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Abstract: With increasing urbanization and the demand for efficient, flexible transportation solu-
tions, demand-responsive transportation services (DTRS) has emerged as a viable alternative to
traditional public transit. However, determining the optimal fleet size to balance the investment
and operational revenue remains a significant challenge for service providers. In this article, we
address the optimization of fleet size in point-to-point shared demand DRTS, which widely operates
within many cities. To capture the uncertain passenger demands in the future when planning the
fleet size currently, we model this problem with a framework of two-stage stochastic programming
with recourse. Fleet sizing decisions are made in the first stage before the uncertain demands are
revealed. After the uncertainty is revealed, the second stage involves making additional decisions
to maximize operational revenue. The objective is to optimize the total revenue of the first-stage
decisions and the expected revenue of the recourse actions. To solve this practical problem, we resort
to the Model Predictive Control method (MPC) and propose a network decomposition approach
that first converts the transportation network to a nodal tree structure and then develops a Nodal
Tree Recourse with Dependent Arc Capacities (NTRDAC) algorithm to obtain the exact value of the
expected recourse functions. In the experiments, NTRDAC is able to produce results within seconds
for transportation networks with over 30 nodes. In contrast, a commercial solver is only capable
of solving networks with up to five nodes. The stability tests show that NTRDAC remains robust
as the problem size varies. Lastly, the value of the stochastic solution (VSS) was evaluated, and the
results indicate that it consistently outperforms the expected value solutions. Numerical experiments
show that the performance of the NTRDAC algorithm is quite encouraging and fit for large-scale
practical problems.

Keywords: DRTS; fleet size; decomposition; algorithm; random arc capacities

MSC: 90-08

1. Introduction

The rapid growth of urbanization and the increasing demand for flexible and efficient
transportation solutions have highlighted the importance of demand-responsive transporta-
tion services (DRTS). Unlike traditional fixed-route transit systems, DRTS offers a dynamic
and adaptive approach to public transportation, optimizing routes and schedules based on
real-time passenger demands. This flexibility not only improves the user experience but
also has the potential to enhance operational efficiency and reduce environmental impacts.

Demand responsive transportation, also known as flexible transportation, contains
many patterns or forms of services to adapt to the demand of passengers, such as dial-
a-ride [1,2], microtransit [3,4], point-to-point shuttle [5,6], feeder [7,8], ridesharing and
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carpooling [9,10], ride-hailing [11,12], etc. [13,14]. Among these service forms, point-to-
point shuttle services have soared recently in practice. These services provide customers
with direct routes between major transit points, benefiting service operators greatly by
allowing them to select only feasible, well-defined locations where safe boarding and alight-
ing are possible [15]. Furthermore, these services are designed for passengers to enhance
connectivity within the transportation network, making it easier to transfer between transit
points, such as airports, train stations, bus terminals, local attractions, central business
district areas (CBDs), residential areas, etc. According to the research by Kjoerstad and
Renolen [16], customers exhibit a high valuation of their time when utilizing transporta-
tion services. Their study results show that customers prefer using direct transit modes
1.8 to 5.0 times more than non-direct ones that require a 5 min wait at an interchange
point. This preference increases to 2.5 to 9.2 times if the waiting time reaches 10 min.
Before launching a point-to-point DRTS, service providers must make a critical decision
on fleet size—determining how many vehicles to invest in—while considering current
investment and potential future operational revenue.

Real-world examples regarding point-to-point shuttle services can be seen in many
cities. For instance, in Zhuhai, China, a service provider, Zhuhai Airport Express (https:
//www.51sfbus.com/sflv-plus/#/rentcar/search?btntabModel=0 accessed on 20 July 2024
via WeChat browser), offers point-to-point on-demand transportation between several
points within Zhuhai City, such as Chimelong Ocean Kingdom (local attraction), Gongbei
Port (transportation terminal of railway and bus), Jida (Central Business District), and
several resident areas. In Australia, Con-x-ion (https://www.con-x-ion.com/point-to-
point accessed on 20 July 2024) provides many point-to-point routes, mostly from Brisbane
Airport to many local attractions nearby. Figure 1 is a screenshot from Con-x-ion’s website
showing the mini-van used for this service and their popular service routes.

Figure 1. Vehicles and popular point-to-point routes of Con-x-ion.

Con-x-ion’s point-to-point routes create a DRTS network, allowing passengers to travel
between various transit points. For example, consider five transit points: Brisbane, Noosa,
Sunshine Coast, Caloundra, and Mooloolaba. In this DRTS network, passengers can travel
between any two points, with each point serving as both a starting and an ending location.
From each starting point, there are four direct routes connecting to the other four points.
This DRTS network is depicted in Figure 2.

https://www.51sfbus.com/sflv-plus/#/rentcar/search?btntabModel=0
https://www.51sfbus.com/sflv-plus/#/rentcar/search?btntabModel=0
https://www.con-x-ion.com/point-to-point
https://www.con-x-ion.com/point-to-point
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Figure 2. Network structure of Con-x-ion’s point-to-point service.

A critical challenge in implementing DRTS, especially for strategic planning, is deter-
mining the optimal fleet size [17]. An inadequately sized fleet can lead to service delays,
increased operational costs, and unsatisfied customer demand, while an oversized fleet may
result in underutilization of resources and unnecessary expenditures. Therefore, optimizing
fleet size is essential to balance service quality with cost-effectiveness. In this study, we use
the framework of two-stage stochastic programming with recourse to capture the feature
of DRTS where future demands are uncertain when planning the fleet size in the first
stage. The first-stage decision involves selecting an initial fleet size, while the second-stage
decisions adjust operational strategies based on realized demand scenarios. To ensure that
the system responds effectively to demand fluctuations, we integrate control mechanisms
that manage fleet deployment dynamically. These control strategies are embedded in
the second stage, where operational adjustments are made in response to actual demand,
which is unknown during the initial fleet sizing stage. The stochastic nature of demand is
modeled through a set of possible future demand scenarios, estimated using historical data
and forecasting techniques. This ensures that the fleet size determined in the first stage
is robust against various demand patterns, with the flexibility to adjust operations in the
second stage based on the actual demand realization. Furthermore, for the aforementioned
real-world problems , the large number of transit points where these shuttle services oper-
ate would make solving this large-scale practical stochastic programming problem very
time-consuming or even infeasible to be optimal. To tackle this problem, we introduce a
network decomposition method tailored to efficiently obtain the exact value of the expected
recourse functions.

The contributions of this paper are threefold: (i) To the best of our knowledge, this is
the first work to address the large-scale practical problem of optimizing fleet size in DRTS,
considering vehicle investment and operational revenue resulting from uncertain passenger
demands. (ii) The network decomposition method presented in this article relaxes the
nodal tree recourse algorithm by allowing the arcs’ capacities, which are random variables,
to be dependent. (iii) This article presents a pragmatic practice bridging the gap between
theory and real-world application.

The rest of this paper is organized as follows. Section 2 reviews the related litera-
ture. Section 3 introduces the notation and describes the two-stage stochastic formulation.
Section 4 details the network decomposition method, and numerical experiments are pro-
vided in Section 5. Finally, Section 6 concludes this paper and discusses several extensions
and future research directions.

2. Literature Review

Fleet size optimization problems have recently attracted much interest in the research
domain, particularly within DRTS. These services, offering flexible routing and scheduling
based on real-time uncertain demand, present unique challenges and opportunities for
service providers in fleet management. In this section, we review the literature related to
fleet sizing problems and classify the literature based on their objective and the literature
regarding the solution technique to stochastic programming.
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The first stream of papers investigates the correlation between fleet size and other
parameters. Daganzo and Ouyang [18] present a general analysis framework for systems
providing non-shared and shared services. With agent-based simulations, they investigate
the relationship between travel time and fleet size at different demand density levels. Their
research insights can be used to explore operation and pricing strategies for taxi companies
and government agencies. Hörl et al. [19] study the performance of different fleet sizes and
operational policies based on simulation scenarios by MATSim 0.10. Their results indicate
that a fleet size of 7000–14,000 vehicles in Zurich, Switzerland, could serve 90% of requests.
In these articles, fleet size is important but only serves as an exogenous variable or model
parameter instead of a decision variable.

The second stream of research focuses on optimizing fleet size using different models
and methods, where fleet size is one of the model decision variables. Shehadeh et al. [20]
study the fleet size and allocation optimization problem for on-demand last-mile trans-
portation services under passenger demand uncertainty. They propose and analyze a
two-stage stochastic programming model and a robust optimization model where the
two-stage stochastic programming model is solved by the sample average approximation
(SAA) approach. They resort to the SAA approximation approach because obtaining an
optimal solution to the stochastic programming model is complex. Beaujon and Turn-
quist [21] also investigate a fleet size and allocation problem under uncertainty where the
uncertainties are related to demands of loaded vehicles and travel time between origin
points to destination points. To solve the problem, they propose a network approximation
method to compute the probability density functions of net vehicles at period t, where
they argue that the normal probability density function can represent it. The pitfall of this
model is that it ignores the demand uncertainty of passengers, which is the core feature
of DRTS. Winter et al. [22] present an automated demand-responsive transport system
(ADRTS) for a campus–train station shuttle service to evaluate the system’s performance.
They compute the required minimal fleet size while achieving expected results, such as
cost savings and reduction in passenger waiting time. The model only considers a single
pick-up and drop-off station, and the method they apply to obtain this result is simulation,
so the result is not promising for practical DRTS problems. Diana et al. [23] study the
problem of determining the number of vehicles needed for DRTS with predetermined
quality for the customers in terms of waiting time at the stops and maximum allowed
detours. They formulate the problem with a probability model and intend to analyze the
impact of fleet size on the customers’ waiting time. The objective is to provide an estimation
of the required size of the fleet in different scenarios. The critical assumption of their paper
is that there is no sharing among different customers for vehicle capacity, where the fleet
has to be dispatched exclusively based on the list of requests, such as in the taxicab system,
which is different from that of shared DRTS. Militão and Tirachini [24] introduce an optimal
fleet size problem for a shared door-to-door DRTS to minimize the total costs for operators
and customers. The decision variables are vehicle capacity and fleet size for human-driven
and automated vehicle operations. They analyze the relevant variables using data from a
large-scale agent-based simulation (ABS) applied to Munich. However, the outcomes of
ABS can be susceptible to initial conditions and parameter settings, making it challenging
to validate and generalize results. Furthermore, ABS can be computationally intensive,
particularly when simulating large numbers of agents or when the model includes detailed
interactions and stochastic elements. Even though fleet size is one of the decision variables
in their models, these models do not consider the investment associated with the fleet.

Stochastic programming (SP) is a well-established mathematical framework for opti-
mizing decision making under uncertainty. Model predictive control (MPC) is an advanced
control strategy commonly used in dynamic systems where decisions are made based on
the prediction of future system behavior over a finite horizon [25]. The key idea is to use a
mathematical model of the system to predict its future states and solve an optimization
problem at each decision step. In stochastic programming, uncertainty is modeled explic-
itly, typically through probabilistic scenarios or distributions. The optimization considers
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multiple possible future scenarios, incorporating uncertainty into the decision-making pro-
cess. The complexity of these problems, mainly due to numerous scenarios (known as the
curses of dimensionality [26]), has driven the development of various solution techniques.
The techniques for solving stochastic programs can be classified into two groups.

The first group of methods aims to speed up the convergence or reduce the number
of scenarios. These methods typically turn the original problem into huge deterministic
problems by using the samples from the distribution of the random coefficients, such
that different techniques have been developed to deal with convergence. For example,
Benders decomposition, also known as the L-shaped method, first divides the original
problem into a master problem and a subproblem, then feasibility and/or optimality cuts
are imposed iteratively to obtain the optimal solution [27,28]. Iterations exist in the sce-
nario aggregation method. To compute an implementable solution, this method typically
starts with a relatively small subset of scenarios and includes additional constraints iter-
atively [29,30]. For the stochastic decomposition methods, their objective is to obtain the
lower bounds of the expected recourse function using cutting planes [31,32]. The above-
mentioned methods are usually used to accelerate convergence speed and are generally
not practical for large-scale dynamic network problems. Readers are recommended to
refer to Birge and Louveaux [33] for details. On the contrary, another technique, called
scenario reduction, aims to reduce the problem size instead of solving large deterministic
problems. Dupačová et al. [34] present the idea of scenario reduction, aiming to generate a
natural probability metric as an approximation metric to obtain the closest subset from a
larger superset of scenarios. However, ensuring the quality of solutions with the reduced
scenarios is the most challenging, such that different methods related to scenario reduc-
tion on measuring the similarity between the original set and the reduced set have been
suggested [35,36].

The second group of methods leverages the special structure of stochastic problems,
especially those related to network recourse problems. The strategy of these methods is first
to decompose the original problem into several tractable subproblems and then solve those
subproblems instead of tackling the original one. For example, Wallace [37] introduces a
method of using piecewise linear functions to approximate the expected recourse function
for the network recourse problem. Powell and Cheung [38] introduce a TREC algorithm to
obtain the exact value of the expected recourse function as a scalar supply of resources for
a tree recourse problem. Their experiments show that the TREC algorithm fits large-scale
practical problems. After that, they present a network recourse decomposition approach to
applying the TREC algorithm for a two-stage dynamic network problem [39]. However,
the TREC algorithm’s condition is that each arc’s random capacity must be mutually
independent. In this article, we adopt the strategy from the TREC algorithm and propose
our algorithm, which can handle dependent random arc capacities.

In summary, while some articles have explored fleet sizing optimization, many do not
account for both the investment required for the fleet and the uncertainty of demand in their
models. Moreover, the development of practical algorithms for obtaining the exact value of
the expected recourse functions, particularly for large-scale, real-world DRTS problems, has
not been previously addressed. The innovations of this study are summarized in Table 1.

Table 1. A comparison between our research and existing studies for optimizing fleet size.

Author(s) Investment Incorporated Obtain Exact Value Insensitive to Input Data Stable to Problem Size

Militão and
Tirachini [24] ✓ × × ✓

Diana et al. [23] × ✓ × ✓
Winter et al. [22] × × ✓ ✓
Beaujon and
Turnquist [21] × ✓ × ✓

Shehadeh et al. [20] ✓ × ✓ ×
Our study ✓ ✓ ✓ ✓
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3. Problem Formulation

Consider a transportation service provider who plans to operate a point-to-point
shuttle service within a city. Assume the service provider has chosen N well-defined
locations, such as airports, train or bus stations, and local attractions, as transit points. We
also assume that the fare from point i ∈ N to point j ∈ N for each customer, denoted as fij,
has been set. Passengers place orders on their mobile phone, and their arrival at each transit
point i ∈ N destined to point j ∈ N , denoted as dij, is the demand for shuttle service,
which is a random variable. Its distribution is known to the service provider. To fulfill these
random demands, the provider plans to purchase s identical vehicles, each of which has
H available seats, which we call vehicle capacity. The challenge to this service provider
is determining the optimal s to maximize the profit, which is the revenue from serving
customers minus the investment in these s vehicles.

This fleet size optimization problem can be modeled as two-stage stochastic program-
ming with recourse. The decision to determine s, the fleet size, is called the first-stage
investment decision, which is to be taken without full information on the random customer
demands dij, i ∈ N , j ∈ N . Later, full information is received on the realization of random
demands. Then, second-stage or dispatching actions xij, i ∈ N , j ∈ N are taken, which
generates revenue from these s vehicles. We first state our assumptions before presenting
the mathematical model.

Assumption 1. Order rejections are allowed for service providers.

Assumption 2. The distribution of random demands and the depreciation of each vehicle are
considered within the same period, such as an hour.

Assumption 3. Decisions are made only once within a time period.

The first assumption says that the service provider is allowed to reject orders. This
mechanism is because passengers have many alternatives in transportation, and the private
sector operates the shuttle service, so maximizing revenue is one of the critical objectives.
Recently, many studies have investigated this mechanism [24,40,41]. The second assump-
tion is made to simplify our presentation. Since the distribution of random demands has to
be estimated for a certain period, having the depreciation of each vehicle representing the
investment for the same period will significantly facilitate our model and computation. The
third assumption is to keep the network size manageable and avoid the details of making
decisions multiple times within a time period [42].

Let ω ∈ Ω be an outcome of a probability space (Ω,F ,P) for the passenger demands
in the second stage. The parameters and variables for the two-stage stochastic programming
model are summarized in Table 2.

Table 2. Notations.

Description

Parameters N Set of transit points, N = {1, 2, ..., N}.
H Available seats per vehicle, also known as vehicle capacity.
g The depreciation of each vehicle for a certain period.
cij Cost of each trip from point i to point j for each vehicle.
fij Fare of each passenger from point i to point j.
dij(ω) Passenger demands from point i to point j under

realization ω for a certain period.
Intermediate vi(ω) Available vehicle at point i under realization ω.
variable
Decision s Fleet size in first stage.
variables xij(ω) Number of vehicles dispatched from point i to point j in

second stage under realization ω.
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To ease our presentation, we define the available vehicle vector V = (vi : i ∈ N )
and the passenger demands vector D(ω) = (dij(ω) : i ∈ N , j ∈ N ). The two-stage fleet
size optimization problem can be formulated as

max −g · s +Eω [Q(V , D(ω))], (1)

subject to
N

∑
i=1

vi = s, (2)

s ≥ 0, s ∈ Z (3)

where for a given available vehicle vector V and a particular realization ω, Q(V , D(ω)) is
the value of a maximization problem which is defined as follows:

Q(V , D(ω)) = max
N

∑
i=1

N

∑
j=1

(
−cij · xij(ω) + fij · min{H · xij(ω), dij(ω)}

)
, (4)

subject to
N

∑
j=1

xij(ω) = vi, ∀i ∈ N , (5)

xij(ω) ≥ 0, xij(ω) ∈ Z, ∀i ∈ N , ∀j ∈ N . (6)

The problem defined by Equations (1)–(6) is a typical two-stage stochastic program
with network recourse, where (1)–(3) are called the first-stage problem and (4)–(6) are
called the second-stage problem. The expectation functional Eω [Q(V , D(ω))] is called
the expected recourse function. The objective function (1) is profit maximization, which
consists of the depreciation of vehicles and the expected recourse revenue. Constraint (2)
is to force the total available vehicles to be equal to the fleet size, and (3) is the non-
negativity constraint. The state vector V stores the available vehicles for stage two, and it
is the only variable that communicates information to the second stage. The expected
recourse function (4) is determined by solving the second-stage problem for each scenario
ω according to the available vehicle supplies V . Constraint (5) enforces that the total
number of vehicles dispatched from point i ∈ N must be those vehicles available at point
i ∈ N , and Constraint (6) ensures that the number of dispatched vehicles must be a positive
integer. It is worth noting that to deal with the expression min{H · xij(ω), dij(ω)}, we just
need to replace this expression with intermediate variables qij ≥ 0 and add two constraints,
qij ≤ H · xij(ω) and qij ≤ dij(ω), where ∀i ∈ N , ∀j ∈ N . In this way, problems (4)–(6)
become common recourse problems.

Finding exact optimal solutions to stochastic programs is generally intractable due
to the uncertain demands that increase the number of scenarios exponentially. In this
point-to-point shuttle service case, if the service provider operates at N = 10 transit points,
which generates 9 shuttle service routes in each point i ∈ N (from point i to other points
j ∈ N except point i itself), the total number of shuttle service routes is 90. Assume that
each random passenger demand, dij, i ∈ N , j ∈ N , is a discrete random variable and takes
four possible values on average. The total number of scenarios is 490 = 2180, which is
intractable. In this article, we resort to the model predictive control method (MPC), where a
decision is made at time t by solving a typically approximate model over a horizon (t, t+ L).
Specifically, in our model, to determine the fleet size s in the first stage, we have to evaluate
the value function Eω [Q(V , D(ω))] parameterized in s in the second stage. In the following
Section 4, we present a network decomposition method tailored for this type of network
recourse problem to efficiently obtain the exact value of the expected recourse functions.
The workflow of the network decomposition method, consisting of four steps, is illustrated
in Figure 3. Step 2, solving a single-root-node problem, is to compute Eω [Qi(vi, D(ω))],
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∀i ∈ N . Repeating step 2 for all nodes i ∈ N can obtain Eω [Q(V , D(ω))], which is the
main purpose of step 3.

Solving a single-root-node problem Seperate transit points at 

the second stage, resulting

in several single-root-node

problems
Converting random passenger demands 

to random vehicle demands, resulting

in a nodal tree

Find out the total capacities of the first n 

paths for the sorted nodal tree, and 

compute the routing probabilities.

Obtain the exact value of the expected 

recourse function parameterized in 

supplies

Solving all other 

single-root-node problems

Solving the first stage 

deterministic MIP problem

1.

3.

4.

2.

Figure 3. The workflow of the network decomposition method.

4. Recourse Problem Decomposition

This section elaborates on the network decomposition method tailored for network
recourse problems. First, in Section 4.1, we analyze the separability of the network, which
enables us to deal with each transit point separately. Second, in Section 4.2, for completeness,
we review an idea of the nodal tree algorithm which we leverage to obtain the exact value
of the expected recourse function for a nodal tree structure recourse problem. Third,
in Section 4.3, we elaborate on our algorithm extended from the nodal tree algorithm.
Finally, we present the solution technique to the first-stage problem in Section 4.4.

4.1. Separability of Transit Points

It is reasonable to assume that passengers’ arrival to transit points (transit points
and nodes are interchangeable in this article) are independent, and the random demands,
dij, i ∈ N , j ∈ N , are independent discrete random variables too. The rationale behind this
assumption is that in a real-world application, a common service provider often serves
a large number of independent passengers [42]. For the second-stage recourse problem,
this independence enables us to decompose the network recourse problem by transit
points, meaning we can treat each transit point separately. With this separability property,
the expectation expression in Equation (1) can be rewritten as

Eω [Q(V , D(ω))] =
N

∑
i=1

Eω [Qi(vi, D(ω))]. (7)

Equation (7) provides a favorable method to obtain the recourse function’s expected
value, enabling us to handle individual transit points separately. Since each transit point
i ∈ N is identical, we focus on one of the transit points i ∈ N only, which means we can
turn to solving the single-root-node recourse problem rooted at node i ∈ N . The structure
of this single-root-node recourse problem is illustrated in Figure 4.

 i .
.
.

 

 
ijd

 

ikd

 j

 k
 

iv

Figure 4. The structure of a single-root-node recourse problem.
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4.2. Solution Technique to Nodal Tree Recourse Problems

This subsection briefly reviews the solution technique to nodal tree recourse problems
introduced by Powell and Cheung [38], which we leverage to solve our single-root-node
recourse problem.

A nodal tree recourse problem is defined as follows. Consider a directed one-level tree
(we say a tree has n levels if n is the depth of the tree) rooted at node r with independent
random arc capacities ξi such as the one depicted in Figure 5. The total supply to this tree,
entering the root node, is S. For a given realization ω, a unit of flow traversing a path (link
connecting the root node to a leaf node) will result in a certain cost ci. Assume all m paths
have been ranked by their costs in ascending order, meaning c1 < c2 < ... < cm. We wish
to find the expected total cost of the tree problem as a function of the scalar supply.

 
x

 

2x

.

.

.

.

(cost, capacity)

r
S

 

x

Ranking of Path

1

2

m

.

.

Figure 5. A nodal tree problem with random arc capacities.

Let us define
fn = flow on path n.

For a given realization ω, the nodal tree recourse problem is

Q(S, ξ(ω)) = min
fn(ω)

cT f (ω), (8)

subject to
m

∑
n=1

fn(ω) = S, (9)

0 ≤ fn(ω) ≤ ξn(ω), n = 1, 2, ..., m. (10)

To solve the problems (8)–(10), assigning flow to the paths in their ranking greedily
can obtain the optimal solution. This optimal policy enables us to solve the problem
efficiently. Define the following:

ϕ(k, n) = P {the kth unit of flow entering node r takes the nth path}, which we call a routing
probability;
G(k) = expected marginal cost for the kth unit of flow entering node r;
Zn = the total capacity of the first n ranked paths.

Therefore, Zn can be computed by

Zn =
n

∑
i=1

ξi, (11)

and ϕ(k, n) can be obtained by

ϕ(k, n) = P{(Zn ≥ k} − P{Zn−1 ≥ k}. (12)
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With the routing probability ϕ(k, n), G(k) can be calculated by

G(k) =
m

∑
n=1

ci · ϕ(k, n). (13)

Finally, the expected value of the recourse problem, Q̂(S), can be obtained easily by

Q̂(S) =
S

∑
k=1

G(k). (14)

Equation (11) holds under the condition that random arc capacities are mutually
independent. The theory behind Equation (12) is that the greed algorithm holds for this
nodal tree problem, meaning that the probability of the kth unit taking the nth path is the
one that the total capacity of the first n paths must be greater or equal to k, and the total
capacity of the first n − 1 paths must be less than k. Mathematically, it is ϕ(k, n) = P{Zn ≥
k and Zn−1 < k}. Since the random arc capacities are mutually independent, such that
the probability of Zn ≥ k and Zn−1 < k is independent, this means that ϕ(k, n) = P{Zn ≥
k} · P{Zn−1 < k} = P{Zn ≥ k} · (1 − P{Zn−1 ≥ k}). Finally, suppose the total capacity
of the first n − 1 paths is greater than or equal to k, which indicates that the total capacity
of the first n paths must be greater than or equal to k (with probability of 1), such that
P{Zn ≥ k} · P{Zn−1 ≥ k} = P{Zn−1 ≥ k}. For proof details, we recommend readers refer
to [38].

The solution to the nodal tree recourse problem provides an efficient method for
calculating the expected value of the recourse function. In Section 4.3, we propose a process
to convert the single-root-node recourse problem to a nodal tree structure.

4.3. Conversion of Single-Root-Node Recourse Problems

This subsection presents the procedure to convert the single-root-node recourse prob-
lem to the nodal tree structure. Three factors need to be considered for a nodal tree problem.
The first is the supply to the root node, the second is the revenue of each path, and the third
is the random capacity of the corresponding path. Since the vehicles vi are scalar supplies
entering into the root node, we focus on how to compute the revenue and capacity for
each path.

To begin with, we present the converting processes with a single leaf node j ∈ N ,
which means we first focus on the path from root node i to leaf node j. The passenger
demand on this path is dij, a discrete random variable. The fare for each passenger is fij,
and the cost for each vehicle traversing this path is cij.

We start with the computation of the path revenue. Vehicles carrying h = 1, 2, ..., H
passengers departed from node i ∈ N to node j ∈ N generate different revenue, denoted
by rij(h), which can be calculated by rij(h) = h · fij − cij, where h = 1, 2, ..., H and H is the
total available seats of each vehicle. It is natural to consider creating H paths rooted at
node i ∈ N pointing to node j, such that the revenue of each path can be determined by
rij(h), h = 1, 2, ..., H, respectively. Duplicating the leaf node j ∈ N H − 1 times creates H
leaf nodes jh, h = 1, 2, ..., H and generates a nodal tree. This nodal tree structure, rooted at
node i ∈ N and ended in leaf nodes jh, h = 1, ..., H with total H paths and corresponding
revenue rij(h), is depicted in Figure 6.

Now, we turn to compute each path’s capacity, denoted by ξij(h), which is a random
variable capturing the number of vehicles carrying h = 1, 2, ..., H passengers given the
passenger random demand dij. The policy of assigning passengers to vehicles determines
the number of vehicles used and the number of passengers carried in each vehicle. Since
our objective is to maximize operational revenue, a passenger assignment policy exists to
achieve this, as stated in Proposition 1.
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Figure 6. A nodal tree structure with H paths with corresponding path revenue rij(h), h = 1, 2, ..., H.

Proposition 1. For any realization ω, given passenger demands, the optimal policy of passenger
assignment to vehicles is to assign more passengers to a departing vehicle until its seats are
all occupied.

Proof. Assume there are dij(ω), i ∈ N , j ∈ N passengers waiting at transit point i ∈ N
under realization ω, and assume there are h = 0, 1, 2, ..., H − 1 passengers having been
assigned into vehicle k. The revenue of this transportation is rij(h) = fij · h − cij. If we
assign additional ∆h > 0 passengers into vehicle k, the marginal revenue MR(Pij) =
rij(h+∆h)−rij(h)

∆h = fij ≥ 0. It means assigning more passengers into this vehicle k can achieve
positive marginal revenue, such that the optimal policy is to assign more passengers into a
vehicle until it is fully loaded.

Proposition 1 indicates, given passenger demands dij(ω), i ∈ N , j ∈ N under realiza-
tion ω, if k ≥ 1 vehicles have been dispatched from point i to point j, there is at the most
one of these k vehicles which is not fully loaded. So, the number of fully loaded vehicles

under realization ω can be obtained by ξij(H) = ⌊ dij(ω)
H ⌋, where ⌊X⌋ means to round down

X, and H is the available seats of a vehicle. The number of the not fully loaded vehicles is
1, which carries the remainder of passengers ξij(h) = dij(ω) mod H, where operator “mod”
is the modulo operation, and h ∈ {1, ..., H − 1}. In this way, passenger demands dij(ω)
can be converted to vehicle demands under any realization ω, which can be expressed
mathematically as

ξij(h) =


⌊ dij(ω)

H ⌋, fully loaded vehicles carrying h = H passengers,
1, vehicle carrying the remainder h = dij(ω) mod H passengers ,
0, otherwise.

(15)

With Equation (15), passenger demand dij(ω) can be converted to vehicle demand
ξij(h), h = 1, 2, ..., H for any realization ω. In a nodal tree structure, these vehicle demands
are represented by paths rooted at node i ∈ N pointing to leaf nodes jh ∈ N , h = 1, 2, ..., H.
The number of passengers carried determines the ranking of these paths. Corollary 1 states
that the ranking of these paths is from i -> jH down to i -> j1. The symbol “x -> y” represents
the path from root node x to leaf node y.

Corollary 1. Assume a nodal tree structure rooted at node i ∈ N with H leaf nodes jh ∈ N , h =
1, 2, ..., H. Path i -> jh represents carrying h = 1, 2, ..., H passengers. The ranking of these paths
according to path revenue in descending order starts from the path i -> jH down to the one i -> j1.

Proof. Since the path revenue is calculated by rij(h) = fij · h − cij, if h
′
> h, we must have

rij(h
′
) > rij(h). Because H > H − 1 > ... > 1, the ranking of paths according to path

revenue in descending order is from path i -> jH down to the one i -> j1.

Proposition 1 and Corollary 1 provide a method to convert the passenger demands
to vehicle demands where multiple paths represent the vehicle demands. The single-
root-node recourse problem rooted in node i ∈ N pointing to node j ∈ N with random
passenger demands dij can be represented by a nodal tree structure with root node i
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and leaf nodes jh, h = 1, 2, ..., H. The path revenue is rij(h) and the corresponding path
capacity is ξij(h) where h = 1, 2, ..., H. The idea of this conversion is illustrated in Figure 7.
For a better understanding of this converting process, Table 3 shows an example with the
discrete random variable dij taking four possible values and the capacity of vehicle H = 4.
The ranking of these four paths is P1 > P2 > P3 > P4, corresponding to vehicles carrying
h = 4, 3, 2, 1 passengers, respectively.

ii j
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Figure 7. Convert a single leaf node recourse problem to a nodal tree structure with H paths.

Table 3. An example of the converting process.

Path Capacities ξij(h)

Possible Value of dij Corresponding Probability
P1 P2 P3 P4

ξij(4) ξij(3) ξij(2) ξij(1)

3 0.1 0 1 0 0
5 0.3 1 0 0 1
6 0.4 1 0 1 0
9 0.2 2 0 0 1

The example in Table 3 shows that the numbers of vehicles ξij(h) dispatched from
node i ∈ N to node j ∈ N carrying h = {1, 2, 3, 4} are also discrete random variables. Let
us take ξij(4) and ξij(3), for example: the result indicates that the distribution of ξij(4)
is {(0, 0.1), (1, 0.7), (2, 0.2)} and ξij(3) is {(0, 0.9), (1, 0.1)}. However, we cannot obtain
the total capacity of the first two paths, P1 and P2, by summing ξij(4) and ξij(3) directly
because they are not independent. Proposition 2 provides an efficient approach to compute
the total capacity of the first n paths.

Proposition 2. For a sorted nodal tree rooted at the node i ∈ N pointing to H leaf nodes jh, h =
1, 2, ..., H, assume the random variable dij takes T < ∞ possible values. Given all paths’ capacities
ξij(h), where h = 1, 2, ..., H, if the first n paths include those paths i -> jH , i -> jH−1,..., i -> jh,
then the distribution of the total capacity of the first n paths Zn

ij can be computed by P{Zn
ij = k} =

∑T P{∑H
x=h ξij(x) = k}.

Proof. Assume all paths rooted at point i ∈ N pointing to leaf nodes jh, h = 1, 2, ..., H have
been ranked in descending order. According to Corollary 1, the path to point jH must be
ranked first and followed by paths to node jH−1, jH−2, ..., j1. According to Proposition 1,
each outcome of dij can be converted to ξij(h), h = 1, 2, ..., H. the value of the first n paths Zn

is ∑H
x=h ξij(x) because the first n paths contain those paths i -> jH , i -> jH−1,..., i -> jh. Since

ξij(x), x = h, h + 1, ..., H are discrete variables taking finite possible values, the probability
of P{Zn = k} can be computed by summing up those corresponding probabilities over all
outcomes T on ∑H

x=h ξij(x) = k, which is P{Zn
ij = k} = ∑T P{∑H

x=h ξij(x) = k}.

Proposition 2 provides an efficient approach to obtain the total capacity of the first n
paths, Zn

ij. Let us demonstrate the calculation using Z2
ij. Since the possible values of Z2

ij are

taken from ξij(4)+ ξij(3), it means Z2
ij can take the values of 1 or 2, and the probability of Z2

ij
taking the value of 1 is the sum of all corresponding probabilities where ξij(4) + ξij(3) = 1,
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which are 0.1, 0.3, and 0.4. The calculation is the same for Z2
ij, taking the value of 2, which

is 0.2. Table 4 shows the results of Zn
ij in the example shown in Table 3.

Table 4. Results of the total capacity of the first n paths.

n Paths Included Distribution of Zn
ij

1 P1 {(0, 0.1), (1, 0.7), (2, 0.2)}
2 P1, P2 {(1, 0.8), (2, 0.2)}
3 P1, P2, P3 {(1, 0.4), (2, 0.6)}
4 P1, P2, P3, P4 {(1, 0.1), (2, 0.7), (3, 0.2)}

With Proposition 2, we can obtain the first n paths’ total capacity Zn
ij efficiently for a

nodal tree rooted at node i ∈ N with leaf nodes jh ∈ N , h = 1, 2, ..., H, even though these
paths’ random capacities are not independent. It extends the one introduced by Powell
and Cheung [38], where their algorithm is restricted by the condition that all random arc
capacities are mutually independent. However, the approach in Proposition 2 can only
apply to computing the total capacities of the first n paths for a single leaf node. Since
a single-root-node recourse problem generally contains multiple leaf nodes, we state an
approach in Proposition 3 to compute a nodal tree rooted at node i ∈ N with multiple leaf
nodes j ∈ N . To ease our presentation, we present this recourse problem with two leaf
nodes j ∈ N and k ∈ N , which relates to passenger demands dij and dik. It is worth noting
that this is not a limitation of our approach.

Proposition 3. Assume a nodal tree Ti rooted at node i ∈ N contains two leaf nodes j ∈ N and
k ∈ N . Duplicating leaf nodes j and k H − 1 times, respectively, creates two new nodal subtrees
Tij and Tij rooted at node i with 2H paths and leaf nodes jh, h = 1, 2, ..., H and kh, h = 1, 2, ..., H,
respectively. Assume all paths in Ti have been sorted in descending order by their revenue rij(h) and
rik(h), where h = 1, 2, ..., H, and the first n paths contain paths i -> jH ,i -> jH−1,...,i -> jh1 and i
-> kH ,i -> kH−1,...,i -> kh2, such that the total capacities of the first n paths Zn

i can be obtained by
Zn

i = Zh1
ij + Zh2

ik .

Proof. For the nodal subtree Tij rooted in node i ∈ N destined to leaf nodes jh, h =
1, 2, ..., H where all paths have been ranked by their revenue in descending order, if the first
n paths contain i -> jH ,i -> jH−1,...,i -> jh1, the total capacity of these paths is Zh1

ij . It is the
same for the nodal subtree Tik rooted at node i ∈ N destined to leaf nodes kh, h = 1, 2, ..., H.
if the first n paths contain i -> kH ,i -> kH−1,...,i -> kh2, then the total capacity of these paths
is Zh2

ik . Since passengers’ demands dij and dik are independent, it means Zh1
ij and Zh2

ik are

also independent. As a result, Zn
i = Zh1

ij + Zh2
ik .

A general single-root-node, multiple-leaf-node network recourse problem can be
converted to a general nodal tree structure, and Proposition 3 provides an efficient way
to compute the total capacity of the first n paths Zn

i for a general nodal tree recourse
problem. To ensure feasibility, a common technique is adding a virtual uncapacitated path
with zero revenue into the nodal tree, representing that the service provider can hold as
many vehicles at transit points i ∈ N but generate no revenue. Since this virtual path is
uncapacitated, we need to calculate the total capacities of all sorted paths from the first
path until reaching the virtual one. Furthermore, in our general single-root-node recourse
problem, since the fleet size is a decision variable, the terminate criteria in computing Gi(k)
can be set to Gi(k) ≤ 0. The rationale behind this setting is that the vi > k vehicles at transit
point i ∈ N can only generate zero revenue.

A complete but simple example to demonstrate the whole computation process is
presented in the following. Suppose a single-root-node recourse problem with a root node
i and two leaf nodes j and k. Passenger demands dij and dij are discrete random variables
that take on two possible values each, which are {(5, 0.4), (7, 0.6)} and {(7, 0.3), (8, 0.7)},
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respectively. Fares fij and fik are 4 and 5. Vehicle traversing costs cij and cik are 7 and 8.
Assume the vehicle capacity H = 4. We first convert the passenger demands to vehicle
demands, shown in Tables 5 and 6.

Next, we compute the path revenue rij(h), rik(h), and the first n paths’ total capacities
Zn

ij, Zn
ik, where h = 1, 2, 3, 4. Results are shown in Tables 7 and 8.

Table 5. Convert passenger demand dij to vehicle demand ξij.

Path Capacities ξij(h)

Possible Value of dij Corresponding Probability Pj
1 Pj

2 Pj
3 Pj

4

ξij(4) ξij(3) ξij(2) ξij(1)

5 0.4 1 0 0 1
7 0.6 1 1 0 0

Table 6. Convert passenger demand dik to vehicle demand ξik.

Path Capacities ξik(h)

Possible Value of dij Corresponding Probability Pk
1 Pk

2 Pk
3 Pk

4

ξik(4) ξik(3) ξik(2) ξik(1)

7 0.3 1 1 0 0
8 0.7 2 0 0 0

Table 7. Path revenue rij(h) and the first n paths’ total capacity Zn
ij for nodal subtree Tij.

n Path Revenue Distribution of Zn
ij

1 9 {(1, 1.0)}
2 5 {(1, 0.4), (2, 0.6)}
3 1 {(1, 0.4), (2, 0.6)}
4 −3 {(2, 1.0)}

Table 8. Path revenue rik(h) and the first n paths’ total capacity Zn
ik for nodal subtree Tik.

n Path Revenue Distribution of Zn
ik

1 12 {(1, 0.3), (2, 0.7)}
2 7 {(2, 1.0)}
3 2 {(2, 1.0)}
4 −3 {(2, 1.0)}

Finally, we add a virtual path to this nodal tree, where the path capacity is ∞ and the
path revenue is 0. We sort all paths according to their revenue, and the resulting nodal tree
is depicted in Figure 8.
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Figure 8. The resulting nodal tree with a virtual path.
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With the sorted nodal tree, we can calculate the first n paths’ total capacity Zn accord-
ing to Proposition 3. The results are shown in Table 9.

Table 9. Path revenue ri(n) and the total capacity of the first n paths for nodal tree Ti.

n Path Revenue rn Computation of Zn Distribution of Zn

1 12 = Z1
ik {(1, 0.3), (2, 0.7)}

2 9 = Z1
ik + Z1

ij {(2, 0.3), (3, 0.7)}
3 7 = Z1

ij + Z2
ik {(3, 1.0)}

4 5 = Z2
ik + Z2

ij {(3, 0.4), (4, 0.6)}
5 2 = Z3

ik + Z2
ij {(3, 0.4), (4, 0.6)}

6 1 = Z3
ik + Z3

ij {(3, 0.4), (4, 0.6)}
7 0 Terminate {(∞, 1.0)}

Based on the total capacity of the first n paths, we can compute the routing probability
ϕ(k, n) by equation ϕ(k, n) = P{(Zn ≥ k} − P{Zn−1 ≥ k}. Z0 = 0 since it means no path
in the nodal tree. The results of ϕ(k, n) are shown in Table 10, and we terminate these
computations when G(k) ≤ 0.

Table 10. Results of ϕi(k, n) and Gi(k) for nodal tree Ti.

ϕi(k, n) Value of

k n = 1 2 3 4 5 6 7 Gi(k) = rn · ϕi(k, n)

1 1.0 - - - - - - 12.0
2 0.7 0.3 - - - - - 11.1
3 - 0.7 0.3 - - - - 8.4
4 - - - 0.6 - - 0.4 3.0
5 - - - - - - 1.0 0.0

The pseudo-code for obtaining Q̂(vi), which we call the Nodal Tree Recourse with
Dependent Arc Capacities (NTRDAC) Algorithm 1, is outlined as follows.

Algorithm 1: NTRDAC algorithm for a nodal tree Ti rooted at node i ∈ N .
Step 1: Set n = 0; hN = 0; Zn = (0, 1.0) ;
Step 2: Convert dij into ξij(h), j ∈ N , h = 1, 2, ..., H by Equation (15);
Step 3: Compute Zh

ij, j ∈ N , h = 1, 2, ..., H by Proposition 2;
Step 4: Set n = n + 1;
Step 5: Set hj = index of the last path in nodal subtree Tij included

by the first n paths of nodal tree Tn, where j ∈ N .
Step 6: Compute Zn by Proposition 3 where Zn = ∑x∈hj ,j∈N Zx

ij;
Step 7: Repeat step 4 to step 6 until reaching the uncapacitated path;
Step 8: Compute ϕ(s, n) using Equation (12);
Step 9: Compute Gi(k) by Equation (13) until Gi(k) ≤ 0.

4.4. First-Stage Problem

The NTRDAC algorithm enables us to obtain the exact value of EωQi(vi, D(ω)) effi-
ciently by a function Q̂(vi), where vi is the scalar supplies (vehicles) to the transit point
i ∈ N . Equation (14) states that Q̂(vi) = ∑vi

k=1 G(k), such that the first-stage problem can
be turned into a deterministic mixed integer programming (MIP) optimization problem by
replacing EωQi(vi, D(ω)) with Q̂(vi).

Let us define yk
i = the number of vehicles dispatched at transit point i ∈ N taking

path k (decision variables).
The first-stage problem can be reformulated as follows:
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max −g · s +
N

∑
i=1

vi

∑
k=1

yk
i · Gi(k), (16)

subject to
N

∑
i=1

vi = s, (17)

0 ≤ yk
i ≤ 1, ∀i ∈ N , k = 1, 2, ..., vi, (18)

s ≥ 0, s ∈ Z. (19)

The first-stage problem (16)–(19) is a common deterministic MIP problem that can be
solved efficiently by commercial solvers, such as Cplex 12.6 or Gurobi 10.0.

5. Numerical Experiments

In this section, we conduct numerical experiments to evaluate the efficiency of the
NTRDACA algorithm by reporting its CPU time for several test problems of different sizes.
Afterward, to assess the value of the stochastic solution (VSS), we compare the results
obtained by the decomposition method with those achieved by solving expected value
models that replace all random variables with their expected values. All experiments are
conducted on a DELL personal computer with an Intel Core i3-6100 CPU and 12 GB RAM.
The program is coded in Java 8, and the heap space limitation is set to 700 MB.

5.1. The Efficiency of NTRDAC Algorithm

We evaluated the speed of the NTRDAC algorithm for six different sizes of problem.
Three parameters determine the scale of these problems: (i) total number of transit points M,
(ii) number of possible values that random arc capacities take on K, and (iii) total number
of available seats per vehicle H. The total number of paths, calculated by M · (M − 1),
is the critical factor affecting the computation time because the number of scenarios is
calculated by KM·(M−1), which will increase exponentially as M increases. For the random
capacity of each arc, we truncate a Poisson variable ξ at k if k is the largest integer such
that P{ξ ≥ k} < 0.0001. The Poisson variables’ means range from 3 to 20, with each arc
taking a random value. We simulate each test case 10 times and report the average CPU
time. Table 11 summarizes the CPU times and problem settings.

Table 11. Efficiency of NTRDAC algorithm for recourse problems.

Problems CPU Time (s)

Test Case No. of Nodes
No. of

Possible
Values

Total
Scenarios

NTRDAC
Algorithm Gurobi (DEP)

1 3 3 729 0.001 13.62
2 4 2 4096 0.001 345
3 5 2 220 0.004 –
4 10 5 5190 0.018 –
5 15 10 10210 0.054 –
6 30 15 15870 0.915 –

The symbol “–” indicates an error due to a Java heap size overflow.

Table 11 shows that our proposed NTRDAC algorithm performs quite well, especially for
real-world large-scale problems. First, it can obtain the exact value of the recourse problems
as the numeration process does. Second, it can achieve the results quickly and be stable even
though the scenarios increase exponentially. Finally, in the last test case, with 30 nodes and
15 possible values of each arc capacity, resulting in 15870 scenarios, our NTRDAC algorithm can
still achieve the expected value in less than one second. In real-world applications, a shuttle
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service transportation network with 30 transit points typically covers most areas within a city.
The ability to efficiently solve such a large-scale problem demonstrates that the NTRDAC
algorithm is suitable for practical use. In contrast, when using a commercial solver like Gurobi
to tackle the same problem, solutions can only be obtained for much smaller instances—those
with fewer than five nodes and each random variable taking three possible values. This
highlights the curse of dimensionality, where the problem size grows exponentially with the
square of the number of nodes in this model.

5.2. The Value of Stochastic Solutions (VSSs)

In this subsection, we aim to evaluate the value of the stochastic solution (VSS). All arc
capacities are generated with truncated Poisson random variables as we did in Section 5.1.
We vary the number of nodes and cost matrix to generate different test cases. For each
test case, we first use the NTRDAC algorithm to obtain the exact value of the recourse
functions for the second-stage problem, then we solve the first-stage problem and obtain
the solution S1

Decom for the first stage. After that, we replace the random arc capacities
with their expected values in the second stage, then we solve the deterministic equivalent
problem and obtain the expected value solution S1

EV for the first stage. Taking these two
different solutions for the first-stage problem, which is the fleet size S1

Decom and S1
EV , we

apply the Monte Carlo simulation method for the second stage. That is, we randomly
pick one of the values of arc capacities for all arcs in the second stage, which creates
a scenario. For each scenario, we solve this deterministic network flow problem and
obtain the expected total revenue R2

Decom and R2
EV corresponding to having S1

Decom and S1
EV

vehicles, respectively. Comparing −g · S1
Decom + R2

Decom with −g · S1
EV + R2

EV , we achieve
the value of the stochastic solution. We take 1000 scenarios in each simulation. Table 12
shows the test cases and the value of the stochastic solution, where the positive values of
VSS indicate that the stochastic solutions are better than the expected value solutions. The
reason is stochastic solutions account for the uncertainty in the data and decision-making
process, leading to more robust and flexible outcomes.

Table 12. Results of the value of stochastic solution.

Problems EV Solution Stochastic Solution

VSS
Test Case No. of

Nodes Fleet Size Total
Revenue Fleet Size Total

Revenue

1 5 16 455.37 20 495.32 39.95
2 10 88 2791.89 97 2885.35 93.46
3 30 887 29,989.94 912 30,230.29 240.35

5.3. Managerial Application

In this section, we focus on the managerial application of the NTRDAC algorithm,
which is crucial for practitioners. Specifically, we examine the total expected profit by
varying the vehicle capacity H, while keeping the random passenger demands consistent
across all test cases. We use synthetic data to simulate the decision-making process for
selecting vehicle types and fleet size prior to launching the transportation service. The ran-
dom passenger demands are generated in the same manner as described in Section 5.1.
The results are presented in Table 13.

Table 13. A comparison of expected profits generated by different types of vehicles for 30 transit points.

Vehicle Capacity (H) Fleet Size (s) Expected Total Profit

4 912 30,388.63
6 816 59,698.29
11 628 85,149.58
17 509 86,647.13
33 430 79,292.92
50 313 61,991.54
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According to the results in Table 13, investments in vehicles with a capacity of 17 yields
the highest profit, with a capacity of 11 being the second-best option. This may be due to
the fact that the random passenger demands follow a Poisson distribution with means that
are close to these vehicle capacities. In practice, the distribution of estimated passenger
demands may vary and be more general. The NTRDAC algorithm can easily adapt to
any general distribution by approximating them with discrete random variables, taking K
possible values. As K increases, the accuracy of the approximation improves.

6. Conclusions

This paper addresses a fleet size optimization problem with uncertain passenger
demands over point-to-point shared demand responsive service. We propose a stochastic
programming framework to model this problem. The key idea is to obtain the exact value
of the expected recourse functions in the second stage. We achieve this through a tailored
Nodal Tree Recourse with Dependent Arc Capacities (NTRDAC) algorithm. The NTRDAC
algorithm extends the TREC algorithm but relaxes the restrictions that all random arc
capacities must be independent. Before applying the efficient NTRDAC algorithm, we
introduce a conversion process that converts the random passenger demands to random
vehicle demands represented by random arc capacities. This conversion is a critical process
in generating the nodal tree. The NTRDAC algorithm simplifies the first-stage problem to
a deterministic integer programming problem, which can be solved efficiently. Numerical
experiments demonstrate that the NTRDAC algorithm can efficiently obtain the exact value
of the recourse functions, indicating that our algorithm is quite suitable for large-scale
practical problems. For practitioners, implementing the NTRDAC algorithm for real-world
fleet size optimization problems is straightforward. By using random demand estimates
from forecasts or historical data, the optimal results can be computed by selecting different
vehicle capacities and their corresponding parameters, such as depreciation and trip costs.

Considering homogeneous resources is one limitation of this research, and extending
the model to accommodate more complex network structures for realistic problems, such as
incorporating multiple types of vehicles and allowing backlogged demands, is a promising
direction. A potential research direction could explore how to decompose heterogeneous
resources and efficiently manage unfulfilled demands from previous stages.
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