments a recent work by the second author [17], where a local well-posedness was developed
in the energy space.

The rest of this paper is organized as follows. The next section contains the main result
and some technical estimates. The last section proves the main result.

2. Notation and Preliminary

In the following, we will simplify the notation for certain standard spaces and norms.

Lr(RN) := Lr, Ws,r(RN) := Ws,r, Ẇs,r(RN) := Ẇs,r, H1 := W1,2, Ḣ1 := Ẇ1,2;

∥ · ∥r := ∥ · ∥Lr , ∥ · ∥ := ∥ · ∥2.

Also, we define Sobolev spaces by taking account of the operator Jν as the completion
of C∞

0 (RN) with respect to the norms

∥ · ∥Ẇ1,r
ν

:= ∥
√
Jν · ∥r, ∥ · ∥W1,r

ν
:= ∥

〈√
Jν

〉
· ∥r,

where ⟨·⟩ :=
(

1 + | · |2
) 1

2
. Also take this for short Ḣ1

ν := Ẇ1,2
ν and H1

ν := W1,2
ν . Note that,

by the definition of the operator Jν and Hardy estimate, we have

∥ · ∥Ḣ1
ν

:= ∥
√
Jν · ∥ =

(
∥∇ · ∥2 + ν∥ ·

|x| ∥
2
) 1

2 ≃ ∥ · ∥Ḣ1 .

Take also, for ω > 0, the norm

∥ · ∥H1
ν,ω

:=
(
∥∇ · ∥2 + ν∥ ·

|x| ∥
2 + ω∥ · ∥2

) 1
2 ≃ ∥ · ∥H1 .

Let us denote also the real numbers

Z := −Y + 2p and Y := Np − N − ρ + 2λ.

If u ∈ H1, we define some quantities to be used later, and are called, respectively,
potential energy, mass, and energy.

T [u] :=
∫
RN

|x|−λ(Rρ ∗ | · |−λ|u|p)|u|p dx;

M[u] :=
∫
RN

|u(x)|2 dx;

E[u] := ∥
√
Jνu∥2 − 1

p
T [u].
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Equation (1) enjoys the scaling invariance,

uα := α
2−2λ+ρ
2(p−1) u(α2·, α·), α > 0. (3)

The critical exponent sc keeps the following homogeneous Sobolev norm invariant:

∥uα(t)∥Ḣµ = α
µ−( N

2 − 2−2λ+ρ
2(p−1) )∥u(α2t)∥Ḣµ := αµ−sc∥u(α2t)∥Ḣµ .

Now, we define two regimes. The first one is called mass-critical, and is given by
p = pc := 1 + ρ+2−2λ

N or sc = 0. The second one is called energy-critical, and is given by
p = pc := 1 + 2−2λ+ρ

N−2 or sc = 1. In the focusing case, eiωt φ, where ω ∈ R is a frequency,
gives a global periodic solution of (1), called the standing wave.

−∆φ +
ν

|x|2 φ + ωφ = |x|−λ|φ|p−2(Rρ ∗ | · |−λ|φ|p)φ, 0 ̸= φ ∈ H1
ν . (4)

Solutions to (4) are critical points of the action

Sω := E + ωM. (5)

Let us denote the set of non-trivial solutions to (4),

Aω := {0 ̸= u ∈ H1
ν , S ′

ω [u] = 0}. (6)

We define the set of ground states of (4) by

Gω := {u ∈ Aω, Sω [u] ≤ Sω(v), ∀v ∈ Aω}. (7)

We denote the scaling

uγ,µ
κ := κγu(κµ·), γ, µ ∈ R, , κ > 0. (8)

Moreover, if F : H1
ν → R, we denote the useful operator

Lγ,µ(F[u]) := ∂κ

(
F[uγ,µ

κ ]
)
|κ=1

.

Now, let the so-called constraint when equal to zero

Kω
γ,µ[u] := Lγ,µ

(
Sω [u]

)
= ∂κ

(
κ2γ+µ(2−N)∥∇u∥2 + ωκ2γ+µ(−N)∥u∥2 + νκ2γ+µ(2−N)∥ u

|x| ∥
2 − 1

p
κ2pγ+µ(2λ−N−ρ)T [u]

)
|κ=1

= (2γ + µ(2 − N))∥
√
Jνu∥2 + ω(2γ − Nµ)∥u∥2 − 1

p
(2pγ + µ(2λ − N − ρ))T [u]. (9)

Here and hereafter, we define the quantities

ρ := min
{

2γ + µ(2 − N), ω(2γ − Nµ)
}

;

ρ̄ := max
{

2γ + µ(2 − N), ω(2γ − Nµ)
}

;

Hω
γ,µ := Sω − 1

ρ̄
Kω

γ,µ;

A :=
{
(γ, µ) ∈ R∗

+ ×R s. t ρ ≥ 0 and ρ̄ > 0
}

.
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Let us also state the minimizing problem,

mω
γ,µ := inf

0 ̸=u∈H1

{
Sω [u], Kω

γ,µ[u] = 0
}

. (10)

Finally, we define some stable sets under the flow of (1),

Aω,−
γ,µ :=

{
u ∈ H1

ν s. t Sω [u] < mω
γ,µ and Kω

γ,µ[u] < 0
}

.

The next section contains the main results and some useful estimates.

3. Background and Main Results

In the following sub-section, we list the contribution of this article.

3.1. Main Result

The main result of this article is about the existence of ground states and instability of
standing waves.

Theorem 1. Let N ≥ 3, ν > − (N−2)2

4 , 0 < ω < 1, λ, ρ satisfying (2) and (γ, µ) ∈ A. Then,

1. m := mω
γ,µ is nonzero and independent of (γ, µ);

2. There is a ground state solution to (4)–(10), provided that one of the following cases holds:

1. pc < p < pc and (20) is satisfied.
2. p = pc and (31) is satisfied.

Moreover, if pc ≤ p < pc, any ground state is strongly unstable.

Given the results outlined in the above theorem, some observations are warranted.

• Following lines in Lemma 3.3 of [18], a ground state solution to (4)–(10) satisfies

|φω |+ |∇φω | ≲ e−δ|x|, δ > 0. (11)

In particular,
φω ∈ L2(|x|2 dx). (12)

This property of finite variance allows to use the standard variance identity (Proposition 2)
in order to prove the finite time blow-up of solutions to (1) with data near to the
ground state.

• (1, 0) ∈ A satisfies (31).
• The local existence of energy solutions to (1) follows by [17].
• The strong instability of standing waves means that there is infinitely many data near

to the ground state such that the associated local solution to (1) blows-up in finite time.

3.2. Useful Estimates

In what follows, we present some essential tools that will be used later. We begin with
the Hardy–Littlewood–Sobolev inequality [19].

Lemma 1. Let N ≥ 1 and 0 < ρ < N.

1. Let a, b > 1, such that 1
a = 1

b +
ρ
N . Then,

∥Rρ ∗ g∥b ≤ CN,b,ρ∥g∥a, ∀g ∈ La.

2. Let 1 < a, b, c < ∞ be such that 1
a +

1
b = 1

c +
ρ
N . Then,

∥ f (Rρ ∗ g)∥c ≤ CN,b,ρ∥ f ∥a∥g∥b, ∀( f , g) ∈ La × Lb.
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Since ∥ · ∥H1 ≃ ∥ · ∥H1
ν

yields a compact embedding; see Lemma 3.1 in [20].

Lemma 2. Let 0 < λ < 2, N ≥ 3 and 2 < r < 2(N−λ)
N−2 . Then,

H1
ν ↪→↪→ Lr(|x|−λ dx) is compact.

The following Gagliardo–Nirenberg-type inequality [17] is tailored for the problem (1).

Proposition 1. Let N ≥ 3, ν > − (N−2)2

4 , λ, ρ, satisfying (2) and 1 + ρ
N < p < pc. Then,

1. The minimization problem

1
CN,p,λ,ρ,ν

= inf
{∥u∥Z∥

√
Jνu∥Y

T [u]
, 0 ̸= u ∈ H1

ν

}
is attained in some ζ ∈ H1

ν satisfying CN,p,λ,ρ,ν = T [ζ] and

YJνζ +Zζ − 2p
CN,p,λ,ρ,ν

|x|−λ|ζ|p−2(Rρ ∗ | · |−λ|ζ|p)ζ = 0; (13)

2. There exists φ ∈ H1
ν a ground state solution to (4), ensuring that

CN,p,λ,ρ,ν =
2p
Z (

Z
Y )

Y
2 ∥φ∥−2(p−1), (14)

3. We have the Pohozaev identities

T [φω ] =
2p
Z M[φω ] =

2p
Y ∥

√
Jν φ∥2. (15)

To examine the non-global existence of solutions to (1), we require the variance type
identity [17].

Proposition 2. Let N ≥ 3, ν > − (N−2)2

4 , λ, ρ, satisfying (2), 2 ≤ p < pc and u ∈ CT(H1
ν) be a

local solution to (1). We define the real function

V : t 7→ ∥xu(t)∥2, t ∈ [0, T].

Then, V ∈ C2[0, T) and

V′′ : t 7→ 8
(
∥
√
Jνu(t)∥2 − Y

2p
T [u(t)]

)
t ∈ [0, T].

In the following sections, we will demonstrate the main results of this article.

4. Proof of Theorem 1

First, we establish the existence of ground states with variational methods.

4.1. Existence of Ground States

Let us start with the case pc < p < pc.

4.1.1. Inter-Critical Regime

The proof is based on several auxiliary results.

Lemma 3. Let (γ, µ) ∈ A. Then,

1. min
{
Hω

γ,µ(u),Lγ,µ

(
Hω

γ,µ(u)
)}

> 0 for all 0 ̸= u∈ H1
ν ;
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2. κ 7→ Hω
γ,µ[u

γ,µ
κ ] is increasing.

Proof. Let us write

Hω
γ,µ[u] =

1
ρ̄

(
ρ̄Sω [u]−Kω

γ,µ[u]
)

=
1
ρ̄

[(
ρ̄ − (2γ + µ(2 − N))

)
∥
√
Jνu∥2 +

(
ρ̄ − ω(2γ − Nµ)

)
∥u∥2

+
1
p

(
2γp + µ(2λ − N − ρ)− ρ̄

)
T [u]

]
≳

(
2γp + µ(2λ − N − ρ)− ρ̄

)
T [u].

• First case: µ > 0. Since ω ∈ (0, 1), we have

ω(2γ − Nµ) ≤ 2γ − Nµ < 2γ + µ(2 − N). (16)

This implies that ρ̄ = 2γ + µ(2 − N). Moreover, ρ ≥ 0 gives 2γ ≥ µN. Thus,

2γp + µ(2λ − N − ρ)− ρ̄ = 2γp + µ(2λ − N − ρ)− (2γ + µ(2 − N))

= 2γ(p − 1)− µ(2 − 2λ + ρ)

≥ 2γ(p − 1)− 2γ

N
(2 − 2λ + ρ)

≥ 2γ(p − pc)

> 0. (17)

• Second case: µ < 0. Here, there are two sub-cases. First, if ρ̄ = 2γ + µ(2 − N),
we have

2γp + µ(2λ − N − ρ)− ρ̄ = 2γ(p − 1)− µ(2 − 2λ + ρ)

> 0. (18)

Second, if ρ̄ = ω(2γ − Nµ), we have

2γp + µ(2λ − N − ρ)− ρ̄ = 2γp + µ(2λ − N − ρ)− ω(2γ − Nµ)

> 2γp + µ(2λ − N − ρ)− (2γ − Nµ)

> 2γ(p − 1) + µ(2λ − ρ)

> 0, (19)

provided that

2γ(2 − 2λ + ρ)− Nµ(ρ − 2λ) > 0. (20)

So, Hω
γ,µ[u] > 0. Now, we write

Lγ,µHω
γ,µ[u] = ρ

(
1 −

Lγ,µ

ρ̄

)
Sω [u]−

1
ρ̄

(
Lγ,µ − ρ̄

)(
Lγ,µ − ρ

)
Sω [u]

= ρHω
γ,µ[u]−

1
ρ̄

(
Lγ,µ − ρ̄

)(
Lγ,µ − ρ

)
Sω [u]

≥ 1
ρ̄

(
Lγ,µ − ρ̄

)(
Lγ,µ − ρ

)( 1
p
T [u]

)
≥ 1

pρ̄

(
2γp + µ(2λ − N − ρ)− ρ̄

)(
2γp + µ(2λ − N − ρ)− ρ

)
T [u]

> 0. (21)
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Indeed, we used (17), (18) and (19) via the identities(
Lγ,µ − ρ̄

)(
Lγ,µ − ρ)∥u∥2

H1
ν
= 0; (22)

Lγ,µP[u] = (2γp + µ(2λ − N − ρ))T [u]. (23)

The last point is a consequence of the equality ∂κ

(
Hω

γ,µ[u
γ,µ
κ ]

)
= Lγ,µ

(
Hω

γ,µ[uκ
γ,µ]

)
.

The constraint is positive if it is quadratic part vanishes.

Lemma 4. Let (γ, µ) ∈ A and 0 ̸= φn ∈ H1
ν , such that

lim
n

(
KQ,ω

γ,µ [φn]
)
= 0; (24)

sup
n

∥φn∥H1 < ∞. (25)

Then, there exists n0 ∈ N, such that Kω
γ,µ[φn] > 0 for all n ≥ n0.

Proof. The assumption

KQ,ω
γ,µ [φn] =

(
(2γ − µ(N − 2))∥

√
Jν φn∥2 + ω(2γ − Nµ)∥φn∥2

)
→ 0, as n → ∞,

implies that
∥
√
Jν φn∥ → 0, as n → ∞.

Indeed, otherwise, 0 < 2γ = µ(N − 2) contradicts 0 < ρ̄ = 2γ − µN = −2µ. Using
Proposition 1 via Y > 2, we write when n → ∞,

T [φn] ≤ C∥φn∥Z∥
√
Jν φn∥Y

= o
(
KQ,ω

γ,µ [φn]
)

.

Thus, when n → ∞,
Kω

γ,µ[φn] ≃ KQ,ω
γ,µ [φn] > 0.

The minimizing problem (10) can be written as follows.

Lemma 5. Let (γ, µ) ∈ A. Then,

mω
γ,µ = inf

0 ̸=u∈H1
ν

{
Hω

γ,µ[u] s. t Kω
γ,µ[u] ≤ 0

}
.

Proof. It is sufficient to prove the inequality in the above requested equality. Take u∈ H1
ν

such that Kω
γ,µ[u] < 0. Because lim

κ→0
KQ,ω

γ,µ [uγ,µ
κ ] = 0. By Lemma 4, there exists κ ∈ (0, 1),

such that Kω
γ,µ[u

γ,µ
κ ] > 0. So, by a continuity argument, there exists κ0 ∈ (0, 1) such

that Kω
γ,µ[u

γ,µ
κ0 ] = 0. Now, since κ 7→ Hω

γ,µ[u
γ,µ
ν ] is increasing, the proof is closed by the

following line:
mω

γ,µ ≤ Hω
γ,µ[u

γ,µ
κ0 ] ≤ Hω

γ,µ[u].

Proof of the existence of inter-critical ground states. Let the sequence of minimizer

0 ̸= φn∈ H1
ν , Kω

γ,µ[φn] = 0 and lim
n

Hω
γ,µ[φn] = lim

n
Sω [φn] = mω

γ,µ. (26)

• Step 1: supn ∥φn∥H1
ν
< ∞. Let us discuss some cases.
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1. First case µ < 0. Denoting θ := − µ
2γ yields

∥φn∥2
H1

ν,ω
− T [φn] = θ

(
2∥

√
Jν φn∥2 − N∥φn∥2

H1
ν,ω

+
ρ + N − 2λ

p
T [φn]

)
; (27)

∥φn∥2
H1

ν,ω
− 1

p
T [φn] → mω

γ,µ. (28)

So, the following sequence is bounded

−2θ∥
√
Jν φn∥2 + ∥φn∥2

H1
ν,ω

− (1 + θ
ρ − 2λ

p
)T [φn].

Thus, the next sequence is bounded, for all β ∈ R

2θ∥
√
Jν φn∥2 + (β − 1)∥φn∥2

H1
ν,ω

+ (1 +
θ(ρ − 2λ)− β

p
)T [φn].

Taking account of (2) and (20), we pick 1 < β < pc + θ(ρ− 2λ). Thus, (φn) is bounded
in H1

ν .
2. Second case 0 ≤ µ ≤ 2γ

N . Taking account of (16), ones writes

(ρ̄ −Lγ,µ)Sω [φn] = 2µ∥φn∥2 +
(

2γ(p − 1)− µ(ρ + 2 − 2λ)
) 1

p
T [φn]

≥
(

2γ(p − 1)− µ(ρ + 2 − 2λ)
) 1

p
T [φn].

Moreover, as previously, since ρ ≥ 0 and p > pc yields 2γ(p − 1)− µ(ρ + 2− 2λ) > 0,
and Kω

γ,µ[φn] = 0 gives(
ρ̄ + 2γ(p − 1)− µ(ρ + 2 − 2λ)

)
Sω [φn]

= (ρ̄ −Lγ,µ)Sω [φn] +
(

2γ(p − 1)− µ(ρ + 2 − 2λ)
)

S[φn] + Lγ,µSω [φn]

≥
(

2γ(p − 1)− µ(ρ + 2 − 2λ)
)
∥φn∥2

H1
ν
.

it follows that (φn) is bounded in H1
ν .

• Step 2: φn → φ ̸= 0 and mω
γ,µ > 0.

Thanks to Lemma 2, let

φn ⇀ φ in H1
ν ; (29)

φn → φ in Lr(|x|−λ dx), for all 2 < r <
2(N − λ)

N − 2
. (30)

Assume that φ = 0. Using Lemma 1 via (30) and p < pc, we write

T [φn] ≤ ∥| · |−
λ
p φn∥2p

2Np
ρ+N

→ ∥| · |−
λ
p φ∥2p

2Np
ρ+N

= 0.

The equality Kω
γ,µ[φn] = 0 via Lemma 4 gives Kω

γ,µ[φn] > 0 for large n. This contradic-
tion implies that

φ ̸= 0.

The lower semi continuity of the H1
ν norm via Lemma 1, gives

0 = lim inf
n

Kω
γ,µ[φn]

≥ (2γ − (N − 2)µ) lim inf
n

∥
√
Jν φn∥2 + ω(2γ − Nµ) lim inf

n
∥φn∥2
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− 2γp + µ(2λ − N − ρ)

p
T [φω ]

≥ Kω
γ,µ[φ

ω ].

Similarly, we have Hω
γ,µ[φ

ω ] ≤ mω
γ,µ. Moreover, thanks to Lemma 5, we assume that

Kω
γ,µ[φ

ω ] = 0 and Sω [φω ] = Hω
γ,µ[φ

ω ] ≤ mω
γ,µ. So, φ is a minimizer satisfying (26) and

using Lemma 5,

mω
γ,µ = Hω

γ,µ[φ
ω ] > 0.

• Step 3: φ satisfies (4).
Let a Lagrange multiplier λ ∈ R, such that S ′

ω [φ
ω ] = λKω

γ,µ
′[φω ]. Thus,

0 = Lγ,µSω [φ
ω ] = ⟨S ′

ω [φ
ω ],Lγ,µ[φ

ω ]⟩ = λ⟨Kω
γ,µ

′[φω ],Lγ,µ[φ
ω ]⟩ = λLγ,µKω

γ,µ[φ
ω ] = λL2

γ,µSω [φ
ω ].

Now, (21) gives

−L2
γ,µSω [φ

ω ]− ρ̄ρSω [φ
ω ] = −(Lγ,µ − ρ̄)(Lγ,µ − ρ)Sω [φ

ω ] > 0.

Therefore, L2
γ,µSω [φω ] < 0. Thus, λ = 0 and S ′

ω [φ
ω ] = 0. So, φ is a ground state and

mω
γ,µ is autonomous from (γ, µ).

4.1.2. Mass Critical Regime

In such a case, we assume that

ρ > 0 and 2γρ + Nµ(2λ − ρ)χµ<0 − Nµ(2 − 2λ + ρ)χµ>0 > 0. (31)

It is sufficient to follow the proof in the case of the inter-critical regime;
indeed, (17), (18) and (19) hold. Moreover, Lemma 4 holds. Indeed, ρ > 0 implies that
∥φn∥ → 0, and so

T [φn] ≤ C∥φn∥2(p−1)∥
√
Jν φn∥2

= o
(
KQ,ω

γ,µ [φn]
)

.

4.2. Strong Instability of Inter-Critical Standing Waves

Let us prepare the proof.

Lemma 6. Let u0 ∈ Aω,−
1, 2

N
and a local solution to (1) denoted by u ∈ CT(H1

ν). Thus, for certain

δ > 0, yields
Kω

1, 2
N
[u] < −δ on [0, T].

Proof. If Kω
1, 2

N
[u(τn)] → 0, where 0 < τn < T, by Lemma 5, it follows that

mω ≤
(
Sω − N

4
Kω

1, 2
N

)
[u(τn)] ≤ Sω [u0]−

N
4
Kω

1, 2
N
[u(τn)] → Sω [u0] < mω.

This absurdity finishes the proof.

For u ∈ H1
ν and κ > 0, define the scaling

uκ := u
N
2 ,1

κ = κ
N
2 u(κ·).

Let us outline the variations of various functions under the scaling discussed earlier.

Lemma 7. Let u ∈ H1
ν be such that K1, 2

N
[u] ≤ 0. Then, there exists a unique κ0 ∈ (0, 1], such that
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1. Kω
1, 2

N
[uκ0 ] = 0 and κ0 = 1 if and only if Kω

1, 2
N
[u] = 0;

2. ∂
∂κSω [uκ ] > 0 for κ ∈ (0, κ0) and ∂

∂κSω [uκ ] < 0 for κ ∈ (κ0, ∞);
3. ∂

∂κSω [uκ ] =
N
2κKω

1, 2
N
[uκ ].

Proof. In order to prove the last point, it is sufficient to write

∂

∂κ
Sω [uκ ] =

∂

∂κ

(
κ2∥

√
Jνu∥2 + ω∥u∥2 − κY

p
T [u]

)
= 2κ∥

√
Jνu∥2 − Y

p
κY−1T [u]

=
N
2κ

Kω
1, 2

N
[uκ ].

Moreover, Y > 2 and Kω
1, 2

N
[u] ≤ 0, via the equality

Kω
1, 2

N
[uκ ] =

4
N

κ2
(
∥
√
Jνu∥2 − Y

2p
κN(Y−2)T [u]

)
.

imply that the real function κ 7→ κ−2Kω
1, 2

N
[uκ ] defined on [0, 1] is decreasing from a positive

real number to a negative one. This closes the proof.

Now, we turn attention to the evolution problem (1).

Lemma 8. Let φω ∈ H1
ν be a ground state solution to (4), κ > 1 a real number and uκ be the

solution to (1) with data φω
κ . Thus,

Sω [uκ ] < Sω [φ
ω ] and Kω

1, 2
N
[uκ ] < 0 on [0, T∗).

Proof. By Lemma 7, we write

Sω [φ
ω
κ ] < Sω [φ

ω ] and Kω
1, 2

N
[φω

κ ] < 0.

The proof is completed by demonstrating the stability of the following set under the
flow of (1).

Aω,−
1, 2

N
:= {u ∈ H1

ν , Sω [u] < mω
1, 2

N
, Kω

1, 2
N
[u] < 0}. (32)

Indeed, if u0 ∈ Aω,−
1, 2

N
and u is the energy solution to (1). Then, by the conservation

laws Sω [u] < mω
1, 2

N
. Moreover, if there is t0 > 0 such that Kω

1, 2
N
[u] = 0, this contradicts the

definition of mω
1, 2

N
.

Now, we are ready to prove the last point of Theorem 1.

Let φω , a ground state solution to (4) and uκ ∈ CT∗(H1
ν), be the maximal solution to (1)

with data φω
κ . Lemma 8 gives

uκ(t) ∈ Aω,−
1, 2

N
, for any t ∈ [0, T∗).

Then, using Proposition 2 via (12) and Lemma 6, it follows that

lim sup
t→T∗

∥uκ(t)∥H1
ν
= ∞.
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The instability of inter-critical standing waves is proved.

4.3. Instability of Mass-Critical Standing Waves

Take the scaling u1+ N
2 ,1

κ := uκ . Thus, by direct calculus, we obtain

∥uκ∥2 = κ2∥u∥2; (33)

∥∇uκ∥2 = κ4∥∇u∥2; (34)

∥|x|−1uκ∥2 = κ4∥|x|−1u∥2; (35)

T [uκ ] = κ2pc+2T [u]. (36)

Then, φω
κ → φω in H1 if κ → 1. Let the datum u0 := φω

κ , such that κ = 1+. So, taking
account of (15), we obtain

E[u] = ∥
√
Jν φω

κ ∥2 − 1
p
T [φω

κ ]

= κ4
(
∥
√
Jν φω∥2 − 1

p
κ2(pc−1)T [φω ]

)
= κ4

(
1 − κ2(pc−1)

)
∥
√
Jν φω∥2

< 0. (37)

By (37) and the variance identity in Proposition 2, it follows that

V′′ ≲ E[u] < −c < 0.

Integrating in time, we finish the proof.
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