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Abstract: In this article, we are interested in finding necessary and sufficient conditions for a compact
almost Ricci soliton to be a trivial Ricci soliton. As a first result, we show that positive Ricci curvature
and, for a nonzero constant c, the integral of Ric(cξ, cξ) satisfying a generic inequality on an n-
dimensional compact and connected almost Ricci soliton (Mn, g, ξ, σ) are necessary and sufficient
conditions for it to be isometric to the n-sphere Sn(c). As another result, we show that, if the affinity
tensor of the soliton vector field ξ vanishes and the scalar curvature τ of an n-dimensional compact
almost Ricci soliton (Mn, g, ξ, σ) satisfies τ(nσ − τ) ≥ 0, then (Mn, g, ξ, σ) is a trivial Ricci soliton.
Finally, on an n-dimensional compact almost Ricci soliton (Mn, g, ξ, σ), we consider the Hodge
decomposition ξ = ξ +∇h, where div ξ = 0, and we use the bound on the integral of Ric

(
ξ, ξ
)

and
an integral inequality involving the scalar curvature to find another characterization of the n-sphere.

Keywords: Ricci soliton; almost Ricci soliton; trivial Ricci soliton; Einstein manifold

MSC: 83F05; 53C25

1. Introduction

One of the richest structures on a Riemannian manifold (M, g) is provided by the Ricci
soliton, which comprises a smooth vector field ξ and a real constant λ satisfying

1
2

£ξ g + Ric = λg,

where £ξ is the Lie derivative in the direction of ξ, and Ric is the Ricci tensor of g. We
denote a Ricci soliton by (M, g, ξ, λ). A Ricci soliton (M, g, ξ, λ) is said to be a trivial Ricci
soliton if the soliton vector field ξ is a Killing vector field, that is, £ξ g = 0, and in this case,
the Ricci soliton is an Einstein manifold. This is one of the reasons that a Ricci soliton is
considered to be a generalization of an Einstein manifold. Then, the notion of almost Ricci
soliton is introduced in (cf. [1]) in an attempt to generalize Ricci solitons, by replacing the
soliton constant λ with a smooth function σ. Thus, for an almost Ricci soliton (M, g, ξ, σ),
we have

1
2

£ξ g + Ric = σg. (1)

The geometry of Ricci solitons and almost Ricci solitons has been a subject of immense
interest owing to their elegant geometry as well as to their nice applications (cf. [1–15]).
Given an almost Ricci soliton (M, g, ξ, σ), we call the vector field ξ the soliton vector field
and the smooth function σ the potential function. An almost Ricci soliton (M, g, ξ, σ) is said
to be a trivial almost Ricci soliton if it is a Ricci soliton, that is, the potential function σ is a
real constant, and it is said to be nontrivial if the potential function σ is nonconstant. For
an almost Ricci soliton (M, g, ξ, σ), we denote by η the smooth 1-form dual to the soliton
vector field ξ. This leads to a skew-symmetric tensor F defined by
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g(FX, Y) =
1
2

dη(X, Y), X, Y ∈ X(M),

where X(M) is the algebra of smooth vector fields on M. The skew-symmetric tensor F is
called the associated tensor to the soliton vector field.

A well-known example of an n-dimensional nontrivial almost Ricci soliton is provided
by the n-sphere Sn(c) of constant curvature c, on taking its eigenfunction f satisfying
∆ f = −nc f , where f is a nonconstant function, and these are in abundance (for instance,
the height functions on Sn(c)). This function f satisfies

Hess( f ) = −c f g, (2)

where Hess( f ) is the Hessian of f , and g is the canonical metric of constant curvature on
Sn(c). On taking ξ = ∇ f , the gradient of f , we see that 1

2 £ξ g = Hess( f ), and, consequently,
we have

1
2

£ξ g + Ric = Hess( f ) + Ric = −c f g + (n − 1)cg = σg, (3)

where σ = c(− f + n − 1) and we have used Equation (2) and the expression for the Ricci
tensor Ric = (n − 1)cg of the sphere Sn(c). Since σ is a nonconstant function (as f is), we
see that (Sn(c), g, ξ, σ) is a nontrivial almost Ricci soliton. For further examples of compact
and noncompact nontrivial almost Ricci solitons, we refer to [1,3].

Though it appears as if there are hundreds of results in differential geometry men-
tioning solitons, the results on the Ricci soliton and almost Ricci soliton are not that many.
In order to understand the spirit behind the introduction of the Ricci soliton and its nat-
ural generalization, the almost Ricci soliton, we have the following heat equation called
Hamilton’s Ricci flow (cf. [7]):

∂

∂t
gij(t) = −2Rij(t) (4)

and a Ricci soliton (M, g, ξ, λ) is a stable solution of the above heat equation (Hamilton’s
Ricci flow) of the form gij(t) = f (t)φ∗

t gij, satisfying gij(0) = gij, where φt : M → M is a
diffeomorphism for t ∈ R such that the one parameter group {φt} induces the vector field
ξ, and f (t) is the scaling function. Similarly, an almost Ricci soliton (M, g, ξ, σ) is a stable
solution of the above Hamilton’s Ricci flow (4) of the form

gij(t) = f (t, xα)φ∗
t gij, (5)

where the diffeomorphisms φt : M → M are generated by the family of vector fields
ξ(t), and f (t, xα) is the scaling, and it is a function of t as well as the local coordinates xα.
Naturally, the initial conditions gij(0) = gij, φ0 = I imply f (0, xα) = 1. On differentiating
Equation (5) with respect to t and using Hamilton’s Ricci flow Equation (4) at t = 0, we find

−2Rij =

(
∂

∂t
f (t, xα)

)
0
gij + £ξ(0)gij,

which, on taking ξ(0) = ξ and the function
(

∂
∂t f (t, xα)

)
0
= −2σ, the above equation takes

the form of Equation (1), which defines an almost Ricci soliton. It is in this spirit that both
the Ricci soliton and almost Ricci soliton being stable solutions of the heat Equation (4) is
important. It is like heat diffusion, where the Hamilton’s Ricci flow changes the Riemannian
metric to yield the desired curvature that results in the uniform curvature distribution
across the manifold. Therefore, it is worth mentioning that those solitons, which come
through the solution of the heat equation, have a concrete physical significance. It is this
power, inherited through the heat equation, that Ricci solitons used to settle the famous
Poincare conjecture. They are not limited to this role in geometry, as Ricci solitons are also
highly useful in brain mapping (cf. [16]), as well as having a role to play in the study of
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gravity in physics (cf. [17]). Since almost Ricci solitons are a natural generalization of Ricci
solitons, they automatically carry an importance similar to that of Ricci solitons.

Two natural questions associated to the geometry of an almost Ricci soliton are the
following:

(i) What are the conditions under which an n-dimensional compact almost Ricci soliton
(Mn, g, ξ, σ) is isometric to (Sn(c), g, ξ, σ)?

(ii) What are the conditions under which an almost Ricci soliton is a trivial Ricci
soliton?

In this article, we answer these questions by proving two results with respect to
question (i) and one result with respect to question (ii). In the first result, we show that,
if the Ricci curvature Ric of an n-dimensional compact and connected almost Ricci soli-
ton (Mn, g, ξ, σ) is positive, and for a nonzero constant c, Ric(cξ, cξ) satisfies a generic
inequality, then these conditions guarantee that (Mn, g, ξ, σ) is isometric to (Sn(c), g, ξ, σ)
(cf. Theorem 2). Similarly, we use the Hodge decomposition of the soliton vector field ξ
to find another characterization of (Sn(c), g, ξ, σ) (cf. Theorem 4). Finally, with respect to
question (ii), we show that, if the affinity tensor of the soliton vector field ξ (introduced in
Section 3) vanishes and a certain inequality involving the scalar curvature holds, then these
conditions imply that a compact and connected almost Ricci soliton is a trivial Ricci soliton
(cf. Theorem 3).

As the proofs of our results of using integration on a compact Riemannian manifold,
here we would like to add a small note on the use of integration in differential geometry.
The use of integral formulas goes back to the year 1848, and it appeared through the
following very well-known formula.

Theorem 1. (Gauss–Bonnet) [18]: Suppose that M is a compact two-dimensional Riemannian
manifold with boundary ∂M. Let K be the Gaussian curvature of M, and let κg be the geodesic
curvature of ∂M. Then, ∫

M
KdA +

∫
∂M

κgds = 2πX (M),

where dA is the area element of M, ds is the line element of the boundary ∂M, and X (M) is the
Euler characteristic of M.

The Gauss–Bonnet Theorem is an outstanding result, as it connects the geometry of
M (the Gaussian curvature K and the geodesic curvature κg) to the topology of M (the
Euler characteristic X (M)). In particular, if M is a compact surface without boundary, then∫

∂M κgds from the above formula disappears, and the formula states that the integral of the
Gaussian curvature is equal to 2π times the Euler characteristic X (M) = 2(1 − g0), where
g0 is the genus of the surface. Let us note that this innocent looking statement for a compact
surface without boundary is very significant in the following sense. The Euler characteristic
X (M) remains the same under diffeomorphic changes, where the Gaussian curvature K is
not preserved under these diffeomorphisms (unless the metric is preserved, that is, unless
the diffeomorphisms are isometries). The Gauss–Bonnet Theorem for compact surfaces
without boundaries states that though K is not preserved under a diffeomorphism, the
total Gaussian curvature

∫
M KdA is preserved. This formula has been generalized to higher

dimensions by Chern [19] and also by Buzano and Nguyen in [20], and was later developed
into an independent branch of differential topology.

Another important integral formula that is widely used is Stokes’s theorem, which,
for a compact Riemannian manifold (M, g) without boundary, states [18]∫

M
(div X)dVg = 0,
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for a smooth vector field X on M, and dVg is the volume form of M with respect to metric
g. In particular, for a smooth function f : M → R, on taking X = ∇ f , the above integral
formula takes the form ∫

M
(∆ f )dVg = 0.

There are different variants of Stokes’s formula that are used in differential geometry,
namely, Minkowski’s formula for closed hypersurfaces in Euclidean spaces as well as in
spaces of constant curvature (cf. [21]). As a consequence of Minkowski’s formula, we
derive a global result, namely, that there does not exist a compact minimal hypersurface in
a Euclidean space.

2. Preliminaries

Let (Mn, g, ξ, σ) be an n-dimensional almost Ricci soliton with associated tensor F.
Then, on using the dual 1-form η of the soliton vector field ξ with Equation (1) and equation

2g(∇Xξ, Y) =
(
£ξ g
)
(X, Y) + dη(X, Y), X, Y ∈ X(Mn),

where ∇ is the Riemannian connection, we obtain

∇Xξ = σX − QX + FX, X ∈ X(Mn), (6)

where Q is the symmetric (1, 1)-tensor field called the Ricci operator defined by

g(QX, Y) = Ric(X, Y), X, Y ∈ X(Mn).

On denoting the scalar curvature by τ, and using Equation (6), we have

div ξ = nσ − τ. (7)

Also, using
div((nσ − τ)ξ) = ξ(nσ − τ) + (nσ − τ)div ξ

in the above equation, we deduce

ξ(nσ − τ) = div((nσ − τ)ξ)− (nσ − τ)2. (8)

On using the following expression of the Riemannian curvature tensor

R(X, Y)ξ = [∇X ,∇Y]ξ −∇[X,Y]ξ, X, Y ∈ X(Mn)

together with Equation (6), we arrive at

R(X, Y)ξ = X(σ)Y − Y(σ)X − (∇XQ)(Y) + (∇YQ)(X)

+ (∇X F)(Y)− (∇Y F)(X), X, Y ∈ X(Mn),

where, for a (1, 1)-tensor Ψ, the covariant derivative is given by

(∇XΨ)(Y) = ∇XΨY − Ψ(∇XY), X, Y ∈ X(Mn).

Now, using a local orthonormal frame {Ek}n
k=1 and the expression of the Ricci curva-

ture tensor

Ric(X, Y) =
n

∑
k=1

g(R(Ek, X)Y, Ek), X, Y ∈ X(Mn)

together with Equation (8), we immediately confirm

Ric(Y, ξ) = −(n − 1)Y(σ) +
1
2

Y(τ)− g

(
Y,

n

∑
k=1

(
∇Ek F

)
(Ek)

)
, Y ∈ X(Mn), (9)
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where we use the symmetry of Q and the skew-symmetry of F together with the following
relation (cf. [7,22])

1
2
∇τ =

n

∑
k=1

(
∇Ek Q

)
(Ek). (10)

Then, Equation (9) has the following implication:

Qξ = −(n − 1)∇σ +
1
2
∇τ −

n

∑
k=1

(
∇Ek F

)
(Ek). (11)

We recall that, for a smooth function f on a Riemannian manifold (Mn, g), the Hessian
operator H f is defined by

H f X = ∇X f , X ∈ X(Mn),

which is a symmetric operator that is related to Hess( f ) by

g
(

H f X, Y
)
= Hess( f )(X, Y), X, Y ∈ X(Mn),

and we also have trace H f = ∆ f .

3. Almost Ricci Solitons Isometric to a Sphere

Let (Mn, g, ξ, σ) be an n-dimensional compact almost Ricci soliton. In this section,
we find conditions under which (Mn, g, ξ, σ) is isometric to Sn(c). Indeed, we prove the
following result.

Theorem 2. An n-dimensional compact and connected almost Ricci soliton (Mn, g, ξ, σ), where
n > 2, with scalar curvature τ and positive Ricci curvature, satisfies∫

Mn

(
Ric(cξ, cξ) +

n − 1
n

(∆σ)2
)
≤ c

∫
Mn

(
2(n − 1)∥∇σ∥2 + τ∆σ

)
,

for a nonzero constant c, if and only if c > 0 and (Mn, g, ξ, σ) is isometric to Sn(c).

Proof. Let (Mn, g, ξ, σ) be an n-dimensional compact and connected almost Ricci soliton
n > 2 with positive Ricci curvature that satisfies∫

Mn

(
Ric(cξ, cξ) +

n − 1
n

(∆σ)2
)
≤ c

∫
Mn

(
2(n − 1)∥∇σ∥2 + τ∆σ

)
. (12)

We intend to compute div F(∇σ); therefore, we choose a local orthonormal frame
{Ek}n

k=1 and proceed as follows:

div F(∇σ) =
n

∑
k=1

g
(
∇Ek F(∇σ), Ek

)
=

n

∑
k=1

g
((
∇Ek F

)
(∇σ) + F(HσEk), Ek

)
. (13)

The Hessian operator Hσ is symmetric and F is skew-symmetric; therefore,

n

∑
k=1

g(HσEk, FEk) = 0.

Using the above equation as well as Equation (11) in Equation (13), we are led to
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div F(∇σ) = −
n

∑
k=1

g
(
∇σ,

(
∇Ek F

)
(Ek)

)
= −g

(
∇σ,−(n − 1)∇σ +

1
2
∇τ − Qξ

)
= Ric(∇σ, ξ) + (n − 1)∥∇σ∥2 − 1

2
g(∇σ,∇τ).

Integrating the above equation leads to∫
Mn

(
Ric(∇σ, ξ) + (n − 1)∥∇σ∥2 − 1

2
g(∇σ,∇τ)

)
= 0.

Next, we use

div(τ∇σ) = g(∇τ,∇σ) + τ div(∇σ) = g(∇τ,∇σ) + τ∆σ

in the above equation, and we obtain∫
Mn

(
Ric(∇σ, ξ) + (n − 1)∥∇σ∥2 +

τ

2
∆σ
)
= 0,

that is, ∫
Mn

Ric(∇σ, ξ) = −
∫

Mn

(
(n − 1)∥∇σ∥2 +

τ

2
∆σ
)

. (14)

We also have the following Bochner’s formula:∫
Mn

Ric(∇σ,∇σ) =
∫

Mn

(
(∆σ)2 − ∥Hσ∥2

)
. (15)

Now, for a nonzero constant c, we have

Ric(∇σ + cξ,∇σ + cξ) = Ric(∇σ,∇σ) + 2c Ric(∇σ, ξ) + Ric(cξ, cξ),

which, on integration and using Equations (14) and (15), leads to

∫
Mn

Ric(∇σ + cξ,∇σ + cξ) =
∫

Mn

(
(∆σ)2 − ∥Hσ∥2 − 2(n − 1)c∥∇σ∥2 − cτ∆σ + Ric(cξ, cξ)

)
.

Rearranging the above equation, we have

∫
Mn

Ric(∇σ + cξ,∇σ + cξ) +
∫

Mn

(
∥Hσ∥2 − 1

n
(∆σ)2

)
=
∫

Mn

(
n − 1

n
(∆σ)2 − 2(n − 1)c∥∇σ∥2 − cτ∆σ + Ric(cξ, cξ)

)
,

that is, ∫
Mn

Ric(∇σ + cξ,∇σ + cξ) +
∫

Mn

(
∥Hσ∥2 − 1

n
(∆σ)2

)
=
∫

Mn

(
Ric(cξ, cξ) +

n − 1
n

(∆σ)2
)

− c
∫

Mn

(
2(n − 1)∥∇σ∥2 + τ∆σ

)
.
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Due to inequality (12), the right-hand side of the above equation is nonpositive,
whereas the almost Ricci soliton has positive Ricci curvature and the second integrand on
the left-hand side of the above equation is non-negative owing to the Schwartz’s inequality

∥Hσ∥2 ≥ 1
n
(∆σ)2, (16)

and consequently, we conclude
∇σ + cξ = 0 (17)

and the inequality in (16) becomes the equality ∥Hσ∥2 = 1
n (∆σ)2. The holding of this

inequality requires

Hσ =
∆σ

n
I. (18)

Now, differentiating Equation (17) and using Equation (6), we reach

HσX + c(σX − QX + FX) = 0, X ∈ X(Mn),

that is,
HσX + c(σX − QX) = −cFX, X ∈ X(Mn).

Since the constant c ̸= 0 and the left-hand side is symmetric, while the right-hand side
is skew-symmetric, we immediately conclude F = 0 and

HσX = c(QX − σX), X ∈ X(Mn). (19)

Also, taking the divergence in Equation (17), while using Equation (7), we conclude

∆σ = −c(nσ − τ),

and inserting it in Equation (18) leads to

Hσ =
(
−cσ +

cτ

n

)
I. (20)

Combining Equations (19) and (20), it infers

Q =
τ

n
I,

that is,

(∇XQ)(Y) =
1
n

X(τ)Y, X, Y ∈ X(Mn),

and summing the above equation over a local orthonormal frame {Ek}n
k=1 gives

n

∑
k=1

(
∇Ek Q

)
(Ek) =

1
n
∇τ.

Now, using Equation (10), we have

1
2
∇τ =

1
n
∇τ,

and, as n > 2, we conclude that τ is a constant. We note that the almost Ricci soliton (Mn, g, ξ, σ)
is nontrivial; therefore, the potential function σ is nonconstant. From Equation (20), we have

Hσ = −c
(

σ − τ

n

)
I. (21)
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We define a function ρ = σ − τ
n , which is a nonconstant function (as σ is), and we have

∇ρ = ∇σ; therefore, Hρ = Hσ. Consequently, Equation (21) takes the form

Hρ = −cρI. (22)

Taking the trace in the above equation yields ∆ρ = −ncρ, that is, ρ∆ρ = −ncρ2, which,
on integration by parts, leads to ∫

Mn
∥∇ρ∥2 = nc

∫
Mn

ρ2,

and, as ρ is nonconstant, through the above equation, we conclude c > 0. This confirms
that Equation (22) is Obata’s differential equation (cf. [22–24]) and, therefore, (Mn, g, ξ, σ)
is isometric to Sn(c).

Conversely, suppose that (Mn, g, ξ, σ) is isometric to Sn(c). Then, through Equation (3),
it follows that (Sn(c), g, ξ, σ) is a nontrivial almost Ricci soliton, where the potential function
is σ = c(− f + n − 1), f is an eigenfunction, ∆ f = −nc f , and the soliton vector field is
ξ = ∇ f . We have ∫

Sn(c)
∥∇ f ∥2 = nc

∫
Sn(c)

f 2 (23)

and Ric(cξ, cξ) = (n − 1)c3∥ξ∥2 = (n − 1)c3∥∇ f ∥2. Moreover, ∇σ = −c∇ f and we have
∆σ = −c∆ f = nc2 f . Thus, we obtain∫

Sn(c)

(
Ric(cξ, cξ) +

n − 1
n

(∆σ)2
)
=
∫

Sn(c)

(
(n − 1)c3∥∇ f ∥2 + n(n − 1)c4 f 2

)
,

and using Equation (23), we find∫
Sn(c)

(
Ric(cξ, cξ) +

n − 1
n

(∆σ)2
)
= 2n(n − 1)c4

∫
Sn(c)

f 2. (24)

Also, as τ = n(n − 1)c is a constant, we have∫
Sn(c)

τ∆σ = 0,

and using ∇σ = −c∇ f , we obtain

c
∫

Sn(c)

(
2(n − 1)∥∇σ∥2 + τ∆σ

)
= 2(n − 1)c

∫
Sn(c)

∥∇σ∥2 = 2(n − 1)c3
∫

Sn(c)
∥∇ f ∥2,

which, in view of Equation (23), yields

c
∫

Sn(c)

(
2(n − 1)∥∇σ∥2 + τ∆σ

)
= 2n(n − 1)c4

∫
Sn(c)

f 2. (25)

Thus, Equations (24) and (25) confirm that one of the given conditions is satisfied.
Also, the almost Ricci soliton (Sn(c), g, ξ, σ) has positive Ricci curvature; therefore, the
second of the given conditions is also satisfied. Hence, the converse implication holds.

Next, we are interested in finding conditions under which an almost Ricci soliton
(Mn, g, ξ, σ) is trivial, that is, it is a Ricci soliton, and to achieve this, we will ask if the
affinity tensor £ξ∇ of the soliton vector field ξ vanishes.We note that the affinity tensor of a
vector field is a useful tool in studying the geometry of a Riemannian manifold (cf. [25,26]).
We recall that the affinity tensor of a vector field ξ is given by (cf. [25], p. 109)(

£ξ∇
)
(X, Y) = £ξ∇XY − £∇ξ XY −∇X£ξY, X, Y ∈ X(Mn),
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which is equivalent to(
£ξ∇

)
(X, Y) = R(ξ, X)Y +∇X∇Yξ −∇∇XYξ, X, Y ∈ X(Mn). (26)

We shall impose the condition that the affinity tensor £ξ∇ of the soliton vector field
ξ vanishes and some additional inequality for the scalar curvature holds for a compact
almost Ricci soliton (Mn, g, ξ, σ) to force it to not only be a trivial almost Ricci soliton but a
trivial Ricci soliton. Indeed, we prove the following result.

Theorem 3. Let (Mn, g, ξ, σ) be an n-dimensional compact and connected almost Ricci soliton,
n > 2, with scalar curvature τ, vanishing the affinity tensor of the soliton vector field ξ, satisfying
the inequality

τ(nσ − τ) ≥ 0.

Then, (Mn, g, ξ, σ) is a trivial Ricci soliton.

Proof. Suppose that the affinity tensor of the soliton vector field ξ vanishes. Then, using
Equations (6) and (26), we conclude

R(ξ, X)Y + X(σ)Y − (∇XQ)(Y) + (∇X F)(Y) = 0, X, Y ∈ X(Mn). (27)

For a local orthonormal frame {Ek}n
k=1, we have

Qξ =
n

∑
k=1

R(ξ, Ek)Ek,

and thus, summing Equation (27) and using Equation (10), it gives

Qξ +∇σ − 1
2
∇τ +

n

∑
k=1

(
∇Ek F

)
(Ek) = 0. (28)

Now, combining Equations (11) and (28), we arrive at

(n − 2)∇σ = 0,

and that, by virtue of the fact n > 2, makes σ a constant; therefore, at this stage, (Mn, g, ξ, σ)
is a Ricci soliton. Next, we proceed to show that, with the remaining condition τ(nσ − τ) ≥ 0,
the soliton vector field ξ is a Killing vector field. It is trivial to check that

∥Q∥2 − 1
n

τ2 =
∣∣∣Ric−τ

n
g
∣∣∣2, (29)

and we have the following equality (cf. [2,12])∫
Mn

∣∣∣Ric−τ

n
g
∣∣∣2 =

n − 2
2n

∫
Mn

ξ(τ). (30)

We use a local orthonormal frame {Ek}n
k=1 and compute div Qξ with the aid of

Equation (6) as follows:

div Qξ =
n

∑
k=1

g
(
∇Ek Qξ, Ek

)
=

n

∑
k=1

g
((
∇Ek Q

)
(ξ) + Q

(
∇Ek ξ

)
, Ek
)

= g

(
ξ,

n

∑
k=1

(
∇Ek Q

)
(Ek)

)
+

n

∑
k=1

g(σEk − QEk + FEk, QEk),
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which, in view of Equation (10), the symmetry of Q and the skew-symmetry of F, yields

div Qξ =
1
2

ξ(τ) + στ − ∥Q∥2.

On integrating the above equation, we arrive at∫
Mn

(
∥Q∥2 − 1

n
τ2
)
=

1
2

∫
Mn

ξ(τ) +
∫

Mn

(
στ − 1

n
τ2
)

.

Inserting from Equations (29) and (30) into the above equation, while using n > 2, it
leads to ∫

Mn

∣∣∣Ric−τ

n
g
∣∣∣2 =

n
n − 2

∫
Mn

∣∣∣Ric−τ

n
g
∣∣∣2 + 1

n

∫
Mn

τ(nσ − τ),

that is,
−2

n − 2

∫
Mn

∣∣∣Ric−τ

n
g
∣∣∣2 =

1
n

∫
Mn

τ(nσ − τ).

The above equation and the condition in the hypothesis τ(nσ − τ) ≥ 0 forces the
conclusion

Ric =
τ

n
g. (31)

Since n > 2, the above equation implies that τ is a constant. We have already proved
that σ is a constant, and feeding this information in Equation (8), we have

div((nσ − τ)ξ) = (nσ − τ)2,

which, on integration, gives nσ = τ, and Equation (31) in turn gives

Ric = σg,

that is, £ξ g = 0. Hence, (Mn, g, ξ, σ) is a trivial Ricci soliton.

4. Hodge Decomposition of Soliton Vector Field and Applications

It is known that on an n-dimensional compact almost Ricci soliton (Mn, g, ξ, σ), the
soliton vector field ξ admits a Hodge decomposition (cf. [27])

ξ = ξ +∇h, (32)

where div ξ = 0 and ∇h is the gradient of a smooth function h. We call the vector field ξ
the Hodge potential field and the function h the Hodge function of the soliton vector field ξ.
Then, using Equations (6) and (7), it follows that

∇Xξ = σX − QX + FX − HhX, X ∈ X(Mn), (33)

and we obtain the Poisson equation

∆h = nσ − τ. (34)

Using Equation (33), we have(
£ξ g
)
(X, Y) = 2σg(X, Y)− 2 Ric(X, Y)− 2 Hess(h)(X, Y), X, Y ∈ X(Mn),

which, on using a local orthonormal frame {Ek}n
k=1, gives

∣∣∣£ξ g
∣∣∣2 = 4

(
nσ2 + ∥Q∥2 + ∥Hh∥2 − 2στ − 2σ∆h + 2

n

∑
k=1

g(QEk, HhEk)

)
. (35)
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Also, using Equation (33), the symmetry of Q and Hh, and the skew-symmetry of F,
we obtain

∥∥∇ξ
∥∥2

= nσ2 + ∥Q∥2 + ∥F∥2 + ∥Hh∥2 − 2στ − 2σ∆h + 2
n

∑
k=1

g(QEk, HhEk). (36)

Now, we shall use the bound on the integral of Ric
(
ξ, ξ
)

and an inequality satisfied by
the scalar curvature τ to find the following characterization of the sphere Sn(c).

Theorem 4. An n-dimensional compact and connected nontrivial almost Ricci soliton (Mn, g, ξ, σ),
where n > 2, with associated tensor F, scalar curvature τ, and Hodge decomposition ξ = ξ +∇h,
satisfies ∫

Mn
Ric
(
ξ, ξ
)
≥
∫

Mn
∥F∥2 and

∫
Mn

τ(nσ − τ) ≥ 0,

if and only if (Mn, g, ξ, σ) is isometric to Sn(c), where c > 0.

Proof. Suppose that (Mn, g, ξ, σ) is an n-dimensional compact and connected nontrivial
almost Ricci soliton, where n > 2, with the Hodge decomposition ξ = ξ + ∇h, with
Ric
(
ξ, ξ
)

and τ, satisfying ∫
Mn

Ric
(
ξ, ξ
)
≥
∫

Mn
∥F∥2 (37)

and ∫
Mn

τ(nσ − τ) ≥ 0. (38)

Since div ξ = 0, using the integral formula (cf. [28])∫
Mn

(
Ric
(
ξ, ξ
)
+

1
2

∣∣∣£ξ g
∣∣∣2 − ∥∥∇ξ

∥∥2
)
= 0

and Equations (35) and (36), we obtain

∫
Mn

(
2στ + 2σ∆h − 2

n

∑
k=1

g(QEk, HhEk)

)
=
∫

Mn

(
Ric
(
ξ, ξ
)
− ∥F∥2

)
+
∫

Mn

(
nσ2 + ∥Q∥2 + ∥Hh∥2

)
. (39)

On using Equation (10), we compute

div Q(∇h) =
n

∑
k=1

g
(
∇Ek Q(∇h), Ek

)
=

n

∑
k=1

g
((
∇Ek Q

)
(∇h) + Q(HhEk), Ek

)
=

1
2

g(∇h,∇τ) +
n

∑
k=1

g(QEk, HhEk)

=
1
2
(div(τ∇h)− τ∆h) +

n

∑
k=1

g(QEk, HhEk),

that is,
n

∑
k=1

g(QEk, HhEk) = div Q(∇h)− 1
2

div(τ∇h) +
1
2

τ∆h.



Mathematics 2024, 12, 3049 12 of 15

Inserting this equation in Equation (39) yields∫
Mn

(2στ + 2σ∆h − τ∆h) =
∫

Mn

(
Ric
(
ξ, ξ
)
− ∥F∥2

)
+
∫

Mn

(
nσ2 + ∥Q∥2 + ∥Hh∥2

)
. (40)

We note that

nσ2 + ∥Q∥2 + ∥Hh∥2 =

(
∥Q∥2 − 1

n
τ2
)
+

(
∥Hh∥2 − 1

n
(∆h)2

)
+ nσ2 +

1
n

(
τ2 + (∆h)2

)
.

Using Equation (34) in the above equation, we have∫
Mn

(
nσ2 + ∥Q∥2 + ∥Hh∥2

)
=
∫

Mn

(
∥Q∥2 − 1

n
τ2
)
+
∫

Mn

(
∥Hh∥2 − 1

n
(∆h)2

)
+
∫

Mn

(
2nσ2 +

2
n

τ2 − 2στ

)
. (41)

Also, on using Equation (34), we compute

2στ + 2σ∆h − τ∆h = 2nσ2 − nστ + τ2,

that is, ∫
Mn

(2στ + 2σ∆h − τ∆h) =
∫

Mn

(
2nσ2 − nστ + τ2

)
. (42)

Using inequality (37) in Equation (40), we conclude∫
Mn

(2στ + 2σ∆h − τ∆h) ≥
∫

Mn

(
nσ2 + ∥Q∥2 + ∥Hh∥2

)
.

Inserting Equations (41) and (42) in the above inequality, we have

−n − 2
n

∫
Mn

τ(nσ − τ) ≥
∫

Mn

(
∥Q∥2 − 1

n
τ2
)
+
∫

Mn

(
∥Hh∥2 − 1

n
(∆h)2

)
. (43)

Since the integrands in the right-hand side of the above inequality are non-negative
by virtue of the Schwartz’s inequalities

∥Q∥2 ≥ 1
n

τ2 and ∥Hh∥2 ≥ 1
n
(∆h)2

and the left-hand side is nonpositive owing to inequality (38), by inequality (43), we
conclude

∥Q∥2 =
1
n

τ2 and ∥Hh∥2 =
1
n
(∆h)2

and these equalities in Schwartz’s inequalities hold if and only if

Q =
τ

n
I and Hh =

∆h
n

I. (44)

As n > 2, the first equation in (44), by virtue of Equation (10), yields that τ is a constant.
Moreover, the second equation in (44) and Equation (34) allows

Hh =
(

σ − τ

n

)
I, (45)

which, in view of the fact that τ is a constant, yields

(∇X Hh)(Y) = X(σ)Y, X, Y ∈ X(Mn) (46)
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and using the identity

R(X, Y)∇h = (∇X Hh)(Y)− (∇Y Hh)(X), X, Y ∈ X(Mn)

with Equation (46), we arrive at

R(X, Y)∇h = X(σ)Y − Y(σ)X, X, Y ∈ X(Mn).

On taking the trace in the above equation, we conclude

Ric(Y,∇h) = −(n − 1)Y(σ), Y ∈ X(Mn),

that is,
Q∇h = −(n − 1)∇σ,

and combining it with the first equation in (44) yields

∇σ = − τ

n(n − 1)
∇h.

Choosing the constant c such that τ = n(n− 1)c, we have ∇σ = −c∇h. Differentiating
the last equation gives

HσX = −cHhX, X ∈ X(Mn),

and combining it with Equation (45), we conclude

HσX = −c
(

σ − τ

n

)
X, X ∈ X(Mn). (47)

Since (Mn, g, ξ, σ) is a nontrivial almost Ricci soliton, the potential function σ is non-
constant. Now, we define ρ = σ − τ

n , which is a nonconstant function, too, and we have
∇ρ = ∇σ, and Hρ = Hσ, and Equation (47) becomes

HρX = −cρX, X ∈ X(Mn). (48)

Taking the trace in the above equation, we conclude ∆ρ = −ncρ, that is, ρ∆ρ = −ncρ2.
Integrating by parts the last equation, yields∫

Mn
∥∇ρ∥2 = nc

∫
Mn

ρ2,

which proves that c is a positive constant. Thus, by Equation (48), we obtain that (Mn, g, ξ, σ)
is isometric to Sn(c) (cf. [22–24]).

Conversely, suppose that (Mn, g, ξ, σ) is isometric to Sn(c). Then, we see that for the
nontrivial almost Ricci soliton (Sn(c), g, ξ, σ), the soliton vector field ξ = ∇ f has the Hodge
decomposition ξ = ξ +∇ f , where the Hodge potential field is ξ = 0. Moreover, the soliton
vector field ξ being closed, we have F = 0. Hence, the condition∫

Sn(c)
Ric
(
ξ, ξ
)
=
∫

Sn(c)
∥F∥2

holds. Also, τ = n(n − 1)c and σ = c(− f + n − 1), and we have nσ − τ = −nc f = ∆ f .
Then ∫

Sn(c)
τ(nσ − τ) = n(n − 1)c

∫
Sn(c)

∆ f = 0.

Hence, all the conditions are met for the converse implication to hold.
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5. Conclusions

In Section 4, we have considered the Hodge decomposition of the soliton vector field ξ
of an n-dimensional compact almost Ricci soliton (Mn, g, ξ, σ) given by Equation (32), and,
in Theorem 4, we have utilized the Hodge potential field ξ to find a characterization of the
sphere Sn(c). A natural component of the Hodge decomposition is the Hodge function h,
which satisfies the Poisson Equation (34), namely

∆h = nσ − τ. (49)

As we have seen that the Hodge potential field is used to find a characterization of
the sphere Sn(c), one would be interested in seeing the role of the Hodge function h. It
is known that the Poisson equation plays a crucial role in constraining the geometry of
(Mn, g, ξ, σ) (cf. [10]); in particular, it is known that, on a compact almost Ricci soliton
(Mn, g, ξ, σ), the solution of the above Poisson equation is unique up to a constant, that is,
two solutions differ by a constant. Natural functions defined on (Mn, g, ξ, σ) other than
h are the potential function σ and the scalar curvature τ. It will be worth seeking the
following questions:

(i) Assuming, for a positive constant c, that 1
c σ is a solution of the Poisson Equation (49),

is a compact nontrivial almost Ricci soliton (Mn, g, ξ, σ) isometric to the sphere Sn(c)?
(ii) Assuming that the scalar curvature τ is a solution of the Poisson Equation (49), then,

in this case, the compact nontrivial almost Ricci soliton (Mn, g, ξ, σ) will not be isometric to
the sphere Sn(c), as this will require that τ is a constant whereas σ is not a constant. So, as
a point of interest, what will be the impact of the scalar curvature τ being a solution of the
Poisson Equation (49) on the geometry of almost Ricci soliton (Mn, g, ξ, σ)?

These two questions are worth exploring, and the answers to them will add new
insights to the geometry of the almost Ricci soliton.

Author Contributions: A.M.B. and S.D. have contributed to conceptualization and investigation. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pigola, S.; Rigoli, M.; Rimoldi, M.; Setti, A.G. Ricci almost solitons. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2011, 10, 757–799.

[CrossRef]
2. Barros, A.; Batista, R.; Ribeiro, E., Jr. Compact almost Ricci solitons with constant scalar curvature are gradient. Monatsh. Math.

2014, 174, 29–39. [CrossRef]
3. Barros, A.; Ribeiro E., Jr. Some characterizations for compact almost Ricci solitons. Proc. Amer. Math. Soc. 2012, 140, 1033–1040.

[CrossRef]
4. Barros, A.; Gomes, J.N.; Ribeiro, E., Jr. A note on rigidity of the almost Ricci soliton. Arch. Math. 2013, 100, 481–490. [CrossRef]
5. Cao, H.D. Geometry of Ricci solitons. Chin. Ann. Math. Ser. B 2006, 27, 121–142. [CrossRef]
6. Cao, H.D. Recent progress on Ricci solitons. Adv. Lect. Math. (ALM) 2010, 11, 1–38.
7. Chow, B.; Lu, P.; Ni, L. Graduate studies in Mathematics. In Hamilton’s Ricci Flow; AMS Scientific Press: Boston, MA, USA, 2010;

Volume 77.
8. Deshmukh, S. Almost Ricci solitons isometric to spheres. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950073. [CrossRef]
9. Deshmukh, S.; Alsodais, H. A note on almost Ricci soliton. Anal. Math. Phys. 2020, 10, 76. [CrossRef]
10. Donaldson, S. Lecture Notes for TCC Course Geometric Analysis. 2008. Available online: https://www.ma.imperial.ac.uk/

~skdona/GEOMETRICANALYSIS.PDF (accessed on 1 July 2024).
11. Ghosh, A. Ricci almost solitons satisfying certain conditions on the potential vector field. Publ. Math. Debr. 2015, 87, 103–110.

[CrossRef]
12. Sharma, R. Almost Ricci solitons and K-contact geometry. Monatsh. Math. 2014, 175, 621–628. [CrossRef]
13. Sharma, R. Some results on almost Ricci solitons and geodesic vector fields. Beitr. Algebra Geom. 2018, 59, 289–294. [CrossRef]
14. Sharma, R.; Deshmukh, S. Almost Ricci solitons with associated projective field. Adv. Geom. 2022, 22, 1–8. [CrossRef]
15. Blaga, A.M.; Chen, B.-Y. On conformal collineation and almost Ricci solitons. arXiv 2022, arXiv:2210.05284. [CrossRef]

http://doi.org/10.2422/2036-2145.2011.4.01
http://dx.doi.org/10.1007/s00605-013-0581-3
http://dx.doi.org/10.1090/S0002-9939-2011-11029-3
http://dx.doi.org/10.1007/s00013-013-0524-1
http://dx.doi.org/10.1007/s11401-005-0379-2
http://dx.doi.org/10.1142/S0219887819500737
http://dx.doi.org/10.1007/s13324-020-00424-w
https://www.ma.imperial.ac.uk/~skdona/GEOMETRICANALYSIS.PDF
https://www.ma.imperial.ac.uk/~skdona/GEOMETRICANALYSIS.PDF
http://dx.doi.org/10.5486/PMD.2015.7052
http://dx.doi.org/10.1007/s00605-014-0657-8
http://dx.doi.org/10.1007/s13366-017-0367-1
http://dx.doi.org/10.1515/advgeom-2021-0034
http://dx.doi.org/10.48550/arXiv.2210.05284


Mathematics 2024, 12, 3049 15 of 15

16. Wang, Y.; Yin, X.; Zhang, J.; Gu, X.; Chan, T.; Thompson, P.M.; Yau, S.-T. Brain Mapping with the Ricci Flow Conformal
Parameterization and Multivariate Statistics on Deformation Tensors. In Proceedings of the 2nd MICCAI Workshop on
Mathematical Foundations of Computational Anatomy, New York, NY, USA, 6 October 2008; pp. 36–47. Available online:
https://hal.science/inria-00630241/ (accessed on 1 July 2024).

17. Graf, W. Ricci Flow Gravity. PMC Phys. A 2007, 1, 1–13. [CrossRef]
18. do Carmo, M.P. Riemannian Geometry; Birkhäuser: Boston, MA, USA, 1992.
19. Chern, S.S. A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian manifolds. Ann. Math. 1943, 45, 747–752.

[CrossRef]
20. Buzano, R.; Nguyen, H.T. The higher-dimensional Chern–Gauss–Bonnet formula for singular conformally flat manifolds. J. Geom.

Anal. 2019, 29, 1043–1074. [CrossRef]
21. Albuquerque, R. Minkowski identities for hypersurfaces in constant sectional curvature manifolds. Differ. Geom. Appl. 2019,

67, 101561. [CrossRef]
22. Obata, M. The conjectures about conformal transformations. J. Differ. Geom. 1971, 6, 247–258. [CrossRef]
23. Obata, M. Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 1962, 14, 333–340.

[CrossRef]
24. Obata, M. Conformal transformations of Riemannian manifolds. J. Differ. Geom. 1970, 4, 311–333. [CrossRef]
25. Poor, W.A. Differential Geometric Structures; McGraw-Hill: New York, NY, USA, 1981.
26. Rio, E.G.; Kupeli, D.N.; Ünal, B. On a differential equation characterizing Euclidean spheres. J. Differ. Equ. 2003, 194, 287–299.

[CrossRef]
27. Warner, F. Foundations of Differentiable Manifolds and Lie Groups; Springer: New York, NY, USA, 1983.
28. Yano, K. Integral Formulas in Riemannian Geometry; Marcel Dekker Inc.: New York, NY, USA, 1970.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://hal.science/inria-00630241/
http://dx.doi.org/10.1186/1754-0410-1-3
http://dx.doi.org/10.2307/1969302
http://dx.doi.org/10.1007/s12220-018-0029-z
http://dx.doi.org/10.1016/j.difgeo.2019.101561
http://dx.doi.org/10.4310/jdg/1214430407
http://dx.doi.org/10.2969/jmsj/01430333
http://dx.doi.org/10.4310/jdg/1214429505
http://dx.doi.org/10.1016/S0022-0396(03)00173-6

	Introduction
	Preliminaries
	Almost Ricci Solitons Isometric to a Sphere
	Hodge Decomposition of Soliton Vector Field and Applications
	Conclusions
	References

