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Abstract: Intelligent voltage stability monitoring remains an essential feature of modern research into
secure operations of power system networks. This research developed an adaptive neuro-fuzzy expert
system (ANFIS)-based predictive model to validate the viability of two contemporary voltage stability
indices (VSIs) for intelligent voltage stability monitoring, especially at intricate loading and operation
points close to voltage collapse. The Novel Line Stability Index (NLSI) and Critical Boundary Index
are VSIs deployed extensively for steady-state voltage stability analysis, and thus, they are selected
for the predictive model implementation. Six essential power system operational parameters with
data values calculated at varying real and reactive loading levels are input features for ANFIS model
implementation. The model’s performance is evaluated using reliable statistical error performance
analysis in percentages (MAPE and RRMSEp) and regression analysis based on Pearson’s correlation
coefficient (R). The IEEE 14-bus and IEEE 118-bus test systems were used to evaluate the prediction
model over various network sizes and complexities and at varying clustering radii. The percentage
error analysis reveals that the ANFIS predictive model performed well with both VSIs, with CBI
performing comparatively better based on the comparative values of MAPE, RRMSEp, and R at
multiple simulation runs and clustering radii. Remarkably, CBI showed credible potential as a reliable
voltage stability indicator that can be adopted for real-time monitoring, particularly at loading levels
near the point of voltage instability.

Keywords: intelligent predictive analytics; voltage instability phenomenon; voltage stability indices;
machine learning; adaptive neuro-fuzzy expert system (ANFIS); subtractive clustering tuning

MSC: 37M99

1. Introduction

The recent power industry reform has heightened competition in energy service
provision, emphasizing the importance of real-time power system operation [1]. However,
due to insufficient grid capacity to meet load demand, most existing electricity networks
experience voltage instability, with partial and total voltage collapse occurrences. The
voltage stability issues are dynamic and often become more complicated with increasing
loading [2]. Consequently, various voltage stability indices (VSIs) have been established
for projecting power system voltage stability levels in different operating situations and
eventualities. Most of these approaches are formulated from steady-state power flow
analysis for marking the voltage stability conditions. Such indices like P–V and Q–V curves
provide reliable information on voltage stability based on system loads at various operating
points [3]. The line stability index (Lmn), fast voltage stability index (FVSI), voltage
collapse prediction index (VCPI), novel line stability index (NLSI), line stability factor
(LQP), L-index, and critical boundary index (CBI) are a few of the adaptable VSIs that are
derived from the power transfer theory [4].

However, steady-state load flow analysis cannot adequately reflect power system con-
ditions if load levels often fluctuate; also, VSIs have limited precision because of parameter
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approximations in the derivation, and the level of inaccuracy becomes significant as the
power network size and complexity increase [5]. Notably, voltage stability indices for moni-
toring power system conditions are preemptive analyses using data from load flow analysis.
Thus, practical prediction algorithms can be developed to calculate power system voltage
stability index values at various loading levels and system contingencies. Significantly,
in recent times, power systems researchers are developing prediction approaches using
proven statistical techniques and other sophisticated artificial intelligence (AI) approaches
such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems
(ANFISs) [6]. Thus, this study considered the empirical analysis of the performance accu-
racy of specific VSIs (NLSI and CBI) towards validating their adaptability for intelligent
real-time voltage stability monitoring systems. Thus, this study empirically analyzed the
performance accuracy of NLSI and CBI using ANFISs to validate their adaptation for
intelligent real-time voltage stability monitoring systems.

Review of Machine Learning Applications for Voltage Stability Analysis

Reference [7] presented an artificial immune system (AIS) to monitor real-time voltage
stability and notify power system operators of impending voltage collapses. The suggested
technique uses pattern recognition and algorithms to forecast voltage collapse at different
power systems loading. In Reference [8], the authors developed a multilayer feedforward
ANN using error backpropagation learning estimating voltage stability margins. Credible
performance-based sensitivity analysis was utilized to determine power system loading
situations and voltage stability margin trends using the ANN model. In [9], the authors
validated the load flow-based power system voltage stability monitoring technique with
ANN models implemented using the voltage stability data calculated from Newton Rapson
load flow analysis. The ANN model was trained with sufficient data from the load flow
solutions to confirm the consistency of the system voltage stability levels using FVSI; the
authors in [10] performed a similar analysis using L-index.

The authors in [11] modeled an efficient self-organized ANN model with multi-layered
perceptron using supervised learning for estimating the voltage stability margin of an actual
92-bus power system. Implementing an intelligent algorithm for real-time voltage stability
analysis and voltage collapse risk assessment is discussed in [12]. The real-time ANN
voltage stability prediction model is trained to determine the weakest lines within the
power system based on the data obtained from pre-estimated steady-state line VSIs; the
test scenarios include IEEE 9 and IEEE 14-bus systems. In [13], an ANN model was
presented to forecast voltage stability using node voltage magnitudes and phase angles.
Direct measurement utilizing measuring units (PMUs) at various power system locations
provided the input data for ANN training, and the model was designed to estimate the
voltage stability margin for different power systems at different complexity, operating
conditions, and credible contingencies.

A network reduction-based ANN approach was developed using adaptive training to
monitor voltage stability and load margin in a multi-area power system using IEEE 14-bus
and 118-bus test systems in [14]. In [15], an ANN model based on the feed-forward back
propagation network (FFBPN) was used to build an online voltage stability monitoring
strategy for various load conditions using the sequential learning and linear optimization
approach. The training data are generated from the results of the conventional line sta-
bility indices. Consequently, the performance efficiency of the developed ANN model is
compared to the typical VSI values for ranking weak lines and placing power conditioning
devices. Moreover, an ANN-based real-time power system VSM monitoring method was
presented in [16]. The VSM was estimated as the distance between the power system’s
current operating point and the nearest voltage collapse as monitored by the system loading
using orthogonalization and ANN-based sensitivity analysis. The model is robust and
performed efficiently using different power system networks and configurations under
changing operational conditions.

In [17], an ANN was implemented using the Levenberg Marquardt (LM) approach to
anticipate voltage instability in power systems. FVSI and LQP analysis data were combined
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with real and reactive loading power to create the input information for training the ANN.
The ANN model was trained to determine the line criticality based on system maximum
loading conditions. A recurrent neural network (RNN) trained using particle swarm
optimization (PSO) was modeled for predicting voltage instability in power systems in [18];
the performance of the PSO-trained RNN was compared to the backpropagation (BP)-ANN
model. Moreover, the Salp Swarm Algorithm (SSA) was employed to optimize the ANN
model parameters for online voltage stability monitoring, considering the voltage stability
margin index (VSMI) in [19]. The model was compared to other hybrid ANN models to
determine its performance for intelligent prediction of the network’s closeness to voltage
collapse. The accuracy of different machine learning models (such as Gaussian Process
Regression, ANNs, SVMs, and Decision Trees) for predicting voltage stability margins
during routine operations and contingencies was determined [20]. The ML models were
trained and validated using node voltage magnitude and angle data with voltage stability
margin as the target.

The adaptive neuro-fuzzy inference system (ANFIS) is a robust machine-learning
technique that has recently received a lot of research attention [21]. The adaptive neuro-
fuzzy inference system (ANFIS) is a fuzzy rule-based expert system that has been enhanced
with the learning skills of an ANN for supervised learning [22]. It has become one of
the important faces of modern data analytics and prediction systems [23]. For medical
purposes, a new model for early illness prediction using an ANFIS model optimized by
GA for classification, DenseNet-201 for feature extraction, and WOA for feature selection,
was developed in [24]. For food industry applications, an ANFIS model was developed
adopting the American customer satisfaction index (ACSI) parameters to develop a novel
model for predicting the dairy sector customer satisfaction level in [25]; it was found that
ANFIS better modeled the customer satisfaction than case-based reasoning and multiple
linear regression. Subsequently, credible ANFIS models have been developed for predictive
applications in several other areas, such as soil science [26], autonomous underwater vehicle
control [27], photovoltaic (PV) systems design [28], etc.

In [29], a fuzzy neural network model with one output unit was developed to monitor
voltage stability and enhance the power system loadability margin. The model was tested
to predict the maximum load limit for IEEE 30-bus and IEEE 118-bus systems using
real and reactive power uncertainties, generator powers, bus voltages, and static VAR
compensators as the implementation parameters. Using a modified PSO algorithm, a
fuzzy logic-based distribution network reconfiguration model was developed to reduce
power loss and improve voltage stability considering renewable energy uncertainty in [30].
The authors in [31] employed an expert FL system to determine crucial SVC parameters
for enhancing wind energy-integrated power system voltage stability and low voltage
ride-through (LVRT) capacity. ANFIS and its hybridized models have been developed to
predict power system load profiles/patterns and available generating outputs. In [32], an
association rule-based ANFIS model was trained using the Harris Hawks optimization
method to monitor power system VSM effectiveness. The proposed hybrid ANFIS model
for VSM assessment is tested in three key areas: feature selection, model training, and data
estimation. In [33], synchronized phasor measurements created a fusion of SVR and ANFIS
models for online voltage stability assessment. The Ant Lion Optimiser (ALO) optimizes
SVR-ANFIS parameters for model training and precise performance.

Thus, in this study, an ANFIS-based predictive model is implemented using credible
power systems data to establish the voltage stability prediction capability of specific VSIs to
standardize the implementation of intelligent voltage stability predictive models towards
ensuring reliable real-time operation of power systems, especially at contingent loading
conditions. The remaining content of this paper consists of Section 2, which conceptualizes
the mathematical models and implementation methods, Section 3, which presents the
simulation and results’ discussion, and the study is concluded in Section 4.
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2. Models and Methods
2.1. Derivation of Voltage Stability Indices

Estimating the voltage stability margin (VSM) for the secure operation of the power
system at varied loading circumstances is crucial when monitoring voltage stability [34].
Most VSIs are derived from steady-state load flow solutions using the power transfer
concept with no absolute unit of measurement. However, the load distance from a power
system’s current operating point to the nearest point of voltage instability (near the voltage
collapse point) can be estimated as the VSM [5]. From Figure 1, the power transfer equations
along a transmission and the consequent equation describing the power systems’ voltage
stability limit at specified loading conditions are derived below.

Figure 1. Two-nodes illustration of transmission network [5].

At both ends, the active and reactive powers/loading levels are P and Q, while the
sending and receiving buses are denoted as i and k, respectively. The bus voltage magnitude
and angle are V and δ, while the line reactance and resistance are r and x. Consequently,
the power at the receiving end is based on the power transfer equation:

Pk + jQk = (Vk∠δk)

(
Vi∠δi − Vk∠δk

rik + jxik

)∗
(1)

By resolving Equation (1) further as detailed in [5], the following equations were obtained:

(Pkrik + xikQk) + j(rikQk − xikPk) = ViVk cos(δi − δk)− jViVk sin(δi − δk)− V2
k (2)

Analyzing Equation (2) yields a non-linear function (Equation (3)) with its unique
positive and real roots (Equation (4)) establishing the condition for power system voltage
stability [5].

V4
k + 2V2

k

(
Pkrik + Qkxik − 0.5V2

i

)
+
(

P2
k + Q2

k

)(
r2

ik + x2
ik

)
= 0 (3)(

Pkrik + Qkxik − 0.5V2
i

)2
+
(

P2
k + Q2

k

)(
r2

ik + x2
ik

)
≥ 0 (4)

Consequently, most of the conventional steady-state VSIs for monitoring critical lines
are derived from the simplification of Equation (4); some of these VIs are expressed below:

1. Line stability factorq, LQP [35]:

4

(
xik

V2
i

)(
Qk +

P2
i xik

V2
i

)
(5)

2. Line stability factorp, LPP [35]:

4

(
rik

V2
i

)(
Pk +

Q2
i rik

V2
i

)
(6)

3. Line stability index, Lmn [36]:
4xikQk

(Vi sin(θ − δ))2 (7)
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4. Fast voltage stability index, FVSI [37]:

4z2
ikQk

V2
i xik

(8)

5. Novel voltage stability index, NVSI [38]:

2xik

√
P2

k + Q2
k

2Qkxik − V2
i

(9)

6. Modern voltage stability index, MVSI [39]:

2z2
ik

√
P2

k + Q2
k

2|Qk|Z2
ik − xikV2

i
(10)

7. Novel line stability index, NLSI [40]:

4(Pkrik + Qkxik)

V2
i cos2 δ

(11)

8. Critical boundary index, CBI [5]

CBI =
√
(X − Pk)

2 + (Y − Qk)
2 (12)

z is the line impedance, θ is the impedance angle, and δ = (δi − δk) is the sending to
receiving end voltage angle difference. VSIs 1 to 6, i.e., Equations (6)–(11), have no specified
unit with an absolute value of 0 indicating no loading (ideal stable) and 1.0 indicating
severe loading (point of instability/near voltage collapse). However, CBI is the optimal
VSM based on transmission line criticality; hence, a low CBI value indicates poor VSM.
As shown in Figure 2, C(X, Y) is an “unstable point” of real and reactive loading on the
voltage stability boundary (described by Equation (4)) referenced to the current operating
point, K(Pk, Qk) [5,34].

Figure 2. P–Q curve showing the voltage stability margin as a function of load increase [5].
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2.2. Implementing ANFIS for Voltage Stability Monitoring

Many fuzzy inference systems (FISs) use ’if-then’ probabilistic rules to simulate qual-
itative decision-making without quantitative details [41]. This study adopted the AN-
FIS technique based on the Takagi–Sugeno fuzzy system with backpropagation gradient
descent and least square methods for pre-processing and optimal output parameter esti-
mation [42]. According to Figure [43], the ANFIS paradigm has five major information
processing components: f uzzi f ication, multiplication, normalization, de − f uzzi f ication,
and summing for total output.

For an ANFIS model with two inputs (x,y) and one output (f ), the implementation
requires two ‘if-then’ rules based on the first-order Takagi–Sugeno model as described:

Rule 1: if x is A1 and y is B1, then:

f
1
= p

1
x + q

1
y + r

1

Rule 2: if x is A2 and y is B2, then:

f
2
= p

2
x + q

2
y + r

2

Ak and Bk are fuzzy sets, fi are fuzzy rule outputs, and pk, qk, and rk are training
parameters.

Layer 1—In the fuzzification layer, square adaptive nodes have fuzzy membership functions
represented by specific inference rules:

O1
k = µAk (x), k = 1, 2 (13)

O1
k = µBk (y), k = 1, 2 (14)

The membership grade of fuzzy sets, O1
k , represents the agreement between input (x,y).

The fuzzy sets Ak, Bk, and µ quantify the element’s membership grade using Gaussian rules.

Layer 2 —The multiplication/product layer processes fuzzification layer input values based
on membership function strength and the pre-specified product rule. This layer’s fixed and
non-adaptive nodes multiply input values to determine each node’s output (fuzzy rule
firing strength):

O2
k = wk = µAk (x) · µBk (y), k = 1, 2 (15)

Layer 3—This layer normalizes the projected firing strengths from rule 2 by comparing
each rule’s firing strength to all the rules’ overall firing strengths. The nodes are fixed and
non-adaptive, and the k-th rule’s normalized firing strength is as follows:

O3
k = wk =

wk
w1 + w2

; k = 1, 2 (16)

Layer 4—the adaptive nodes in this layer decode the normalized firing strengths from layer
three based on layer two’s inference rules. Finding the product of the normalized firing
strengths yields a first-order polynomial function that shows the model’s output as a result
of the third layer’s k-th rule and based on the consequent parameters, as described:

O4
k = wk(pkx + qky + rk) = wk fk, k = 1, 2 (17)

wk denotes the normalized firing strengths, (pk, qk, rk) are the consequent parameters,
while fk is the output function.

Layer 5—The last layer has one non-adaptive summation node. This node sums the output
values from layer 4 to obtain the final output, and all fuzzy categorizations of results are
then converted to concrete/interpretable values.

O5
k = ∑

k
wk f

k
=

∑k wk f
k

∑k wk
(18)
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The capability of the subtractive clustering tuning approach for consistent predictive
performance is exploited in this study. In subtractive clustering, each input data point
is a cluster center candidate for ANFIS tuning, and the potential of each data point is
determined by estimating its strength from surrounding data points from the assumed
cluster center, iteratively [44,45]. Thus, for an input data set of n normalized data sets in M
dimensions, the potential, Pk, of a data point, xk, is calculated as:

Pk =
n

∑
j=1

e−α∥xk−xj∥2
(19)

The Euclidean distance α depends on the clustering radius, and the location and
influence of a data point to surrounding data points determines its potential as a cluster
center. The data point with the highest probability function dominates all other points
within the specified cluster center’s radius (r) at each iteration. The next cluster center
is fixed by reestimating the power of surrounding locations outside the initial center’s
effect, and this analysis is repeated to find a cluster center that has the most substantial
influence on all data points within its radius. Thus, the clustering radius (r) is an essential
modeling parameter determining the model’s performance. In this study, the ANFIS model
with subtractive clustering is developed to predict the voltage stability condition of power
systems using the results from the load flow-based VSI estimation procedure as the input
information, as illustrated in Figure 3.

Figure 3. (a) The five-layer architecture of the ANFIS model [46], (b) the schematic illustration of the
developed ANFIS-VSI model.

2.2.1. Data Preparation

To gather and process the data required for training and validating the ANFIS-VSI
model under various power system load situations, the base real and reactive loads at all
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nodes/buses are step-wisely increased. Load flow analysis for five overloading conditions is
performed without compromising the solution points’ tractability (convergence/fidelity) [47].
Thus, the data for implementing the developed predictive model are generated from the load
flow-based voltage stability analysis under six PQ-loading conditions, i.e., the base PQ-load
and five overload conditions. Table 1 presents the data structure of the constructed ANFIS
model, with ψ representing the (PQ)-load increment factor.

Table 1. Data matrix for ANFIS-VSI model.

Load Levels Input Data Output Data

rik xik Pk Qk Vi δik VSI

Base

... × Nbr.

Base + (ψ × Base)

Base + 2 (ψ × Base)

Base + 3 (ψ × Base)

Base + 4 (ψ × Base)

Base + 5 (ψ × Base)

Data size (6 ×Nbr.) by 7

The table illustrates the essential input features: line resistance and reactance, active
and reactive power injections at the receiving end, sending end voltage magnitude, and
the difference between sending and receiving end voltage angles referenced to the sending
end. The target/output predicts power system voltage stability conditions based on the
estimated NLSI or CBI values. Given the six loading instances, the length of the data
point Ldata is 6 × Nbr., where Nbr. denotes the number of lines/branches in the network. To
construct the ANFIS-VSI model, 80% of the total data is used for model training (Ltrain) and
the remaining for testing and validation (Ltest). As a function of the base real and reactive
load at each bus, a step-wise load increase of 10% to 50% was considered for the IEEE
14-bus system (i.e., the load increase factor, ψ = 0.10), while a load increase of 1% to 5% was
considered for the IEEE 118-bus system (i.e., the load increase factor, ψ = 0.01). The training
and testing data distribution for the two test systems is presented in Table 2.

Table 2. Training and testing data distribution for the developed ANFIS-VSI model.

Test Systems Nbr. Ldata Ltrain Ltest

IEEE 14 20 120 102 18

IEEE 118 186 1116 949 167

2.2.2. Performance Metrics

The subsequent performance metrics, which are based on sturdy statistical evaluation,
are adopted to validate the feasibility of the developed ANFIS-VSI model for reliable
monitoring of power system voltage stability:

1. Percentage Relative Root Mean Square Error (RRMSEP): Comparing quantities of
different ranges, units, and magnitudes is more objective using the relative root mean
square error (RRMSE). RRMSE is calculated by dividing RMSE with the average value
of the measured data, i.e., the estimated VSI values from load flow analysis [48]. Thus,
the percentage RRMSE is calculated as follows:

RRMSEP =

√
1
N ∑N

i=1

(
VSIcal.

i − VSIpred.
i

)2

∑N
i=1
(
VSIcal.

i
) × 100% (20)
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The benefit of using RRMSEP for validating model accuracy is the standardized scale of
performance interpretations as specified: ’Excellent’ when RRMSEP ≤ 10%, ’Good’ if
10% ≤ RRMSEP ≤ 20%, ’Fair’ if 20% ≤ RRMSEP ≤ 30%, and ’Poor’ if RRMSEP ≥ 30%.

2. Mean Percentage Absolute Error (MAPE): This is also known as the mean absolute
percentage error or the mean absolute percentage deviation. It is one of the primary,
simple, yet objective measures for prediction accuracy in the cross-correlated data
system. Performance accuracy is measured as a percent of the actual value for easy
understanding [49]. For effective model performance, the value of this metric should
be close to zero percent.

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣VSIcal.
i − VSIpred.

i

VSIcal.
i

∣∣∣∣∣× 100% (21)

3. Coefficient of correlation (R): The strength of the relationship between the input
variables and the expected output is often measured using the correlation coefficients.
The standard coefficient of correlation metric is Pearson’s correlation, R, used for
linear regression analysis. A value of R sufficiently close to 1.0 shows that the selected
input information significantly influences the values of the desired output.

R =

√√√√√√1 −


∑N

i=1

(
VSIcal.

i − VSIpred.
i

)2

∑N
i=1
(
VSIcal.

i − VSImean
i

)2

 (22)

where N is the data length, VSIcal. is the calculated VSI value, VSIpred. is the predicted VSI
value using the developed ANFIS-VSI model, and VSImean is the mean of the calculated
VSI values.

3. Simulation
3.1. Conditions and Assumptions

The performance of the VSI predictive model is evaluated using the IEEE 14-bus
system with 20 transmission lines and the extended IEEE 118-bus system with 186 trans-
mission lines, taking into account network complexity; complete details for modeling both
networks are obtained in References [14,50]. The model was implemented and run on
Matlab version 2023b using a PC with 64-bit, Intel(R) Core(TM), i7-8650U processor at
1.90 GHz.

The input and target information, as well as the description for the ANFIS-VSI model-
ing, are as given: Inputs: [rik, xik, Pk, Qk, Vi, δik]; Output/target: VSI—“NLSI” and “CBI”. The
clustering radius (radius of inference) is a crucial simulation parameter; thus, simulations
were run for different clustering radii from r = 0.1 to 0.9. Based on observation and objective
inferences, the ANFIS model converges to reliable output values from r = 0.2 to 0.5 for the
IEEE 14-bus system, and r = 0.2 yielded consistent results for the IEEE 118-bus system.
Thus, the ANFIS implementation parameters for this study are provided in Table 3.

Table 3. ANFIS-VSI model implementation parameters.

Parameter Value

Primary step size 0.01
Decline rate of step size 0.90
Increment rate of step size 1.10
Cluster radius, r 0.2, 0.5 (IEEE 14); 0.2 (IEEE 118)
Epochs 200 (IEEE 14); 1500 (IEEE 118)

3.2. Results and Discussion

Figures 4 and 5 present the comparison of the actual and predicted values and the
regression plots for the ANFIS model implementation for predicting NLSI and CBI, respec-
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tively, for the IEEE 14-bus system. Similarly, the prediction comparison and the regression
plots for the ANFIS-based prediction of NLSI and CBI for the IEEE 118-bus system are
shown in Figures 6 and 7, respectively. Considering the regression, R results for the test
data and complete data, Table 4 shows the predictability and consistency of both VSIs
using the ANFIS model at r = 0.2 with multiple simulation runs. Subsequently, the detailed
comparative performance analysis of the developed predictive analytics for validating
the effectiveness of NLSI and CBI as credible tools for online intelligent voltage stability
monitoring using the two power system network cases is presented in Table 5.

Figure 4. NLSI prediction performance, error analysis, and regression plots for IEEE 14-bus system,
(a) r = 0.2; (b) r = 0.5.

Figure 5. CBI prediction performance, error analysis, and regression plots for IEEE 14-bus system,
(a) r = 0.2; (b) r = 0.5.
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Figure 6. NLSI prediction performance, error analysis, and regression plots for IEEE 118-bus system,
r = 0.2.

Figure 7. CBI prediction performance, error analysis, and regression plots for IEEE 118-bus system,
r = 0.2.
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Table 4. Model R performance analysis for multiple runs at r = 0.2 with IEEE 14-bus system data.

Run
NLSI CBI

Test All Test All

1 0.71725 0.85194 0.99847 0.99936

2 0.48290 0.69972 0.99849 0.99964

3 0.03234 0.81707 0.99685 0.99910

4 −0.06015 0.92002 0.86164 0.99190

5 −0.44144 0.83160 0.99769 0.99945

6 0.14935 0.83190 0.99918 0.99967

7 −0.19599 0.75219 0.99214 0.99638

8 0.51961 0.85642 0.99328 0.99821

Table 5. Comparative performance analysis for the case study networks.

r VSI
IEEE 14 IEEE 118

RMSE RRMSEp (%) MAPE (%) R RMSE RRMSEp (%) MAPE (%) R

0.2
NLSI 0.03051 25.029 3.150 0.8564 0.01919 22.286 31.255 0.9881

CBI 0.01280 1.930 0.361 0.9982 0.00692 1.248 1.749 0.9980

0.5
NLSI 0.05208 42.724 8.746 0.7702

CBI 0.01207 1.819 0.306 0.9984

The error analyses are graphically illustrated in Figures 4–7, showing the correspond-
ing mean square error (MSE and RMSE) values as well as the error variations and peaks.
Specific details of the performance of the ANFIS model on the testing data set are drawn
out for comprehensive performance analysis. The details in Table 5 are extracted from
the observed results as graphically illustrated in Figures 4–7. For the IEEE 14-bus system
at r = 0.2, MAPE is estimated to be 3.150% and 0.361% for NLSI and CBI, respectively,
the RRMSEP is calculated as 25.029% and 1.930% for NLSI and CBI, respectively, and R
yielded 0.8564 for NLSI and 0.9982 for CBI. To evaluate objectively and in detail, similar
predictive analysis was performed on the IEEE 14-bus system at an influence range r = 0.5;
MAPE is calculated as 8.746% and 0.306% for NLSI and CBI, respectively, the RRMSEP is
recorded to be 42.724% and 1.819% for NLSI and CBI, respectively and R analysis for NLSI
is 0.7702 and 0.9984 for CBI. For the IEEE 118-bus system, it is observed from multiple sim-
ulation runs that clustering radii above r = 0.2 gave inconsistent results for the predictions;
thus, the predictive analysis for the IEEE 118-bus is limited to r = 0.2 only. RRMSEP is
calculated as 22.286% and 1.248% for NLSI and CBI, respectively, and R yielded 0.9881 for
NLSI and 0.9980 for CBI, with MAPE calculated as 31.255% and 1.749% for NLSI and CBI,
respectively, for the IEEE 118-bus system with r = 0.2.

Based on the linear regression analysis, the R correlation coefficient measures the
significant relationship between the output (NLSI or CBI) and the six inputs’ information.
The regression analysis for IEEE 14-bus indicates that the calculation of CBI is significantly
influenced by the input information, with R estimated at 0.8564 for NLSI and 0.9982 for CBI
at r = 0.2; R = 0.7702 and 0.9984 for NLSI and CBI at r = 0.5, and this trend is observed for
the IEEE 118-bus system with R = 0.9881 for NLSI and 0.9980 for CBI at r = 0.2. Looking
closely at the performance of both VSIs at multiple simulations of the ANFIS-VSI model,
the consistent predictability of CBI over NLSI is further emphasized by the regression
results presented in Table 4, as reflected in the lower and inconsistent R values recorded for
NLSI compared to the CBI. While there are negative regressions and wide disparities of
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solutions (poor convergence) for the test data for NLSI, the CBI data show more agreeable
solution points for all the runs.

Remarkably, supported with the RRMSEp, MAPE, and the R values, the regression
plots highlight the difference between the predictability of NLSI compared to CBI, showing
the sparseness distribution of the NLSI data points compared to CBI and the wide mis-
alignment of the line of best fit from the reference line of perfect fit for all the test cases.
Thus, the percentage error analysis shows that the developed ANFIS model is adequate for
intelligently monitoring the voltage stability conditions of the two power systems using
the NLSI and CBI. However, it can be inferred from the obtained MAPE, RRMSEP, and R
values that the consistency of CBI as a voltage stability indicator makes it more viable for
real-time monitoring, especially at loading levels closer to the voltage collapse.

4. Conclusions

The ANFIS model was used to examine the performance accuracy of two contemporary
power system voltage stability monitoring tools. The performance viability of NLSI and
CBI as reliable techniques for modeling intelligent real-time prediction-based voltage
stability monitoring was investigated. The ANFIS model tuned with a subtractive clustering
approach was implemented, and credible power system parameters were trained using
estimated data values from load flow-based VSI solutions at different loading levels. The
model’s performance was assessed by statistical error analysis using metrics such as
the mean absolute percentage error (MAPE), percentage relative root mean square error
(RRMSEP), and the correlation coefficient (R). The simulation results provided justifiable
evidence for accepting the robustness of CBI, as indicated by the three performance metrics
concerning the consistency of convergence, precision of prediction, and the accuracy of
predicted values. Future studies will involve applicable feature engineering and data
preprocessing for the adoption of contemporary AI-based predictive analytics for model
validation in suitable real-time simulation environments.
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