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Abstract: In this paper, we investigate constraint qualifications and optimality conditions for multiob-
jective mathematical programming problems with vanishing constraints (MOMPVC) on Hadamard
manifolds. The MOMPVC-tailored generalized Guignard constraint qualification (MOMPVC-GGCQ)
for MOMPVC is introduced in the setting of Hadamard manifolds. By employing MOMPVC-GGCQ
and the intrinsic properties of Hadamard manifolds, we establish Karush–Kuhn–Tucker (KKT)-type
necessary Pareto efficiency criteria for MOMPVC. Moreover, we introduce several MOMPVC-tailored
constraint qualifications and develop interrelations among them. In particular, we establish that
the MOMPVC-tailored constraint qualifications introduced in this paper turn out to be sufficient
conditions for MOMPVC-GGCQ. Suitable illustrative examples are furnished in the framework of
well-known Hadamard manifolds to validate and demonstrate the importance and significance of
the derived results. To the best of our knowledge, this is the first time that constraint qualifications,
their interrelations, and optimality criteria for MOMPVC have been explored in the framework of
Hadamard manifolds.

Keywords: constraint qualifications; multiobjective programming; vanishing constraints; optimality
conditions; Hadamard manifolds

MSC: 90C46; 90C48; 90C29; 90C30

1. Introduction

In optimization theory, mathematical programming problems with vanishing con-
straints (MPVC) have transpired as a very interesting class of problem in the last few years.
The nomenclature ‘vanishing constraints’ is derived from the fact that some of the con-
straints present in the problem may become redundant on some particular feasible elements
of MPVC (see, for instance, [1]). One of the primary challenges encountered in the investiga-
tion of MPVC is the fact that the feasible set of MPVC may be non-convex and disconnected,
despite the presence of convex constraint functions (see, for instance, [2]). Furthermore, in
general, standard constraint qualifications, such as the Mangasarian–Fromovitz constraint
qualification (MFCQ) and linear independence constraint qualification (LICQ), are vio-
lated at an arbitrary feasible point of MPVC (see, for instance, [3,4]). Recently, researchers
have observed that various real-world problems emerging in several areas of engineering
and technology can be modeled as MPVC. Achtziger and Kanzow [1] demonstrated that
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important real-world problems in the field of mechanical engineering, such as the truss
optimization problem, can be formulated as an MPVC. Dai [5] modeled the problem of
finding optimal pressure control in water distribution systems as an MPVC. Kirches et al. [6]
investigated the problem of robot motion planning by formulating the corresponding prob-
lem as an MPVC. For more comprehensive discussions and updated surveys of MPVC, we
refer the readers to [7–10] and the references provided therein.

Achtziger and Kanzow [1] established that many of the standard constraint quali-
fications fail to be satisfied for MPVC and developed several MPVC-tailored constraint
qualifications. Hoheisel and Kanzow [9] derived necessary optimality conditions for
MPVC by employing Abadie-type constraint qualification, as well as Guignard-type con-
straint qualification. Guu et al. [11] derived strong Karush–Kuhn–Tucker-type sufficient
optimality conditions for MPVC, with infinitely many constraints. Mishra et al. [12]
studied several constraint qualifications for MPVC with vector-valued objective functions.
Wolfe-type, as well as the Mond-Weir type duality models for MPVC, were formulated
by Mishra et al. [13], and several duality theorems were derived. Several constraint quali-
fications and their interrelations for MPVC in the Hadamard manifold framework were
developed by Upadhyay and Ghosh [14]. One-parameter regularization methods for MPVC
were explored by Hoheisel et al. [3]. Optimality conditions for nonsmooth MPVC were
developed by Shirdel et al. [15] via the Dini–Hadamard derivative. Hassan et al. [16]
investigated M-stationary conditions and duality for MPVC. Recently, Upadhyay et al. [17]
derived necessary and sufficient Pareto efficiency criteria for semi-infinite MPVC with a
vector-valued objective function on Hadamard manifolds and further investigated some
duality models for MPVC. However, in this context, it is noteworthy that there is no re-
search paper available in the literature that explores constraint qualifications and their
interrelations for multiobjective MPVC in the framework of Hadamard manifolds.

In recent years, the exploration of optimization problems on manifolds has turned
out to be a very significant research topic. For modeling and analyzing many practical
problems of modern research, especially in data analysis, the manifold framework has
been found to be more advantageous than the traditional Euclidean space setting (for
reference, see [18–20]). On the other hand, generalizing various methods of optimization
from Euclidean spaces to the framework of manifolds has numerous important advantages.
Many challenging constrained non-convex optimization problems formulated in the Eu-
clidean space can be reformulated as simpler, unconstrained, as well as convex problems
within the Hadamard manifold framework (see [21–23]). As a direct consequence to these
advantages, in the last few years, numerous scholars have generalized various key ideas
related to optimization theory from the Euclidean space setting to the Hadamard manifold
framework (see [24–28] and the references provided therein).

Contrary to Euclidean spaces, Hadamard manifolds, in general, do not possess a linear
structure. As a result, in spite of the fact that Hadamard manifolds are globally homeo-
morphic to Euclidean spaces, the investigation of optimization techniques on Hadamard
manifolds is associated with several challenges. Specifically, in sharp contrast to Euclidean
space, the notion of a unique line segment joining any two points is not available in the
Hadamard manifold setting. Moreover, the exponential function and inverse of the expo-
nential function are nonlinear functions on Hadamard manifolds (see, for instance, [29]).
Consequently, researchers have developed new techniques over the past few decades
to study optimization problems on Hadamard manifolds. For instance, the concept of
geodesic convexity is introduced in the Hadamard manifold setting, employing the no-
tion of unique minimal geodesics to connect any two points in the Hadamard manifold.
Moreover, the concepts of parallel transport and exponential maps on the tangent space
of a Hadamard manifold (which has a vector space structure) are employed in order to
deal with the nonlinearity of manifolds. The central motivation and principal objective
to investigate nonsmooth MOMPVC on Hadamard manifolds, rather than Riemannian
manifolds, is as follows. Firstly, the exponential function is globally diffeomorphic in the
case of Hadamard manifolds (see, for instance, [30]). Nevertheless, the exponential function
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is locally diffeomorphic on Riemannian manifolds. Thus, the results derived in the present
manuscript on Hadamard manifolds are valid within the totally normal neighborhood of
each point on Riemannian manifolds.

It is noteworthy to observe that, in the last few decades, researchers have thoroughly
explored optimality criteria for single-objective as well as multiobjective optimization
problems in the framework of Euclidean space (see, for instance, [31–33] and the references
provided therein). Furthermore, in recent times, constraint qualifications and optimality
conditions for optimization problems involving scalar-valued and vector-valued objective
functions in the Riemannian and Hadamard manifold framework have been investigated
by several researchers (see, for instance, [25,26,34] and the references provided therein).
Nevertheless, constraint qualifications and optimality criteria for a very important class
of optimization problems, namely, multiobjective optimization problems with vanishing
constraints (MOMPVC) have not yet been studied in the Hadamard manifold framework.
The primary motivation as well as the the central objective of this paper is to address the
aforementioned research gap, introduce various constraint qualifications and derive their
interrelations, and further establish necessary Pareto efficiency criteria for MOMPVC in the
Hadamard manifold framework.

Motivated by the results and discussions presented in the papers [9,11,12], we explore
a class of MOMPVC in the Hadamard manifold framework. Firstly, the MOMPVC-tailored
generalized Guignard constraint qualification (MOMPVC-GGCQ) is introduced in the
framework of Hadamard manifolds. We further establish necessary optimality conditions
for MOMPVC using MOMPVC-GGCQ. Thereafter, we introduce several MOMPVC-tailored
constraint qualifications, for instance, Cottle-type constraint qualification, Slater-type con-
straint qualification, and Mangasarian–Fromovitz constraint qualification, which in turn
become sufficient conditions for MOMPVC-GGCQ. Non-trivial illustrative examples have
been incorporated to validate the effectiveness of the deduced results.

The primary contributions and novelty of this paper are as follows. Firsly, we extend
several constraint qualifications developed by Mishra et al. [12] from the linear Euclidean
space framework to the non-linear, more general space of Hadamard manifolds. Moreover,
the optimality conditions deduced in this paper extend the corresponding optimality crite-
ria developed by Hoheisel and Kanzow [9] from Euclidean space to Hadamard manifolds,
and further generalize them from single objective MPVC to a more general class of math-
ematical programming problems, namely, MOMPVC. Secondly, the results established
in this paper extend the corresponding results derived by Maeda [33] for a more general
class of optimization problems, that is, MOMPVC, and further generalize them from the
Euclidean space setting to the framework of a wider space, namely, Hadamard manifolds.

The rest of the article is structured as follows: Basic notations and definitions are
provided in Section 2. In Section 3, we consider a class of MOMPVC in the framework
of Hadamard manifolds. MOMPVC-GGCQ is introduced in the Hadamard manifold
framework and KKT-type necessary criteria of optimality for MOMPVC are established.
Subsequently, in Section 4, we present several MOMPVC-tailored constraint qualifications,
which in turn become sufficient conditions ensuring the satisfaction of MOMPVC-GGCQ.
Finally, we conclude our discussions and throw some light on our further research endeav-
ors in Section 5.

2. Basic Notations, Definitions, and Mathematical Preliminaries

Throughout the paper, the symbols N and R will be employed to represent the set
consisting of every natural and real number, respectively. The notation ∅ signifies the
empty set. Let n ∈ N. The symbol Rn denotes the n-dimensional Euclidean space. The
standard inner product on Rn is signified by ⟨·, ·⟩. For r, s ∈ Rn, the notation r ≧ s implies
that ri ≥ si, for every i = 1, 2, . . . , n. Further, r ≥ s indicates that r ≧ s and r ̸= s. Moreover,
we use the following conventions:
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r ≺ s ⇐⇒ rk < sk, ∀k = 1, . . . , n.

r ⪯ s ⇐⇒
{

rk ≤ sk, ∀k = 1, . . . , n;
rm < sm, for at least one m ∈ {1, . . . , n}.

We employ the symbol Hn to denote an n-dimensional Riemannian manifold. Hn is
said to be a Hadamard manifold, provided that it is geodesic complete, simply connected,
and moreover, the sectional curvature of Hn is non-positive everywhere. Henceforth, in
this paper, the symbol Hn will always indicate an n-dimensional Hadamard manifold,
unless otherwise stated.

Let â ∈ Hn. The tangent space at â is denoted by the symbol TâHn. It is a well-known
fact that TâHn is a linear space having a dimension n. Let B ⊂ TâHn be non-empty. The
notations cl(B) and co(B) are used to signify the closure and the convex hull of set B,
respectively.

The exponential mapping expâ : TâHn → Hn is a globally diffeomorphic map. Further,
exp−1

â : Hn → TâHn satisfies exp−1
â (â) = 0. On the other hand, for every â1, â2 ∈ Hn, some

unique normalized minimal geodesic νâ1,â2 : [0, 1] → Hn always exists, satisfying:

νâ1,â2(τ) = expâ1
(τexp −1

â1
(â2)), ∀τ ∈ [0, 1].

Remark 1. In light of Theorem 2.1 established by Kristaly et al. [29], exponential map exp :
TâHn → Hn on Hadamard manifolds with zero sectional curvature is a global isometry. Despite the
well-known fact that Hadamard manifolds with zero sectional curvature are isometric to Euclidean
spaces, there are significant problems that one encounters while investigating optimization problems
in the framework of Hadamard manifolds with negative sectional curvature. For instance, due to
the linear structure of Euclidean space, it is apparent that x − y = −(y − x), for any x, y ∈ Rn.
However, in the framework of Hadamard manifold Hn, exp−1

y x ̸= − exp−1
x y, x, y ∈ Hn, due to its

nonlinear structure. As a result, the development of optimization techniques on Hadamard manifolds
with non-zero sectional curvatures is significantly difficult, as compared to Euclidean spaces.

Let Rn denote a complete and connected Riemannian manifold. A subset U ⊆ Rn
is termed as a strongly convex set, provided that for any a, b ∈ U some unique minimal
geodesic exists in Rn that connects the points a and b. We employ the symbol B∗

â(w, α) to
represent the ball centered at w ∈ TâRn, having a radius α > 0. Moreover, we employ the
notation Bα(â) to signify the ball centered at â ∈ Rn with radius α > 0. Let 0̄ denote the
zero vector in TâRn.

We now present the following definitions from [30].

Definition 1. The injectivity and convexity radius corresponding to p̂ ∈ Rn, denoted by s( p̂) and
r( p̂), respectively, are defined as follows:

s( p̂) := sup{α > 0| expp̂ : B∗
p̂(0̄, α) ⊂ Tp̂Rn → expp̂(B

∗
p̂(0̄, α)) is a diffeomorphism},

r( p̂) := sup{α > 0| each ball in Bα( p̂) is strongly convex and each geodesic in

Bα( p̂) is a minimal geodesic}.

Remark 2.

(i) It is well-known that (see, for instance, [30]):

s( p̂) ≥ r( p̂) > 0, ∀ p̂ ∈ Rn.

(ii) The set U p̂ = expp̂(B∗
p̂(0̄, t)) is known as the totally normal neighborhood of p̂. If Rn =

Hn, U p̂ = Hn, ∀ p̂ ∈ Hn. Indeed, in view of the Cartan–Hadamard theorem (see, for
instance, [23]), we know that the exponential map is globally diffeomorphic in the case of
Hadamard manifolds. Consequently, if Rn = Hn, then we have:
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r( p̂) = s( p̂) = +∞, ∀ p̂ ∈ Hn.

Hence, from Definition 1, it follows that, if Rn = Hn, then

U p̂ = Hn, ∀ p̂ ∈ Hn.

(iii) Therefore, Hn is globally diffeomorphic to Euclidean space, while a Riemannian manifold is
locally diffeomorphic to Euclidean space. Thus, the results derived in this paper in the setting
of Hadamard manifolds need not be true globally for a general Riemannian manifold. In
particular, the established results within the framework of Hadamard manifolds hold within
the totally normal neighborhood of each point in a Riemannian manifold.

Let F : Hn → R be differentiable. The gradient of F, denoted by grad F, is defined as
dF(Z) = ⟨grad F, Z⟩ = Z(F), where Z is also a vector field on Hn.

The following definition is from Udrişte [23].

Definition 2. A set V ( ̸= ∅) ⊂ Hn is called a geodesic convex set, if for any â1, â2 ∈ V
(â1 ̸= â2), and for any geodesic γâ1, â2 : [0, 1] → Hn that connects â1 and â2, the following holds:

γâ1, â2(τ) ∈ V , ∀τ ∈ [0, 1],

where, γâ1, â2(τ) = expâ1

(
τ exp−1

â1
(â2)

)
.

The following definition is from Rapcsák [35].

Definition 3. Let V ( ̸= ∅) ⊂ Hn be a geodesic convex set and let â1 ∈ V . Let Θ : V → R be
a differentiable function. The function Θ is referred to as a geodesic convex function at â1 ∈ V ,
provided that the inequality stated below is satisfied:

Θ(â2)− Θ(â1) ≥
〈

grad Θ(â1), exp−1
â1

(â2)

〉
, ∀â2 ∈ V .

We refer to the function Θ as geodesic concave at â1 ∈ V , if −Θ is geodesic convex at â1. A
function that is both geodesic convex and geodesic concave at â1 ∈ V is said to be a geodesic affine
function â1.

For any p × q matrix A, the symbol Ar represents the rth row vector of A. In the rest of
this section, we consider matrices R(1), R(2), R(3), R(4) of order p1 × n, p2 × n, p3 × n, and
p4 × n respectively. Let â ∈ Hn. Suppose that R(1)

s ∈ TâHn (s = 1, 2, . . . , p1), R
(2)
s ∈ TâHn

(s = 1, 2, . . . , p2), R
(3)
s ∈ TâHn (s = 1, 2, . . . , p3), and R(4)

s ∈ TâHn (s = 1, 2, . . . , p4).
The following lemmas are from [36].

Lemma 1. Let us suppose that R(1), R(2), or R(3) is non-vacuous. The following systems,

(a) ⟨R(1)
s , ω⟩â ≥ 0, s = 1, . . . , p1,

⟨R(2)
s , ω⟩â ≥ 0, s = 1 . . . , p2,

⟨R(3)
s , ω⟩â ≥ 0, s = 1, . . . , p3,

⟨R(4)
s , ω⟩â = 0, s = 1, . . . , p4;

(b) (R(1))Tu1 + (R(2))Tu2 + (R(3))Tu3 + (R(4))Tu4 = 0; u1 ≧ 0, u2 ≧ 0, u3 ≧ 0;



Mathematics 2024, 12, 3047 6 of 24

provide the solutions ω ∈ TâHn, u1 ∈ Rp1 , u2 ∈ Rp2 , u3 ∈ Rp3 , u4 ∈ Rp4 , satisfying:

⟨R(1)
s , ω⟩â + u1 > 0, ∀s = 1, 2, . . . , p1,

⟨R(2)
s , ω⟩â + u2 > 0, ∀s = 1, 2, . . . , p2,

⟨R(4)
s , ω⟩â + u3 > 0, ∀s = 1, 2, . . . , p3.

Lemma 2. Let R(1) be a non-vacuous matrix. One of the following assertions (but not both)
holds true:

(a) The system of inequalities:

⟨R(1)
s , ω⟩â > 0, ∀s = 1, 2, . . . , p1,

⟨R(2)
s , ω⟩â ≥ 0, ∀s = 1, 2, . . . , p2,

⟨R(3)
s , ω⟩â = 0, ∀s = 1, 2, . . . , p3,

have a solution ω ∈ TâHn.

(b) The following equation,

(R(1))Tu1 + (R(2))Tu2 + (R(3))Tu3 = 0

has a solution u1 ∈ Rp1 , u2 ∈ Rp2 , u3 ∈ Rp3 , such that u1 ≥ 0, u2 ≧ 0.

The following lemma is an extension of Tucker’s theorem of alternative in the Hadamard
manifold framework.

Lemma 3. Let R(1) be a non-vacuous matrix. One of the following assertions (but not both)
holds true:

(a) The system of inequalities,

⟨R(1)
s , ω⟩â ≥ 0, ∀s = 1, 2, . . . , p1,

⟨R(1)
ℓ , ω⟩â > 0, for some ℓ ∈ {1, 2, . . . , p1},

⟨R(2)
s , ω⟩â ≥ 0, ∀s = 1, 2, . . . , p2,

⟨R(3)
s , ω⟩â = 0, ∀s = 1, 2, . . . , p3,

(1)

has a solution ω ∈ TâHn.

(b) The following equation,

(R(1))Tu1 + (R(2))Tu2 + (R(3))Tu3 = 0

has a solution u1 ∈ Rp1 , u2 ∈ Rp2 , u3 ∈ Rp3 , satisfying u1 ≥ 0, u2 ≧ 0.

Proof. Suppose that statement (a) holds true. By reductio ad absurdum, we suppose that
both of the statements (a) and (b) are valid. Consequently, some ω ∈ TâHn exists, satisfying
(1). Further, some u1 ∈ Rp1 , u2 ∈ Rp2 , u3 ∈ Rp3 exist, with u1 ≥ 0, u2 ≧ 0, satisfying:

(R(1))Tu1 + (R(2))Tu2 + (R(3))Tu3 = 0. (2)

In light of (1), we have:

⟨R(1)T
u1, ω⟩â + ⟨R(2)T

u2, ω⟩â + ⟨R(3)T
u3, ω⟩â > 0, (3)
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which contradicts (2). This establishes the fact that if statement (a) is valid, statement (b) is
not satisfied.

On the other hand, we now consider that statement (a) does not hold true. Consider
the following system:

⟨R(1)
s , ω⟩â ≥ 0, ∀s = 1, 2, . . . , p1,

⟨R(2)
s , ω⟩â ≥ 0, ∀s = 1, 2, . . . , p2,

⟨R(3)
s , ω⟩â = 0, ∀s = 1, 2, . . . , p3.

(4)

As a result, for every ω ∈ TâHn, we have:

⟨R(1)
s , ω⟩â >| 0, ∀s = 1, 2, . . . , p1.

Let us now consider the equation:

(R(1))Tu1 + (R(2))Tu2 + (R(3))Tu3 = 0, u1, u2, u3 ≧ 0; (5)

In view of Lemma 1, it follows from (4) and (5) that u1 > 0. Hence, statement (b) holds
true. Thus, the proof is completed.

For more comprehensive discussions on Hadamard manifolds, we refer to [27,28,37–40]
and the references cited therein.

3. Constraint Qualifications and Necessary Optimality Criteria for MOMPVC

In the rest of the paper, we investigate the following MOMPVC in the Hadamard
framework:

(MOMPVC) Minimize Θ(z) = (Θ1(z), . . . , Θℓ(z)),

subject to Br(z) ≤ 0, ∀r ∈ RB := {1, . . . , s},

Cr(z) = 0, ∀r ∈ RC := {1, . . . , q},

Ur(z) ≥ 0, ∀r ∈ R := {1, . . . , p},

Vr(z) Ur(z) ≤ 0, ∀r ∈ R := {1, . . . , p}.

It is assumed that every function involved, that is, Θr (r ∈ RΘ := {1, . . . , ℓ}), Br
(r ∈ RB), Cr (r ∈ RC), and Ur, Vr (r ∈ R) are smooth, scalar-valued functions defined on
Hn. The symbol S f will be used throughout the rest of the article to indicate the feasible
set of MOMPVC. We define a map Wr : Hn → R, as given below:

Wr(â) := Vr(â) Ur(â), ∀â ∈ Hn, ∀r ∈ R.

The next definition will be useful in the sequel (see [33]).

Definition 4. A feasible element â ∈ S f is said to be a Pareto efficient (weak Pareto efficient,
respectively) solution of MOMPVC, if no other a ∈ S f exists, for which:

Θ(a) ⪯ Θ(â) (Θ(a) ≺ Θ(â), respectively).

Let â ∈ S f . The sets defined below will be employed frequently in this paper:
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RB
a (â) := {r ∈ RB | Br(â) = 0},

R+(â) := {r ∈ R | Ur(â) > 0},

R0(â) := {r ∈ R | Ur(â) = 0},

R+0(â) := {r ∈ R | Ur(â) > 0,Vr(â) = 0},

R+−(â) := {r ∈ R | Ur(â) > 0,Vr(â) < 0},

R0+(â) := {r ∈ R | Ur(â) = 0,Vr(â) > 0},

R00(â) := {r ∈ R | Ur(â) = 0,Vr(â) = 0},

R0−(â) := {r ∈ R | Ur(â) = 0,Vr(â) < 0}.

Remark 3. Every set defined above is dependent on the selection of â ∈ S f . However, if such a
choice is unambiguous, we shall refrain from indicating it explicitly in the sequel.

Let us now introduce the sets W k (k ∈ RΘ) and W , which will play a major role in the
remaining portion of the present article:

W k :=
{

a ∈ S f : Θr(a) ≤ Θr(â), ∀r ∈ RΘ, r ̸= k
}

,

W :=
{

a ∈ S f : Θr(a) ≤ Θr(â), ∀r ∈ RΘ
}

.

Remark 4. From the above definitions, it is evident that
⋂

k∈RΘ
W k = W .

The following notion of contingent cone in the Hadamard manifold framework is
from [39].

Definition 5. Let A ⊆ Hn and ĉ ∈ cl(A). The Bouligand tangent cone of A at ĉ, represented by
C T(A, ĉ), is defined in the following manner:

C T(A, ĉ) := {u ∈ TĉHn : ∃{sn}∞
n=1 ↓ 0, ∃{un}∞

n=1, un ∈ TĉHn, {un}∞
n=1 → u,

expĉ(snun) ∈ A, ∀n ∈ N},

where {sn}∞
n=1 ↓ 0 indicates that sn ≥ 0 for all n ∈ N and {sn}∞

n=1 tends to 0 as n tends to infinity.

The following definition is an extension of the definition of linearizing cone from
Maeda [33] for MOMPVC in the Hadamard manifold framework.

Definition 6. Let â ∈ S f . The linearizing cone to the set W at â, signified by L C(W , â), is
defined as follows:

L C(W , â) := {ω ∈ TâHn : ⟨grad Θr(â),ω⟩ ≤ 0, ∀r ∈ RΘ,

⟨gradBr(â),ω⟩ ≤ 0, ∀r ∈ RB
a ,

⟨grad Cr(â),ω⟩ = 0, ∀r ∈ RC ,

⟨gradUr(â),ω⟩ ≥ 0, ∀r ∈ R0,

⟨gradWr(â),ω⟩ ≤ 0, ∀r ∈ R0 ∪R+0}.

Remark 5. We observe that gradWr(â) = Vr(â) gradUr(â) + Ur(â) gradVr(â). Then, equiva-
lently, L C(W , â) may be defined as:
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L C(W , â) := {ω ∈ TâHn : ⟨grad Θr(â),ω⟩ ≤ 0, ∀r ∈ RΘ,

⟨gradBr(â),ω⟩ ≤ 0, ∀r ∈ RB
a ,

⟨grad Cr(â),ω⟩ = 0, ∀r ∈ RC ,

⟨gradUr(â),ω⟩ = 0, ∀r ∈ R0+,

⟨gradUr(â),ω⟩ ≥ 0, ∀r ∈ R0− ∪R00,

⟨gradVr(â),ω⟩ ≤ 0, ∀r ∈ R+0}.

In the following definition, we introduce the definition of the linearizing cone to the
set W k (k ∈ RΘ) at a feasible element of MOMPVC in the Hadamard manifold framework.

Definition 7. Let â ∈ S f . The linearizing cone to the set W k (k ∈ RΘ) at â, signified by
L C

(
W k, â

)
, is defined as follows:

L C
(
W k, â

)
:= {ω ∈ TâHn : ⟨grad Θr(â),ω⟩ ≤ 0, ∀r ∈ RΘ \ {k},

⟨gradBr(â),ω⟩ ≤ 0, ∀r ∈ RB
a ,

⟨grad Cr(â),ω⟩ = 0, ∀r ∈ RC ,

⟨gradUr(â),ω⟩ ≥ 0, ∀r ∈ R0,

⟨gradWr(â),ω⟩ ≤ 0, ∀r ∈ R0 ∪R+0}.

The generalized Guignard constraint qualification (GGCQ) for MOMPVC in the
Hadamard manifold framework is introduced in the next definition.

Definition 8. Let â ∈ S f . Then, the MOMPVC-tailored generalized Guignard constraint
qualification (MOMPVC-GGCQ) holds at â, if:

L C(W , â) ⊆
⋂

r∈RΘ

cl co C T(W r, â).

We now deduce an important result in the next lemma, which will be directly helpful
to deduce KKT-type Pareto efficiency conditions for MOMPVC.

Lemma 4. Let â ∈ S f , such that MOMPVC-GGCQ holds at â ∈ S f . If â is a Pareto efficient
solution of MOMPVC, then no ω ∈ TâHn exists, satisfying:

⟨grad Θr(â),ω⟩ ≤ 0, ∀r ∈ RΘ,

⟨grad Θr(â),ω⟩ < 0, for at least one r ∈ RΘ,

⟨gradBr(â),ω⟩ ≤ 0, ∀r ∈ RB
a ,

⟨grad Cr(â),ω⟩ = 0, ∀r ∈ RC ,

⟨gradUr(â),ω⟩ ≥ 0, ∀r ∈ R0,

⟨gradWr(â),ω⟩ ≤ 0, ∀r ∈ R0 ∪R+0.

(6)

Proof. By reductio ad absurdum, we suppose that some ω ∈ TâHn exists, which satis-
fies (6). Consequently, in light of Definition 6, it is obvious that ω ∈ L C(W , â). Hence,
without any loss of generality, we may assume the following:

⟨grad Θ1(â),ω⟩ < 0,

⟨grad Θr(â),ω⟩ ≤ 0, r ∈ RΘ \ {1}.

According to the provided hypotheses, MOMPVC-GGCQ holds at â ∈ S f . Hence, the
following holds:
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ω ∈ cl co C T
(
W 1, â

)
.

Therefore, some sequence {ωm}∞
m=1 ⊆ co C T(W 1, â

)
exists, for which limm→∞ ωm =

ω. Hence, for each element ωm (m ∈ N) of the sequence, we have some Mm ∈ N, satisfying:

Mm

∑
k=1

ρmk = 1,
Mm

∑
k=1

ρmkωmk = ωm,

where ρmk ∈ R, ρmk ≥ 0, and ωmk ∈ C T(W 1, â
)
, k = 1, 2, . . . ,Mm. Then, in view of

Definition 5, there exist sequences
{
ωn

mk

}∞

n=1
, ωn

mk
∈ W 1 for each n ∈ N and

{
tn
mk

}∞

n=1
,

tn
mk
(> 0) ∈ R for each n ∈ N, with tn

mk
→ 0 as n → ∞, such that:

lim
n→∞

ωn
mk

= ωmk , expâ(t
n
mk
ωn

mk
) ∈ W 1. (7)

Let us set xn
mk

as follows:

xn
mk

:= expâ(t
n
mk
ωn

mk
), ∀n ∈ N. (8)

Therefore, we obtain the following inequalities for every n ∈ N:

Θr

(
xn

mk

)
= Θr

(
expâ(t

n
mk
ωn

mk
)
)
≤ Θr(â), r ∈ RΘ \ {1},

Br

(
xn

mk

)
= Br

(
expâ(t

n
mk
ωn

mk
)
)
≤ 0 = B(â), ∀r ∈ RB

a ,

Cr

(
xn

mk

)
= Cr

(
expâ(t

n
mk
ωn

mk
)
)
≤ 0 = Cr(â), ∀r ∈ RC ,

Ur

(
xn

mk

)
= Ur

(
expâ(t

n
mk
ωn

mk
)
)
≥ 0 = Ur(â), ∀r ∈ R0,

Wr

(
xn

mk

)
= Wr

(
expâ(t

n
mk
ωn

mk
)
)
≤ 0 = Wr(â), ∀r ∈ R0 ∪R+0.

(9)

Again, â ∈ S f is a Pareto efficient solution of MOMPVC. Therefore:

Θ1

(
xn

mk

)
= Θ1

(
expâ(t

n
mk
ωn

mk
)
)
≥ Θ1(â), ∀n ∈ N. (10)

By employing the Taylor series of Θr at â, for each r ∈ RΘ \ {1}, we obtain:

Θr

(
expâ(t

n
mk
ωn

mk
)
)
= Θr(â) + tn

mk
⟨grad Θr(â),ωn

mk

〉
+ o
(

tn
mk

)
. (11)

Then, it follows that for every r ∈ RΘ \ {1}, we have:

Θr

(
expâ(t

n
mk
ωn

mk
)
)
− Θr(â)

tn
mk

=
〈

grad Θr(â),ωn
mk

〉
+

o
(

tn
mk

)
tn
mk

. (12)

We observe that Θr

(
xn

mk

)
= Θr

(
expâ(t

n
mk
ωn

mk
)
)

≤ Θr(â), for every r ∈ RΘ \ {1}.
Hence, by letting tn

mk
→ 0, it follows from equation (12) that〈

grad Θr(â),ωmk

〉
≤ 0, ∀r ∈ RΘ \ {1}. (13)

Continuing similarly as before, we arrive at the following:
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⟨grad Θ1(â),ωmk ⟩ ≥ 0,

⟨grad Θr(â),ωmk ⟩ ≤ 0, ∀r ∈ RΘ \ {1},

⟨gradBr(â),ωmk ⟩ ≤ 0, ∀r ∈ RB
a ,

⟨grad Cr(â),ωmk ⟩ = 0, ∀r ∈ RC ,

⟨gradUr(â),ωmk ⟩ ≥ 0, ∀r ∈ R0,

⟨gradWr(â),ωmk ⟩ ≤ 0, ∀r ∈ R0 ∪R+0.

(14)

In light of the continuity property of inner product, we have the following:

⟨grad Θ1(â),ω⟩ ≥ 0,

⟨grad Θr(â),ω⟩ ≤ 0, ∀r ∈ RΘ \ {1},

⟨gradBr(â),ω⟩ ≤ 0, ∀r ∈ RB
a ,

⟨grad Cr(â),ω⟩ = 0, ∀r ∈ RC ,

⟨gradUr(â),ω⟩ ≥ 0, ∀r ∈ R0,

⟨gradWr(â),ω⟩ ≤ 0, ∀r ∈ R0 ∪R+0,

(15)

which contradicts our initial assumption. Hence, the proof is completed.

Remark 6. Theorem 4 is a generalization of Theorem 3.1 of Maeda [33] from multiobjective
optimization problems to MOMPVC, and further, extends it from the linear setting of Rn to the
nonlinear Hadamard manifold framework.

Now, we employ MOMPVC-GGCQ to derive KKT-type necessary Pareto efficiency
criteria for MOMPVC.

Theorem 1. Let â ∈ S f be a Pareto efficient solution of MOMPVC at which MOMPVC-GGCQ
holds. Then, some real numbers, αr (r ∈ RΘ), σBr (r ∈ RB), σCr (r ∈ RC), σUr (r ∈ R), σVr
(r ∈ R), exist, which satisfy the following:

∑
r∈RΘ

αr grad Θr(â)+ ∑
r∈RB

σBr gradBr(â) + ∑
r∈RC

σCr grad Cr(â)

− ∑
r∈R

σUr gradUr(â) + ∑
r∈R

σVr gradVr(â) = 0,
(16)

and
αr > 0, ∀r ∈ RΘ,

Br(â) ≤ 0, σBr ≥ 0, σBr Br(â) = 0, ∀r ∈ RB ,

Cr(â) = 0, ∀r ∈ RC ,

σUr free, ∀r ∈ R0+, σUr ≥ 0, ∀r ∈ R00 ∪R0−, σUr = 0, ∀r ∈ R+,

σVr ≥ 0, ∀r ∈ R+0, σVr = 0, ∀r ∈ R0 ∪R+−,

σUr Ur(â) = 0, σVr Vr(â) = 0, ∀r ∈ R.

(17)

Proof. According to the provided hypotheses, â ∈ S f is a Pareto efficient solution of
MOMPVC and MOMPVC-GGCQ holds at â. In light of Lemma 4, it follows that system
(6) has no solution ω ∈ TâHn. Now, by invoking Lemma 3, we infer that there exist real
numbers, αr > 0 (r ∈ RΘ), σBr ≥ 0 (r ∈ RB

a ), σC+r ≥ 0, σC−r ≥ 0 (r ∈ RC), βU
r ≥ 0

(r ∈ R0), σWr ≥ 0 (r ∈ R0 ∪R+0), which satisfy the following:
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∑
r∈RΘ

αr grad Θr(â) + ∑
r∈RB

a

σBr gradBr(â) + ∑
r∈RC

σC+r grad Cr(â)

− ∑
r∈RC

σC−r grad Cr(â)− ∑
r∈R0

βU
r gradUr(â) + ∑

r∈R0∪R+0

σWr gradWr(â) = 0.

Let us set σBr = 0 (∀r /∈ RB
a ), βU

r = 0 (∀r /∈ R0), σWr = 0 (∀r /∈ R0 ∪R+0). Then, it
follows that:

∑
r∈RΘ

αr grad Θr(â) + ∑
r∈RB

σBr gradBr(â) + ∑
r∈RC

σC+r grad Cr(â)

− ∑
r∈RC

σC−r grad Cr(â)− ∑
r∈R

βU
r gradUr(â) + ∑

r∈R
σWr gradWr(â) = 0,

On the other hand, Br(â) = 0 ∀r ∈ RB
a , Cr(â) = 0, ∀r ∈ RC , Ur(â) = 0 ∀r ∈ R0, and

Wr(â) = 0 ∀r ∈ R0 ∪R+0. This entails that:

σBr Br(â) = 0, r ∈ RB ,

σC+r (Cr(â)) = 0, r ∈ RC ,

σC−r (−Cr(â)) = 0, r ∈ RC ,

βU
r Ur(â) = 0, r ∈ R,

σWr Wr(â) = 0, r ∈ R.

(18)

Let us set the following:

σC+r − σC−r = σCr , ∀r ∈ RC ,

βU
r − σWr Vr(â) = σUr , ∀r ∈ R,

σWr Ur(â) = σVr , ∀r ∈ R.

(19)

Consequently, we arrive at the following:

∑
r∈RΘ

αr grad Θr(â)+ ∑
r∈RB

σBr gradBr(â) + ∑
r∈RC

σCr grad Cr(â)

− ∑
r∈R

σUr gradUr(â) + ∑
r∈R

σVr gradVr(â) = 0,
(20)

and
αr > 0, ∀r ∈ RΘ,

Br(â) ≤ 0, σBr ≥ 0, σBr Br(â) = 0, ∀r ∈ RB ,

Cr(â) = 0, ∀r ∈ RC ,

σUr free, ∀r ∈ R0+, σUr ≥ 0, ∀r ∈ R00 ∪R0−, σUr = 0, ∀r ∈ R+,

σVr ≥ 0, ∀r ∈ R+0, σVr = 0, ∀r ∈ R0 ∪R+−,

σUr Ur(â) = 0, σVr Vr(â) = 0, ∀r ∈ R.

(21)

Thus, the proof is completed.

Remark 7.

1. If Hn = Rn, Theorem 1 reduces to Theorem 6.2 established by Mishra et al. [12].
2. Theorem 1 is a generalization of Theorem 3.2 derived by Maeda [33] from multiobjective opti-

mization problems in the setting of Rn to MOMPVC in the Hadamard manifold framework.

We now provide an illustrative example to demonstrate that MOMPVC-GGCQ is not
a sufficient condition for Theorem 1.
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Example 1. Let M2 signify the set of all 2 × 2 symmetric matrices. Let M2
+ ⊂ M2 con-

sist of 2 × 2 positive definite matrices. A ∈ M2
+. M2

+ is a well-known Hadamard manifold
(see [40]), with:

⟨W1, W2⟩A := Tr (W2 A−1 W1 A−1),

for any arbitrary W1, W2 ∈ TAM2
+ = M2. Let A, B ∈ M2

+ and W ∈ TAM2
+.

The exponential map expA(W) : TAM2
+ → M2

+ is given by

expA(W) = A
1
2 Exp

(
A− 1

2 W A− 1
2
)
A

1
2 ,

where Exp denotes the usual matrix exponential. The inverse exponential map exp−1
A : M2

+ →
TAM2

+ is:

exp−1
A (B) = A

1
2 Log

(
A− 1

2 B A− 1
2
)
A

1
2 ,

where Log denotes standard logarithm on M2
+ (see [40]). Let F : M2

+ → R. Then,

grad(F(A)) = A F′(A) A,

where A ∈ M+
2 and F′(U ) signifies the Euclidean gradient of F at U (see [40]).

We formulate a MOMPVC, denoted by (P) for the sake of brevity, as follows:

(P) Minimize Θ(A) = (Θ1(A), Θ2(A)) := (−3 log a1 − 3 log a4,−5 − log a1 − log a4),

subject to B1(A) := |a4| − 1 ≤ 0,

B2(A) := |a1| − 1 ≤ 0,

U (A) := −a2
2 ≥ 0,

U (A)V(A) := (−a2
2)(−a2

3) ≤ 0,

where Θi : M+
2 → R (i = 1, 2) and Bj : M+

2 → R (j = 1, 2), and U ,V : M+
2 → R real valued

functions and A =

[
a1 a2
a2 a4

]
∈ M+

2 .

Let S f signify the feasible set of (P). Then:

S f :=

{[
a1 0
0 a4

]
: 0 < a1 ≤ 1, 0 < a4 ≤ 1

}
.

We choose the feasible element

A∗ =

[
1 0
0 1

]
∈ S f .

It can be verified that:

L C(W , A∗) =

{[
0 a2
a2 0

]
: a2 ∈ R

}
,

C T(W r, A∗) =

{[
a1 a2
a3 a4

]
: a1, a2, a3, a4 = 0

}
, r = 1, 2.

Therefore, MOMPVC-GGCQ is not satisfied at A∗. Moreover, we can obtain the following:
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grad Θ1(A∗) =

[
−3 0
0 −3

]
, grad Θ2(A∗) =

[
−1 0
0 −1

]
,

gradB1(A∗) =

[
0 0
0 1

]
, gradB2(A∗) =

[
1 0
0 0

]
,

gradU (A∗) =

[
0 0
0 0

]
, gradV(A∗) =

[
0 0
0 0

]
.

Then, there exists σΘ
1 = 1

2 , σΘ
2 = 1

2 , σB1 = 1, σB2 = 1, σC = 1, σD = 1, such that

σΘ
1

[
−1 0
0 −1

]
+σΘ

2

[
−1 0
0 −1

]
+ σB1

[
0 0
0 1

]
+

σB2

[
1 0
0 0

]
− σC

[
0 0
0 0

]
+ σD

[
0 0
0 0

]
=

[
0 0
0 0

]
.

As a result, we infer the fact that although MOMPVC-GGCQ fails to be satisfied at A∗, KKT
conditions still hold.

4. Sufficient Conditions for MOMPVC-GGCQ

In this section, we investigate several constraint qualifications existing in the literature
in the framework of Hadamard manifolds for MOMPVC. We further derive certain suffi-
cient conditions for MOMPVC-GGCQ.
The following definition is extended from Mishra et al. [12] for MOMPVC in the Hadamard
manifold framework.

Definition 9. Let â ∈ S f . We say that the Cottle-type constraint qualification (CTCQ) holds at â
if for every k ∈ RΘ, the following system provides a solution, ω ∈ TâHn:

⟨grad Θr(â),ω⟩ < 0, r ∈ RΘ and r ̸= k,

⟨gradBr(â),ω⟩ < 0, r ∈ RB
a (â),

⟨grad Cr(â),ω⟩ = 0, r ∈ RC ,

⟨gradUr(â),ω⟩ > 0, r ∈ R0+ ∪R00 ∪R0−,

⟨gradWr(â),ω⟩ < 0, r ∈ R0+ ∪R00 ∪R0− ∪R+0.

(22)

In the following lemma, we demonstrate that under some mild restrictions on the
index sets, CTCQ is not satisfied as a feasible element of MOMPVC.

Lemma 5. Let â ∈ S f and R00∪ R0+ ̸= ϕ. Then, CTCQ does not hold at â.

Proof. By reductio ad absurdum, we suppose that CTCQ holds at â. As a result, for every
k ∈ RΘ, the system (22) provides a solution, ω ∈ TâHn. From the definitions of the index
sets, we obtain

gradWr(â) = 0, ∀r ∈ R00,

⟨gradUr(â),ω⟩ = 1
Vr(â)

⟨gradWr(â),ω⟩ < 0, ∀r ∈ R0+,
(23)

which contradicts (22). Hence, the proof is completed.

We now modify several standard constraint qualifications and introduce the following
MOMPVC-tailored constraint qualifications on Hadamard manifolds. In the following
definitions, we always assume that â ∈ S f .
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Definition 10. The MOMPVC-tailored Abadie’s constraint qualification (MOMPVC-ACQ) holds
at â, if:

L C(W , â) ⊆ C T(W , â). (24)

Definition 11. The MOMPVC-tailored generalized Abadie’s constraint qualification (MOMPVC-
GACQ) holds at â, if:

L C(W , â) ⊆
⋂

i∈RΘ

C T
(
W i; â

)
. (25)

Lemma 6. If MOMPVC-ACQ holds at â, then MOMPVC-GACQ holds at â.

Proof. The proof follows readily from Definitions 10 and 11.

Lemma 7. If MOMPVC-GACQ holds at â, then MOMPVC-GGCQ holds at â.

Proof. The proof follows readily from Definitions 10 and 11.

Definition 12. The MOMPVC-tailored Cottle-type constraint qualification (MOMPVC-CTCQ)
holds at â, if for every k ∈ RΘ, the following system provides a solution, ω ∈ TâHn:

⟨grad Θr(â),ω⟩ < 0, r ∈ RΘ and r ̸= k,

⟨gradBr(â),ω⟩ < 0, r ∈ RB
a (â),

⟨grad Cr(â),ω⟩ = 0, r ∈ RC ,

⟨gradUr(â),ω⟩ = 0, r ∈ R0+ ∪R00,

⟨gradUr(â),ω⟩ > 0, r ∈ R0−,

⟨gradVr(â),ω⟩ < 0, r ∈ R+0.

(26)

Definition 13. The MOMPVC-tailored Slater-type constraint qualification (MOMPVC-STCQ)
holds at â if Θr (r ∈ RΘ), and Br (r ∈ RB), Vr (r ∈ R+0) are geodesic convex, Ur (r ∈ R0−)
are geodesic concave, Ur (r ∈ R00 ∪R0+), Cr (r ∈ RC) are geodesic affine, and for every k ∈ RΘ,
the following system provides a solution, z ∈ Hn:

Θr(z) < Θr(â), ∀r ∈ RΘ and r ̸= k,

Br(z) < 0, ∀r ∈ RB
a (â),

Cr(z) = 0, ∀r ∈ RC ,

Ur(z) = 0, ∀r ∈ R00 ∪R0+,

Ur(z) > 0, ∀r ∈ R0−,

Vr(z) < 0, ∀r ∈ R+0.

(27)

Definition 14. The MOMPVC-tailored Mangasarian–Fromovitz constraint qualification (MOMPVC-
MFCQ) holds at â if grad Θr (r ∈ RΘ), grad Cr (r ∈ RC), gradUr (r ∈ R0+ ∪R00) are linearly
independent and the following system provides a solution, ω ∈ TâHn:

⟨grad Θr(â),ω⟩ = 0, r ∈ RΘ,

⟨gradBr(â),ω⟩ < 0, r ∈ RB
a (â),

⟨grad Cr(â),ω⟩ = 0, r ∈ RC ,

⟨gradUr(â),ω⟩ = 0, r ∈ R0+ ∪R00,

⟨gradUr(â),ω⟩ > 0, r ∈ R0−,

⟨gradVr(â),ω⟩ < 0, r ∈ R+0.

(28)
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Definition 15. Let â ∈ S f . Then the linearly independent constraint qualification (MOMPVC-
LICQ) is said to hold at â, if for every k ∈ RΘ, the gradients grad Θr(â)

(
r ∈ RΘ, r ̸= k

)
,

gradBr (â)
(
r ∈ RB

a
)
, grad Cr (â)

(
r ∈ RC), gradUr (â)(r ∈ R0), gradVr (â)(r ∈ R+0) are

linearly independent.

In the following theorem, we establish that the satisfaction of MOMPVC-CTCQ is
a sufficient condition for the satisfaction of MOMPVC-GGCQ under certain reasonable
restriction on index sets.

Lemma 8. Let â ∈ S f . Suppose that R00 = ϕ. If MOMPVC-CTCQ holds at â, then MOMPVC-
GGCQ also holds at â.

Proof. According to the provided hypotheses, â ∈ S f and R00 = ϕ. Further, CTCQ holds
at â ∈ S f . As a result, some ω ∈ TâHn exists, such that, for every k ∈ RΘ, we have:

⟨grad Θr(â),ω⟩ < 0, ∀r ∈ RΘ and r ̸= k,

⟨gradBr(â),ω⟩ < 0, ∀r ∈ RB
a (â),

⟨grad Cr(â),ω⟩ = 0, ∀r ∈ RC ,

⟨gradUr(â),ω⟩ = 0, ∀r ∈ R0+,

⟨gradUr(â),ω⟩ > 0, ∀r ∈ R0−,

⟨gradVr(â),ω⟩ < 0, ∀r ∈ R+0.

(29)

Let v ∈ L C(W , â). Then, in view of Definition 6 and the fact that R00 = ϕ, we get:

⟨grad Θr(â), v⟩ ≤ 0, ∀r ∈ RΘ,

⟨gradBr(â), v⟩ ≤ 0, ∀r ∈ RB
a (â),

⟨grad Cr(â), v⟩ = 0, ∀r ∈ RC ,

⟨gradUr(â), v⟩ = 0, ∀r ∈ R0+,

⟨gradUr(â), v⟩ ≥ 0, ∀r ∈ R0−,

⟨gradVr(â), v⟩ ≤ 0, ∀r ∈ R+0.

(30)

At first, we claim that v ∈ C T(W 1, â
)
. Consider a sequence {τn}∞

n=1 ↓ 0, where ↓ 0
indicates that the sequence approaches zero from the positive direction. Correspondingly,
we define {vn}∞

n=1 as follows:

vn := v + τnω, ∀n ∈ N. (31)

Clearly, vn → v as n → ∞. From (29), (30), and (31), it follows that

⟨grad Θr(â), vn⟩ < 0, ∀r ∈ RΘ,

⟨gradBr(â), vn⟩ < 0, ∀r ∈ RB
a (â),

⟨grad Cr(â), vn⟩ = 0, ∀r ∈ RC ,

⟨gradUr(â), vn⟩ = 0, ∀r ∈ R0+

⟨gradUr(â), vn⟩ > 0, ∀r ∈ R0−,

⟨gradVr(â), vn⟩ < 0, ∀r ∈ R+0.

(32)

For every element of the sequence {vn} (n ∈ N), we consider a sequence
{

λnk

}∞
k=1 ↓ 0.

Now, we construct a sequence
{

znk

}∞
k=1 as:

znk := expâ(λnk vn), ∀k ∈ N. (33)



Mathematics 2024, 12, 3047 17 of 24

Clearly {znk} → â as k → ∞. Then, for large enough k, we have the following for
every r ∈ RΘ \ {1}:

Θr
(
znk

)
= Θr(â) + λnk ⟨grad Θr(â), vn⟩+ o

(∣∣λnk

∣∣) < Θr(â). (34)

Similarly, for large enough k, we have the following for every r ∈ RB
a (â):

Br
(
znk

)
= Br(â) + λnk ⟨gradBr(â), vn⟩+ o(|λn|) < Br(â) = 0. (35)

Now, for every r /∈ RB
a (â), it follows from the continuity of Br that

Br
(
znk

)
= Br

(
expâ(λnk vn)

)
< 0, for sufficiently large k. (36)

Continuing in a similar manner, it can be shown that for large enough k, we have:

Cr(znk ) = 0, ∀r ∈ RC ,

Ur(znk ) = 0, ∀r ∈ R,

Ur(znk ) ≥ 0, ∀r ∈ R,

Vr(znk ) ≤ 0, ∀r ∈ R.

(37)

Since R00 = ϕ, then it follows from (34)–(37) that

znk =
(
expâ(λnk vn)

)
∈ W 1, for sufficiently large k. (38)

Without any loss of generality, we may assume that znk ∈ W 1 for all k. This implies that

v ∈ C T
(
W 1, â

)
. (39)

By following exactly the same procedure, we can show that for every k ∈ RΘ \ {1},
we have v ∈ C T

(
W k, â

)
. Then, it follows that

v ∈
⋂

k∈RΘ

C T
(
W k, â

)
⊆

⋂
k∈RΘ

cl co C T
(
W k, â

)
. (40)

Hence, the proof is completed.

In the following lemma, we provide a relation between MOMPVC-CTCQ and MOMPVC-
MFCQ.

Lemma 9. Let â ∈ S f . If MOMPVC-MFCQ holds at â, then MOMPVC-CTCQ is also satisfied
at â.

Proof. According to the provided hypotheses, MOMPVC-MFCQ holds at â ∈ S f . This
implies that grad Θr (r ∈ RΘ), grad Cr (r ∈ RC), gradUr (r ∈ R0+ ∪ R00) are linearly
independent. Moreover, some ω ∈ TâHn exists, satisfying:

⟨grad Θr(â),ω⟩ = 0, r ∈ RΘ,

⟨gradBr(â),ω⟩ < 0, r ∈ RB
a (â),

⟨grad Cr(â),ω⟩ = 0, r ∈ RC ,

⟨gradUr(â),ω⟩ = 0, r ∈ R0+ ∪R00,

⟨gradUr(â),ω⟩ > 0, r ∈ R0−,

⟨gradVr(â),ω⟩ < 0, r ∈ R+0.

(41)



Mathematics 2024, 12, 3047 18 of 24

By reductio ad absurdum, let us assume that MOMPVC-CTCQ is not satisfied at
â ∈ S f . Then, some k ∈ RΘ exists, such that the system given below does not provide a
solution, v ∈ TâHn:

⟨grad Θr(â), v⟩ < 0, r ∈ RΘ and r ̸= k,

⟨gradBr(â), v⟩ < 0, r ∈ RB
a (â),

⟨grad Cr(â), v⟩ = 0, r ∈ RC ,

⟨gradUr(â), v⟩ = 0, r ∈ R0+ ∪R00,

⟨gradUr(â), v⟩ > 0, r ∈ R0−,

⟨gradVr(â), v⟩ < 0, r ∈ R+0.

(42)

In view of Lemma 2 and (42), some real numbers, αr ≥ 0
(
r ∈ RΘ, r ̸= k

)
,

σBr ≥ 0
(
r ∈ RB

a
)
, σUr ≥ 0(r ∈ R0−),σVr ≥ 0(r ∈ R+0), not all zero, and σCr

(
r ∈ RC), σ̃Ur

(r ∈ R0+ ∪R00), exist, for which:

∑
r∈RΘ

r ̸=k

αr grad Θr(â) + ∑
r∈RB

a

σBr gradBr(â) + ∑
r∈RC

σCr grad Cr(â)

+ ∑
r∈R00∪R0+

σ̃Ur gradUr(â)− ∑
r∈R0−

σUr gradUr(â) + ∑
r∈R+0

σVr gradVr(â) = 0.
(43)

From (41) and (43), it follows that:〈
∑

r∈RB
a

σBr gradBr(â),ω
〉
−
〈

∑
r∈R0−

σUr gradUr(â),ω
〉
+

〈
∑

r∈R+0

σVr gradVr(â),ω
〉

= 0.
(44)

Combining (41) and (44), we yield: σBr = 0, ∀r ∈ RB
a , σUr = 0, ∀r ∈ R0−, σVr = 0,

∀r ∈ R+0. Then, it follows from (43) that

∑
r∈RΘ

r ̸=k

αr grad Θr(â) + ∑
r∈RC

σCr grad Cr(â)− ∑
r∈R00∪R0+

σ̃Ur grad Cr(â) = 0. (45)

From the linearly independence of grad Θr(â)
(
r ∈ RΘ), gradCr(â)

(
r ∈ RC), gradUr(â)

(r ∈ R00 ∪R0+), we infer that:

αr = 0, ∀r ∈ RΘ, r ̸= k,

σCr = 0, ∀r ∈ RC ,

σ̃r
U = 0, ∀r ∈ R00 ∪R0+,

(46)

which is a contradiction. Hence, the proof is completed.

In the following lemma, we provide a relation between MOMPVC-CTCQ and MOMPVC-
STCQ.

Lemma 10. Let â ∈ S f . If MOMPVC-STCQ holds at â, then MOMPVC-CTCQ also holds at â.

Proof. From the provided hypotheses, MOMPVC-STCQ holds at â ∈ S f . Then, it follows
that each of the functions Θr (r ∈ RΘ) Br (r ∈ RB) and Vr (r ∈ R+0) are geodesic convex,
Ur (r ∈ R0−) are geodesic concave, Ur (r ∈ R00 ∪R0+), Cr (r ∈ RC) are affine, and for
every k ∈ RΘ, the system of inequalities given below,
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Θr(z) < Θr(â), ∀r ∈ RΘ and r ̸= k,

Br(z) < 0, ∀r ∈ RB
a (â),

Cr(z) = 0, ∀r ∈ RC ,

Ur(z) = 0, ∀r ∈ R00 ∪R0+,

Ur(z) > 0, ∀r ∈ R0−,

Vr(z) < 0, ∀r ∈ R+0.

(47)

provides a solution, zk ∈ Hn. Then, it follows that〈
grad Θr(â), exp−1

â (zk)
〉
≤ Θr(zk)− Θr(â) < 0, ∀r ∈ RΘ, r ̸= k,〈

gradBr(â), exp−1
â (zk)

〉
≤ Br(zk)−Br(â) < 0, ∀r ∈ RB

a (â),〈
grad Cr(â), exp−1

â (zk)
〉
= Cr(zk)− Cr(â) = 0, ∀r ∈ RC ,〈

gradUr(â), exp−1
â (zk)

〉
= Ur(zk)−Ur(â) = 0, ∀r ∈ R00 ∪R0+,〈

gradUr(â), exp−1
â (zk)

〉
≥ Ur(zk)−Ur(â) > 0, ∀r ∈ R0−,〈

gradVr(â), exp−1
â (zk)

〉
≤ Vr(zk)− Vr(â) < 0, ∀r ∈ R+0.

(48)

Let us define vk := exp−1
â (zk). Then, it follows that for every k ∈ RΘ, we have

the following
⟨grad Θr(â), vk⟩ < 0, r ∈ RΘ and r ̸= k,

⟨gradBr(â), vk⟩ < 0, r ∈ RB
a (â),

⟨grad Cr(â), vk⟩ = 0, r ∈ RC ,

⟨gradUr(â), vk⟩ = 0, r ∈ R0+ ∪R00,

⟨gradUr(â), vk⟩ > 0, r ∈ R0−,

⟨gradVr(â), vk⟩ < 0, r ∈ R+0.

(49)

Therefore, from the above inequalities it follows that MOMPVC-CTCQ holds at â ∈ S f .
Hence, the proof is completed.

The results derived in this section are summarized in the following theorem.

Theorem 2. Let â ∈ S f be a Pareto efficient solution of MOMPVC and let R00 = ϕ. If any of
the constraint qualifications as defined in Definitions 10–15 holds at â, then MOMPVC-GGCQ
holds at â, and there exist real numbers, αr (r ∈ RΘ), σBr (r ∈ RB), σCr (r ∈ RC), σUr (r ∈ R),
σVr (r ∈ R), which satisfy (16) and (17).

Remark 8.

1. If Hn = Rn, Theorem 2 reduces to Theorem 6.3 derived by Mishra et al. [12].
2. Theorem 2 generalizes Theorem 4.1 of Maeda [33] from multiobjective optimization problems

to MOMPVC and extends it from the linear setting of Euclidean spaces to the nonlinear
Hadamard manifold framework.

We now provide an illustrative example to demonstrate that MOMPVC-GACQ is not
a sufficient condition for Theorem 1.

Example 2. Consider H2 ⊂ R2, commonly known as the positive orthant of R2, defined as:

H2 := {a = (a1, a2) ∈ R2 : a1, a2 > 0}.
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Then, H2 is a Hadamard manifold (see [35]). Let â ∈ H2. Then, ⟨s1, s2⟩â = ⟨B(â) s1, s2⟩,
∀s1, s2 ∈ TâHn = R2, where

B(â) =

 1
â2

1
0

0 1
â2

2

.

Let s ∈ TâH2. Then, expâ : TâH2 → H2 is defined as expâ(s) = (â1e
s1
â1 , â2e

s2
â2 ), s =

(s1, s2) ∈ TâH2.
Consider the following MOMPVC on H2:

(P1) Minimize Θ(a) = (Θ1(a), Θ2(a)) := (
√

a1, log a2),

subject to U (a) := ln a1 − 1 ≥ 0,

V(a)TU (a) := (e − a2)(ln a1 − 1) ≤ 0,

where Θr : H2 → R (r = 1, 2), U : H2 → R, V : H2 → R are differentiable. The feasible set of
(P1), denoted by S f , is:

S f := {a ∈ H2 : a1 ≥ e, a2 ≥ e}.

Let â = (e, e) ∈ S f . The following expressions can be easily obtained:

grad Θ1(a) = B(a)−1

(
1

2
√

a1

0

)
=

( 1
2 a1

√
a1

0

)
,

grad Θ2(a) = B(a)−1

(
0
1
a2

)
=

(
0
a2

)
,

gradU (a) = B(a)−1

(
1
a1
0

)
=

(
a1
0

)
,

gradV(a) = B(a)−1
(

0
−1

)
=

(
0

−a2
2

)
.

In view of the above expressions, one can see that:

L C(W , â) = {s = (s1, s2) ∈ R2 : s1 = 0, s2 ≤ 0},

C T(W 1, â) = {s = (s1, s2) ∈ R2 : s1 ≥ 0, s2 = 0},

C T(W 2, â) = {s = (s1, s2) ∈ R2 : s1 = 0, s2 ≥ 0}.

As a result, we have:
2⋂

i=1

cl co C T
(
W i, â

)
= {(0, 0)}. (50)

Therefore, MOMPVC-GACQ fails to be satisfied at the point â. However, there exist α1 = 1
2 ,

α2 = 1
2 , σU =

√
e

4 , σV = 1
2e , satisfying:

2

∑
r=1

αr grad Θr(â)− σU gradU (â) + σV grad V(â) = (0, 0).

Thus, it is verified that the satisfaction of MOMPVC-GACQ is not a sufficient condition for
Theorem 1.

The interrelations among the various constraint qualifications for MOMPVC is illus-
trated in Figure 1.
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MOMPVC-ACQ MOMPVC-GACQ

MOMPVC-GGCQ

MOMPVC-CTCQMOMPVC-MFCQ

MOMPVC-STCQ

Lemma 6

Lemma 7

Lemma 8

Lemma 10

Lemma 9

Figure 1. Interralations among the constraint qualifications for MOMPVC.

5. Conclusions and Future Research Directions

In this paper, we have investigated a class of MOMPVC in the Hadamard manifold
framework. We have presented the MOMPVC-GGCQ for MOMPVC on Hadamard mani-
folds. Employing MOMPVC-GGCQ, we have deduced the KKT-type necessary optimality
criteria for MOMPVC. Subsequently, we have introduced several MOMPVC-tailored con-
straint qualifications, which are sufficient criteria for MOMPVC-GGCQ. To validate the
results derived in this paper, we have provided non-trivial illustrative examples in the
setting of well-known Hadamard manifolds.

Several notable results currently existing in the literature are generalized and extended
by the results presented in this article. For instance, the KKT-type necessary optimality
conditions established in this paper extend the corresponding optimality criteria deduced
by Mishra et al. [12] from the setting of Euclidean spaces to the Hadamard manifold frame-
work. On the other hand, the results presented in this paper extend the corresponding
results studied by Hoheisel and Kanzow [9] from Euclidean space to Hadamard mani-
folds and generalize them from MPVC to MOMPVC. Furthermore, we have extended the
constraint qualifications and Pareto efficiency conditions investigated by Maeda [33] from
multiobjective optimization problems to MOMPVC and have further generalized them
from the Euclidean space setting to the framework of Hadamard manifolds.

The results derived in the present manuscript may be applied to solve real-life opti-
mization problems in engineering, science, and technology. It is a well-known fact that
various real-world problems emerging in various areas of modern research, such as truss
optimization (see [1]), robot motion planning (see [5]), and optimal pressure control in
water distribution system (see [16]), can be formulated as MPVC. In our future research
work, we intend to formulate a real-world practical problem in terms of an MOMPVC on
Hadamard manifolds and solve it by employing the constraint qualifications and optimality
conditions for MOMPVC established in the present paper.

It is significant to observe that all the functions involved in our considered problem
(MOMPVC) are assumed to be differentiable. As a result, the results of this paper cannot
be applied when the functions involved in the considered problem are not necessarily
differentiable. This may be considered as a limitation of this paper. Further, sufficient
optimality criteria and duality results have not been investigated in the present article. We
intend to address these issues in our future course of study.
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It is worthwhile to note that, in the framework of Hadamard manifolds, numerical
methods for solving mathematical programming problems with vanishing constraints have
not yet been investigated. The framework of Hadamard manifolds is advantageous due to
the fact that various constrained, non-convex optimization problems in the Euclidean space
setting can be suitably transformed into unconstrained and convex optimization problems
in the Hadamard manifold framework (see [23]). Moreover, it is a well-known fact that in
the case of numerical methods, in order to prove convergence, the satisfaction of a constraint
qualification, such as the Mangasarian–Fromovitz constraint qualification (MFCQ), must be
assumed at a limit point of the sequence generated by the corresponding numerical method.
In light of these facts, following the works of [2,3], the constraint qualifications for MOMPVC
on Hadamard manifolds developed in this paper can be employed to investigate numerical
methods, such as the relaxation approach and the one-parameter regularization methods
for solving MOMPVC in the framework of Hadamard manifolds. We intend to study these
numerical methods for MOMPVC in the setting of Hadamard manifolds in our future
research works and, moreover, analyze the convergence of the corresponding methods.
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