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Abstract: This paper introduces an assessment method for shipboard spare parts requirements based
on a whole-part repair strategy, aimed at enhancing the availability and combat effectiveness of naval
equipment. Addressing the shortcomings of traditional repair strategies, this study innovatively
adopts a whole-part rotation repair approach to reduce repair times and improve the rapid response
capability of equipment. An evaluation model for support probability and fill rate is established,
and Monte Carlo simulation techniques are applied to simulate the impact of different maintenance
strategies on spare parts demand and equipment availability. This study also conducts a sensitivity
analysis of key parameters, including Mean Time Between Failures (MTBF), repair demand probabil-
ity, and faulty part repair cycle, to assess their influence on spare parts requirements and equipment
availability. The results indicate that the whole-part repair strategy can effectively reduce spare
parts demand and enhance equipment availability. In conclusion, the whole-part repair strategy
demonstrates a distinct advantage in shipboard spare parts management, optimizing inventory
management while ensuring combat readiness. This research provides a novel analytical approach
for naval logistics and maintenance planning.

Keywords: ship spare parts; repair strategy; support probability; fill rate; equipment availability
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1. Introduction

In recent years, the security of spare parts has become a key challenge in the research
on military equipment security. Spare parts provide a material basis for the effective
implementation of equipment maintenance and activities of a ship. Therefore, the accurate
estimation of spare parts demand is critical for ensuring the normal operation of ship
equipment, enhancing the ship readiness rate, and improving the combat readiness level of
the troops [1].

To address this, several studies have developed methods for determining and forecast-
ing spare parts requirements. Some researchers have employed historical data on spare
part utilization to build forecasting models for spare parts demand, such as the exponential
smoothing model, which is commonly used [2,3]. In 1972, Croston proposed Croston’s
model based on the exponential smoothing model and demonstrated its superiority [4].
Syntetos et al. [5] and Teunter et al. [6] found that Croston’s method was inadequate for
some cases, resulting in high demand forecasts for spare parts. Subsequently, Syntetos
modified Croston’s method and developed the Syntetos–Boylan approximation method
(SBA). Amirkolaii [7] utilized neural networks and the mean squared error metric in con-
junction with the data from Dassault Aviation to forecast the demand for aircraft spares
and showed that the demand forecasting accuracy exceeded those of Croston’s method
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and the exponential smoothing method. As the Markov process has the advantage of mem-
orylessness and the ability to handle stochasticity and uncertainty in spare part demand
based on a probabilistic framework, it has been widely used for demand forecasting of
spares. Treharne et al. [8] demonstrated that spare parts demand can be viewed as a Markov
decision process and developed a demand model. Sun et al. [9] focused on the optimal
inspection/replacement Condition-Based Maintenance (CBM) strategy, employing the
Markov decision framework to derive maintenance decisions that minimize maintenance
costs. Using limited historical data on spare parts consumption, Cai et al. [10] developed
an improved gray Markov model by fusing the gray and Markov models and used it
to forecast spare parts demand. The Markov method assumes that the failure interval
time and repair time of spare parts obey the exponential distribution, which is typically
inconsistent with the actual patterns of spare parts usage. Moreover, establishing the state
transfer probability matrix with incomplete data proves a challenge [11].

Due to the highly stochastic nature of spare parts demand, demand forecasting meth-
ods that consider historical data are typically inadequate. In the last two decades, the
number of models for assessing spare parts demand based on safeguard indicator parame-
ters of spare parts, such as reliability, repairability, safeguard probability, life, and failure
rate, has significantly increased [12]. These models typically use a safeguard indicator
as a quantitative metric and estimate the spare parts demand for the desired level of the
safeguard indicator by analyzing the relationship between spare parts and the safeguard
indicator. Nouri et al. [13] used a covariate-based reliability model to estimate spare
parts demand using the reliability characteristics of the equipment. Their results showed
that the covariates had a significant impact on the spare parts demand. Rodrigues and
Yoneyyama [14] optimized a spare parts allocation scheme based on the equipment health
management data using acquisition cost as the optimization objective and the spare parts
fill rate as the constraint. Wang et al. [15] developed a spares allocation model with the
single spares fill rate and system fill rate as the constraints and system utilization rate as the
objective function. They used this model to determine the initial number of spares for tor-
pedo base level and base level maintenance. Ma et al. [16] investigated the spares problem
with multi-product, multi-cycle, and multi-stage assemblies with on-demand requirements
considering the cost structure of spares, assembly time, and other factors. Turrini et al. [17]
used the Kolmogorov–Smirnov fitting test and obtained the best-fit distribution of spares
consumption based on industrial and air force spares consumption data to predict spares
allocation. Liu et al. [18] developed a spare parts demand prediction model for the k/n(G)
system using an exponential distribution for the spare parts and determined the spare parts
demand characteristics.

Due to the complexity of these mathematical models, it is difficult to solve them using
analytical mathematical methods. Conventionally, researchers utilize simulation methods
such as the Monte Carlo method. Pankaj et al. [19] proposed a simulation method to
model troop equipment failures using genetic algorithms (GAs) and predict spare parts
requirements before and during the mission. Boutselis et al. [20] generated safeguard
base data via a simulation and predicted spare parts demand for different safeguard
scenarios using a Bayesian network model. Bai et al. [21] proposed a simulation-based
spare parts consumption prediction model and compared the prediction results with those
of other models. Their results demonstrated the effectiveness of predicting spare parts
demand using simulation-based methods. Johannsmann et al. [22] addressed the issue
of optimizing the utilization of spare parts warehouse space by developing a two-stage
stochastic programming model. They implemented a scenario-based approach in which
failures are simulated using a Monte Carlo method, ultimately determining the optimal
spare parts portfolio.

A review of the existing literature reveals that most of the existing techniques for
forecasting spare parts requirements are based on a replacement–repair strategy. The
replacement–repair strategy involves determining the type of spare parts based on the
smallest replaceable unit of the equipment. When equipment failure occurs, the failed unit
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is first identified, and the failure is then rectified by replacing this unit. Larbi et al. [23]
proposed a methodology for numerically comparing three maintenance strategies: repair
upon failure, replacement only at the first occurrence of failure, and replacement at every
failure. They introduced a novel simulation algorithm to estimate the number of replace-
ments, and ultimately demonstrated through empirical evidence that the third strategy is
the most effective in reducing maintenance costs to a lower level. Li et al. [24] developed
optimization models for Scheduled Maintenance (SM) at the unit level and Condition-
Based Maintenance (CBM). Based on these, they established an optimization model for
a preventive opportunistic maintenance strategy under a hybrid unit-level maintenance
policy, which was solved using an optimization algorithm based on Monte Carlo simulation.
Su et al. [25] simulated a joint preventive maintenance strategy combining Condition-Based
Maintenance (CBM) and Time-Based Maintenance (TBM), introducing a novel approach
termed Time-Incomplete Maintenance (TBIM) based on TBM and imperfect repairs. They
further proposed a new joint preventive maintenance strategy integrating TBIM and CBM,
ultimately demonstrating the superiority and effectiveness of the proposed maintenance
methodology. Chen et al. [26] considered the practical factors of maintenance costs un-
der various maintenance strategies and proposed a new significant metric based on two
types of maintenance costs. This metric includes a failure-triggered replacement strategy
(replacing damaged components), a life-based component preventive replacement, and a
strategy for replacing components that have been in use for a period of time, as well as a
hybrid strategy combining the first two. They also provided methods for calculating the
importance measures of series and parallel systems based on maintenance costs.

However, the demand for spare parts is not only influenced by the ship’s equipment
lifespan and mission but also by the repair strategy when the equipment fails. Studies have
shown that although the conventional replacement repair strategy of using the smallest
replaceable unit as spare parts minimizes the repair time for faults, when the fault is
difficult to locate, disassembling and assembling the components proves challenging.
In addition, the equipment debugging requirements after replacement are higher, and
the replacement repair may take 60 days or longer, which severely affects equipment
availability and the onboarding rate of the ship. Therefore, the estimation of spare parts
demand must consider the impact of the mission requirements, spare parts specifications,
and maintenance methods of a ship [27,28].

Therefore, this paper addresses equipment failures that entail lengthy component
replacement times by first proposing a maintenance strategy based on the rotation repair of
whole parts of the ship. Under the condition of an exponential distribution, a model for eval-
uating the capability of spare parts support probability and fill rates is established. Utilizing
Monte Carlo simulation algorithms, the strategy simulates commonly employed naval
maintenance tactics, including failure-triggered replacement and Scheduled Maintenance
(SM). It calculates the required quantity of spare parts under given capability evaluation
indices and further analyzes the differences in spare parts demand and equipment avail-
ability compared to traditional component replacement strategies, thereby assessing the
advantages and disadvantages of the proposed maintenance strategy.

The remaining parts of this paper are organized as follows: Section 2 introduces
the whole parts rotation repair strategy, including the definition of whole parts and the
rotation repair process, as well as the maintenance strategy. Section 3 establishes models
for spare parts support probability and fulfillment rates based on two capability evaluation
indices. In Section 4, Monte Carlo methods are employed to generate failure information,
simulating failure-triggered replacement and Scheduled Maintenance (SM) strategies using
these models. Section 5 validates the proposed methods with a case study and analyzes
the results. Finally, Section 6 summarizes the entire work and discusses potential future
research directions.
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2. Maintenance Strategy Based on Rotational Repair of Whole Parts
2.1. Definition of Whole Parts of the Entire Machine

The whole parts of a ship compose its functional equipment and are an important
part of any ship. Typically, they include several parts and components in relatively inde-
pendent modules. Common whole parts include the inertial platform, antenna base, and
equipment chassis.

Determining the whole parts of a machine is based on the following two principles.
First, for maintenance projects that are difficult to carry out on-site and have a long

maintenance cycle, it is appropriate to follow the composition of the equipment structure
upwards to seek combinations that can be readily repaired and identify them as whole
parts of the entire machine. For instance, when equipment failure occurs, it takes at least
30 days to replace a component and complete the parameter calibration, whereas it takes
only 5 days to directly replace the combination of components that are a level above it.
Therefore, this combination can be identified as a whole part of the machine corresponding
to the failure.

Second, for maintenance projects with long fault localization times, it is appropriate
to seek combinations that can be readily repaired in accordance with the composition and
structure of the equipment and identify them as whole parts of the entire machine. For
example, when equipment failure occurs, it takes about seven days to locate the failure on
site, whereas it takes only one day to directly replace the corresponding component. In
such a case, this component can be identified as a whole part of the machine corresponding
to the failure.

2.2. Repair Process for the Rotation of Whole Parts of the Machine

As mentioned in Section 2.1, the repair strategy for whole parts of a machine is
designed for equipment failures that are time-consuming to repair using the conventional
changeover repair strategy. The exchange repair process can be divided into the following
three segments.

First, the typical faults of the equipment and its corresponding machine parts are
identified, and these parts are stocked as spare parts in the warehouse.

Next, when this fault occurs, the corresponding machine parts are directly removed
and replaced with the stocked machine parts to ensure a quick repair.

Finally, the replaced machine with faulty parts is sent for repair and then returned to
the warehouse for storage until further use after the repair is complete.

2.3. Repair Strategy for the Whole Parts of the Machine

The maintenance strategies commonly used for ships include the following two strategies:

(1) Fault-Triggered Replacement: This strategy is inherently reactive, focusing on moni-
toring equipment until a failure occurs, at which point immediate action is taken. The
central principle is to replace or repair a component solely upon its failure. Although
this method minimizes downtime prior to actual failure, it may result in unexpected
breakdowns. These breakdowns can be disruptive and expensive, particularly if they
impact critical systems.

(2) Scheduled Maintenance: Also known as preventative maintenance, this approach in-
volves systematic, planned maintenance activities executed according to a predefined
schedule. These schedules are typically based on time intervals, usage cycles, or spe-
cific performance metrics. The objective of Scheduled Maintenance is to preempt fail-
ures by maintaining equipment in an optimal working condition. This strategy helps
mitigate the unpredictability and potential severity associated with fault-triggered
scenarios but may inadvertently lead to over-maintenance. Over-maintenance entails
replacing parts more frequently than necessary, which can escalate costs.

This study evaluates these two prevalent maintenance strategies, weighing the pros
and cons of each to formulate an optimized maintenance plan that maximizes both efficiency
and reliability.
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3. Spare Parts Warranty Metrics Model for the Replacement Repair Strategy

To facilitate a better understanding of the various technical parameters and symbols
employed in this document, please refer to Table 1.

Table 1. Annotation Table.

m Number of spare parts A Equipment availability

Tm The lifespan of the m-th spare part MTBF Mean Time Between Failures

Sm
The lifespan of a system consisting

of m spare parts T1h Spare parts replacement
repair time

Fm(t)
The lifespan distribution function of

the m-th spare part T1x Equipment workshop
repair time

fm(t)
The probability density function of

the m-th spare part Ttotal Ship service life

N(t) The number of failures within time t tsim Simulate failure time

F(k)(t) The k-fold convolution of F(t) f ails Number of failures during
the mission

P Spare part support probability Tf ails Failure time during the mission

Pf Spare part fill rate f ails2 Number of failures during the
level repair period

p Level repair requirement probability Tf ails2
Failure time during the level

repair period

λ
The parameter of the

exponential distribution
Table 1 meticulously details the symbols, definitions, and applications of all critical variables.

3.1. Support Probability Models for Exponential Spare Parts

The support probability is one of the most commonly used indicators for spare parts
assurance. According to the Chinese military standard GJB4355, it is defined as the proba-
bility that spare parts are available when equipment failure occurs and a replacement is
needed. The mathematical expression for the support probability, when the number of
spare parts is m and the assurance time is T, can be defined as follows:

P = P{N(T) ≤ m} (1)

where N(T) is the number of failures within the time period T. Within the support period
T, multiple spare part replacement actions have been carried out. The support probability
can also be represented as

P =
ns

n
(2)

where ns denotes the number of successful spare part provisions, and n represents the total
number of spare part requests.

The spare parts support probability is frequently used for the spare parts allocation
of components in newly developed equipment, for which sufficient spare parts must be
stocked in advance to handle failures and production reorganization. However, using the
support probability to determine the spare parts support probability for ships typically
yields a conservative estimate. Therefore, the support probability model is suitable for deter-
mining the number of spare parts required for a small number of more critical components.

For a single piece of equipment, assume that m spares are allocated during the coverage
period (0, T], and let the life of m spares be T1, T2, · · · , Tm, which are independent of each
other and are a sequence of nonnegative continuous random variables. The distribution
and density functions of each spare part are Fm(t) and fm(t), respectively. Therefore, a
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system composed of spare parts can be regarded as a completely reliable cold reserve
system, and it is evident that the life of this system is

Sm = T1 + T2 + · · · Tm (3)

Thus, the lifetime distribution of the system is

F(t) = P{Sm ≤ t} = F1(t) ∗ F2(t) ∗ · · · ∗ Fm(t)

where Fi(t) is the lifetime distribution of the first i cell and ∗ denotes the convolution operation.

N(t) = sup{m, Sn ≤ t} (4)

{N(t), t > 0} is a time-continuous, state-discrete stochastic process with time space
(0, ∞) and state space {0, 1, 2, · · · }. N(t) is the number of failures occurring in time (0, t].
The events {N(t) ≥ k} and {Sk ≤ t} are equivalent and are expressed as the number of
failures occurring in time (0, t] being greater than k; therefore, the probability that exactly k
failures occur in time (0, t] is

P{N(t) = k} = P{N(t) ≥ k} − P{N(t) ≥ k + 1}
= P{Sk ≤ t} − P{Sk+1 ≤ t}
= F(k)(t)− F(k+1)(t)

(5)

where F(k)(t) is the k-fold convolution of F(t).
Then, the probability that the equipment will fail no more than m times in time (0, T],

i.e., the probability of safeguarding, is

P{N(T) ≤ m} =
m
∑

k=0
P{N(T) = k}

=
m
∑

k=0

[
F(k)(T)− F(k+1)(T)

]
= 1 − F(m+1)(T)

(6)

For a given spare parts support probability P(0 < P < 1), Equation (6) can be used to
find the demand for spare parts at time (0, T], as follows:

F(m+1)(T) = 1 − P (7)

When the parts follow an exponential distribution, the distribution function and
density function are, respectively,

f (t) = λe−λt, F(t) = 1 − e−λt (8)

where λ is the parameter of the exponential distribution f (t), indicating the failure rate
(the probability of a failure occurring). Then, its k th re-convolution is

F(k)(t) = e−λt
k

∑
i=0

(λt)i

i!
(−1)k−i (9)

According to Equation (7), the relationship between the demand for spare parts and
the spare parts support probability at time (0, T] can be obtained as [29,30]:

P = 1 − F(m+1) = 1 − e−λT
m

∑
i=0

(λT)i

i!
(10)
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3.2. Fill Rate Model for Exponential Spare Parts

Fill rate refers to the ratio of the spare parts stocked in the ship to meet the requirements
of equipment maintenance and support. It represents the extent to which spare parts can be
provided for the actual failure of equipment during the ship’s training mission. Therefore,
the fill rate is an important indicator to measure the number of spare parts required to meet
the mission requirements of the ship [31].

Assuming that the ship carries m identical spare parts during the mission, and con-
sidering the original part on the equipment as a part as well, the actual number of parts
carried by the ship is m + 1. The working time of the parts during the mission is T, and the
number of times the parts fail during the period is k. Based on these conditions, fill rate
is defined as the ratio of the number of times the spare parts are replaced and repaired to
the number of times the spare parts are actually required in time T, which is denoted as
Pf . Therefore, Pf is a discrete random variable that is related to random variable k in the
following way.

(1) When 0 ≤ k ≤ m, i.e., the actual number of failures of the component is less than the
number of spares, the fill rate of spares Pf is 1.

(2) When k > m, i.e., the actual number of failures of the component is greater than
the number of spares carried, the fill rate of spares Pf is m+1

k+1 . Here, the addition
of 1 in the numerator signifies that the component itself is considered a spare part;
further, the addition of 1 in the denominator signifies that to ensure normal operation
of the equipment, the demand for spare parts should be 1 more than the number
of component failures. The relationship between the fill rate Pf and the number of
failures k is presented in Table 2.

Table 2. Relationship between fill rate and number of failures.

X 0 1 · · · m m + 1 m + 2 · · ·
Y 1 1 · · · 1 m+1

(m+1)+1
m+1

(m+2)+1 · · ·

In summary, the relationship between the fill rate Pf and the number of failures k is
as follows.

Pf =

{
1 0 ≤ k ≤ m
m+1
k+1 m < k

(11)

Equation (11) expresses the fill rate of available spare parts during a single mis-
sion from a statistical perspective. To determine the expected guaranteed capacity of the
available quantity of spare parts and calculate the quantity of spare parts based on this
guaranteed capacity, the mathematical expectation of the fill rate Pf is defined as the fill
rate of spare parts.

For a spare part with an exponential distribution, let the failure rate be λ. Then, the
spare parts fill rate is

Pf (m, T) = EY =
1
T

∫ T

0
P(m, t)dt (12)

where P(m, t) is the initial support probability corresponding to the configuration of m spare
parts, as expressed in Equation (10). The detailed derivation is presented in Appendix A.
From the derivation process, it can be concluded that

Pf (m, T) > P(m, T), T > 0 (13)

For a given fill rate Pf (0 < Pf < 1), the spare parts requirement for time (0, T] can be
found using Equation (12).
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4. Spare Parts Requirement Algorithm Based on the Rotation Repair Strategy for
Whole Components

In the demand model for whole component spare parts, two scenarios must be
considered—first, the ship fails to perform spare parts replacement and repair during
the mission, and second, the ship carries out regular repairs [32]. The spare parts supply
system is appropriately simplified. When a component failure occurs, if the component is
stocked with spare parts for replacement, the faulty parts are immediately sent for repair,
and the repair time is not tracked. If there are no spare parts, the equipment is shut down
while waiting for the faulty parts to be repaired and returned before restarting the operation.
This principle is depicted in Figure 1.
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The simulation principle for the whole spare parts demand of the ship is presented in
Figure 2.
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To ensure the estimation accuracy of support probability P in the Monte Carlo simu-
lation method, the number of simulations must be maximized. According to the central
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limit theorem, when the number of simulations n is large enough, the distribution of the
simulation error ε > 0 converges to a normal distribution with the parameters (0, σ2).
According to the characteristics of the normal distribution, the 95% probability range is
within ±1.96 times the standard deviation from the mean, i.e.,

1.96σ ≥ ε (14)

The relationship between the standard deviation σ and the number of simulations n is
σ = σ0/

√
n, where σ0 is the overall standard deviation. Substituting this into Equation (14),

the number of simulations n must satisfy

n ≥ (1.96σ0/ε)2 (15)

This accuracy requirement can be guaranteed. Most of the equipment in the ship are
combined electromechanical systems, and the Chinese national standard stipulates that the
value of σ0 for electromechanical equipment is generally in the range of (0.5, 1.3) [33]. If
ε = 1%, the range of n is n ≥ 9604.

Equipment availability is the ratio of the time duration in which a particular piece of
equipment can be used normally to the total time duration. It can be calculated based on
its definition as [34]

A =
MTBF

MTBF + MTTR
(16)

where MTBF and MTTR are the mean time between failures and the mean time to repair
the equipment, respectively.

4.1. Equipment Failure Simulation

In the rotational repair strategy for whole parts of the entire machine, the ship fails to
perform spare parts replacement and repair during the mission. This principle is depicted
in Figure 3. A simulation is performed according to the law of equipment failure to predict
the consumption of spare parts.
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The simulation method comprises the following steps.
Step 1: The parameters, mean time between failures MTBF, replacement repair time

T1h, and ship service life Ttotal are specified.
Step 2: Fault moments tsim that obey the exponential distribution are generated. The

fault moments Tf ails and the number of faults f ails are recorded. Next, the different
distribution laws are simulated by changing the MTBF. For exponential spares whose
distribution function is expressed in Equation (8), simulated fault time random data are
generated such that they obey the exponential distribution, as follows:

tsim = − 1
λ
· ln(1 − R(t)) (17)
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Here, F(t) ∈ [0, 1] and λ = 1/MTBF. The algorithm generates a random number R(t)
in the range of [0, 1]. Substituting this into Equation (17) yields fault moment data that obey
the exponential distribution.

Step 3: The current mission time Tcurrent is updated. If the current mission time is less
than the service life of the ship Ttotal , Step 2 is repeated; if not, the simulation ends.

This simulation algorithm is depicted in Figure 4.
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Figure 4. Equipment failure simulation.

In the case of a base-level repair facility, spare parts are stocked to meet the require-
ments of multiple ships at the base. That is, the spares requirement for a whole component
j is the sum of the requirements for the component j for multiple ships in the base.

4.2. Grade Repair Simulation

Class repairs currently utilize a regular repair model based on calendar time repair
requirements. The regular repair model involves the following: first, the different types
of ship repair are carried out according to predetermined repair intervals expressed in
calendar time; second, the basic repair intervals and the probability of class repair are
determined primarily based on the type of the ship. The existing ship repair categories are
mainly divided into three categories—first-class, second-class, and third-class repair. A
schematic of grade repair is shown in Figure 5.
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Figure 5. Schematic of grade repair.

The following steps are involved in this process.
Step 1: The parameters, equipment class repair schedule Dj = [D1i, D2i, · · · , Dni],

(i = 1, 2, 3), and probability of repair requirements for Classes I, II, and III of the ship type
pi(i = 1, 2, 3) are specified.

Step 2: If the equipment must be repaired at the instant Dj, the number of failures
f ails2 and the repair time Tf ails2 are recorded; if not, Step 3 begins.

Step 3: If the maximum number of level repairs has been reached, the simulation is
terminated; if not, Step 2 is repeated.

This simulation algorithm is summarized in Figure 6.
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For a whole component, two statuses exist for level repair—needing repair and not
needing repair. That is, for the part j, there are two states, namely Xj = 0 or Xj = 1. If
Xj = 0, the component j does not need to be repaired; if Xj = 1, the component j must be
repaired. Therefore, the binomial distribution B(1, p) can be used to represent the state of
the whole part at the repair level. Assuming that the probability of demand for a major
component at a certain level of repair moment is p, the probability distribution law of
whether the component needs to be repaired at this level of repair moment is

P(Xj) =

{
p Xj = 1
1 − p Xj = 0

(18)

Subsequently, the random number function is used to generate a random number such
that the probability of generating 0 is 1 − p and the probability of generating 1 is p.

4.3. Statistics of Spare Parts Requirements

Obtaining the statistics of spare parts requirements involves the following steps.
Step 1: The parameters, number of spare parts m, and total number of times a fault

occurs that requires replacement f ailsj + f ails2j are specified. For part j, the moment of
failure of the part Tf ails and the time of the level repair Tf ails2 are merged. Next, the list is
sorted to form a new fault sequence list time0.

Step 2: The spare parts requirement based on the fault sequence list time0 and the
number of times a component fails and needs replacement Dem are calculated.

Step 3: For each replacement, if there are available spare parts, the number of spare
parts is reduced by 1 to indicate a replacement. Conversely, if there is no replaceable spare
part, the spare part fulfillment fails. This algorithm is depicted in Figure 7.

Step 4: If after traversing all the faults, the number of repairs must be changed, the
simulation is terminated; if not, Step 2 is repeated.

When the interval between two failures of part j is greater than the equipment work-
shop repair time T1x, i.e., time0(j, k) − time0(j, 1 : k − 1) < T1x(j), the defective part
exchanged in the last failure can be considered as repaired and used as a spare part, as
shown in Figure 8.

These steps are repeated n times, and the number of times the spare parts requirement

is less than or equal to the number of spare parts ns =
n
∑

i=1
(dem ≤ x) is counted. The

number of instances of successful fulfillment for each time n f and the total number of
failures requiring replacement f ailsj + f ails2j are then calculated. According to the law of
large numbers, for a sufficiently large number of trials, the spare parts support probability
can be expressed as

P =
ns

n
(19)

The spare parts fill rate can be expressed as

Pf =
1
n

n

∑
i=1

n f

f ails + f ails2
(20)

The equipment availability can be expressed as

Aj = 1 −
n f · T1hj + ( f ailsj + f ails2j − n f ) · T1xj

Ttotalj

(21)

The pseudo code for the key part of the simulation algorithm is found in Appendix B.
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Step 4: If after traversing all the faults, the number of repairs must be changed, the 
simulation is terminated; if not, Step 2 is repeated. 

Figure 7. Statistics of spare parts requirements.
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5. Example Analysis
5.1. Model Sensitivity Test

In this experiment, we take two major whole parts of a certain model of shipboard
radar equipment—the antenna pedestal and the antenna—as examples to conduct spare
parts demand forecasting and sensitivity analysis. Initially, by evaluating the maintenance
metric parameters of these components, we obtained parameter indicators Mean Time
Between Failures (MTBF), Repair level Demand probability (p), faulty part repair cycle
(T1x), and replacement repair cycle (T1h) as shown in Table 3.
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Table 3. Component repair parameters.

Component MTBF T1x T1h

Component1 antenna pedestal 1825 60 2
Component2 antenna 1095 150 1

The service life of this ship is 10,950 days, and the timing of level repairs during the
service period is as shown in Table 4.

Table 4. Schedule of level repairs.

Repair Level III III II III III I III III III

Repair window 1095 2190 3650 4745 5840 7300 8395 9490 10,585
Demand probability 0.2 0.2 0.5 0.2 0.2 0.8 0.2 0.2 0.2

We conducted a sensitivity analysis of support probability and fill rate, focusing on
the impact of Mean Time Between Failures (MTBF), Repair level Demand probability (p),
faulty part repair cycle (T1x), and the number of simulations (n) on system output.1. Impact
of MTBF.

We adjusted the value of MTBF, varying it through a series of multiplier factors (e.g.,
0.8, 1.0, 1.2 times) to assess its impact on support probability and fill rate.

The experiments showed that an increase in MTBF generally led to an improvement
in support probability, as a longer mean time between failures reduced component failure
frequency. Similarly, a higher MTBF also improved fill rate, indicating that the system is
more manageable in terms of resource demand.

Figure 9 displayed curves of support probability and fill rate under different MTBF
factors to visually demonstrate the impact of parameter changes.
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5.1.1. Impact of Repair Level Demand Probability (p)

We adjusted the probabilities of different levels of repair demand separately and
observed their impact on system performance.

The experiments revealed that an increase in the probability of level repairs demand
had an adverse effect on support probability, as more frequent repairs led to increased
spare parts demand. Similarly, higher level repair probabilities also reduced fill rate, as it
becomes more challenging to fulfill all repair tasks with limited resources.
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Figure 10 compared support probability and fill rate under different repair level demand
probabilities through multiple curves to demonstrate the effectiveness of repair strategies.
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5.1.2. Impact of Faulty Part Repair Cycle (T1x)

Varied faulty part repair cycle using different scaling factors to test its impact on
system metrics.

The experiments found that longer faulty part repair cycles typically reduced support
probability due to slower resource recovery. The impact on fill rate could also be negative, as
delayed repairs might result in insufficient spare parts available for component replacement.

Figure 11 displayed curves of support probability and fill rate under different faulty part
repair cycle conditions to highlight the importance of faulty part repair cycle management.
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5.1.3. Impact of Number of Simulations (n)

Experiments were conducted using multiple sets of simulation numbers (1000, 5000,
10,000) to test the effect of sample size on result stability and accuracy.

The experiments showed that with an increase in the number of simulations, the
curves of support probability and fill rate tended to become smoother and more stable, indi-
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cating improved repeatability and accuracy of results. Under conditions of low simulation
numbers, the results might be significantly affected by randomness.

Figure 12 compared result curves under different numbers of simulations to emphasize
the impact of sample size on result confidence.
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5.2. Impact of Repair Strategies on Metrics

In this experiment, a base is responsible for maintaining four ships of the same model,
whose Inertial Navigation Systems (INSs) have Inertial Measurement Unit (IMU) compo-
nents with a mean time between failures (MTBF) of 3650 days, following an exponential life
distribution. Data provided by maintenance experts indicate that the repair cycle for whole
parts replacement is 3 days, while the repair cycle for faulty components is 270 days. Based
on the echelon repair times shown in Table 2, the demand probabilities for level I, II, and III
repairs are 0.7, 0.3, and 0, respectively. These parameters were input into the simulation
algorithm, with 10,000 simulations conducted to evaluate the relationship between spare
parts demand and support probability and fill rate under the complete unit replacement
maintenance strategy. According to the crew’s experience, the total time for locating the
IMU fault, disassembling, and replacing the faulty component is approximately 30 days.
Under the normal maintenance strategy, we also calculated the relationship between spare
parts demand and support probability and fill rate. A comparative analysis of the results
from the two maintenance strategies is visually presented in Figure 13.

Subsequently, the availability of the Inertial Navigation System during the ships’ ser-
vice period, given different spare parts quantities under the two strategies, was calculated.
The results are presented in Table 5.

Table 5. Distribution of equipment availability.

n 0 1 2 3 4 5 ≥6

Whole parts replacement and repair 0.707 0.882 0.915 0.941 0.957 0.966 0.974
Normal exchange and repair 0.707 0.799 0.828 0.845 0.856 0.862 0.868

As shown in Table 5, a clear difference exists between the impacts of the whole compo-
nent changeover method and the normal changeover method on equipment availability.
This difference is illustrated in Figure 14.
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5.3. Impact of Repair Strategies on Multiple Types of Equipment

In this experiment, to validate the effectiveness and applicability of the simulation
algorithm in predicting spare parts demand for various equipment, this study selected
four types of critical equipment units from this class of ships as test subjects. During the
service period of the ships, all equipment reliability metrics are required to remain above
0.9. By applying the simulation algorithm, we determined the spare parts demand for
different types of equipment. The specific equipment parameters and simulation results
have been compiled in Table 6 for further analysis and discussion.

To evaluate the impact of different maintenance strategies on the availability of four
different types of equipment, we implemented various replacement strategies for each
equipment type based on the spare parts quantity conditions corresponding to the ful-
fillment rate indicator (which requires fewer spare parts) listed in Table 5. Under these
conditions, we calculated the availability of each equipment type. These calculations aim to
reveal how different maintenance strategies affect the operational availability of equipment
at specific spare parts supply levels. The detailed availability data have been compiled in
Table 7 and Figure 15.
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Table 6. Parameters and spare parts requirements for different types of equipment.

Serial
Number

Equipment
Type MTBF/Day

Replacement
Repair

Cycle/Day

Repair Cycle Time
for Defective

Parts/Day

Demand/Unit for
Support

Probability ≥ 0.9

Requirements/Unit
for Fill Rate ≥ 0.9

1 Navigation
device 1217 10 240 6 5

2 Reconnaissance
equipment 2283 15 90 3 3

3 Armament 3350 6 180 4 4

4 Communications
equipment 1460 8 200 5 4

Table 7. Equipment availability for different types of equipment.

Serial
Number Equipment Type Whole Parts Exchange

Availability
Normal Repair

Availability Difference

1 Navigation device 0.984 0.889 9.39%

2 Reconnaissance
equipment 0.988 0.926 6.32%

3 Armament 0.989 0.933 5.56%

4 Communications
equipment 0.977 0.852 12.5%
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The following conclusions can be drawn from these results.

(1) From Experiment 1, it can be observed that in the prediction and sensitivity analysis
of spare parts demand for naval radar equipment, increasing the mean time between
failures (MTBF) and shortening the repair cycle can effectively enhance the system’s
assurance probability and fulfillment rate. Meanwhile, moderately controlling the
probability of depot-level repair demand can prevent excessive growth in spare parts
demand, thereby maintaining system stability. Additionally, increasing the number
of simulations can significantly improve the accuracy and stability of the results,
ensuring the reliability of the analytical conclusions.

(2) When comparing the curves of support probability and fulfillment rate, we observed
that the fulfillment rate is generally higher than the support probability at the same
spare parts inventory level. This phenomenon is particularly pronounced when the
number of spare parts is small, especially when there are only 1 to 2 items. In such



Mathematics 2024, 12, 3053 19 of 25

cases, the support probability reflects a spare parts support capability that appears
overly conservative, potentially leading to spare parts overstock, increased inventory
costs, and management complexity.

Furthermore, the support probability curve shows a steep increase when the number
of spare parts reaches three to four items, which is particularly evident in Experiment 1.
This steep rise may pose challenges for support personnel in determining the optimal spare
parts inventory level, as the abrupt change in the curve could obscure the true pattern of
spare parts demand, thereby impacting the rational allocation of maintenance resources
and the accuracy of decision-making.

(3) In Figure 13, it is observable that there is a significant correlation between the demand
for spare parts and the maintenance strategy employed, under the same performance
metrics. This difference is particularly pronounced when the number of spare parts is
two or three. Specifically, under the implementation of a complete unit replacement
strategy, the maintenance cycle is shortened, allowing components to quickly regain
functionality. This results in an extended actual operational time for the components
over the entire lifespan of the ship. As the operational time of the components
increases, the probability of failure also rises, leading to a corresponding increase in
the demand for spare parts.

(4) Figure 14 shows that the complete component replacement strategy can significantly
enhance the availability of the inertial navigation system, especially when the number
of spare parts is limited. According to Table 7 and Figure 15, under the specified
requirement conditions, the complete component replacement strategy demonstrates
higher availability across all types of equipment examined. For example, for navi-
gation equipment, the availability with the complete replacement strategy is 98.4%,
compared to 88.9% with normal maintenance, a difference of 9.39%. Similar trends
are observed for reconnaissance equipment, weapon systems, and communication
devices, where the availability under the complete component replacement strategy
is 98.8%, 98.9%, and 97.7%, respectively, compared to 92.6%, 93.3%, and 85.2% un-
der the normal maintenance strategy, resulting in differences of 6.32%, 5.56%, and
12.5%, respectively.

6. Qualitative Analysis of Maintenance Strategy Costs

The cost differences between whole part replacement and normal repair can be ana-
lyzed from several perspectives:

1. Procurement Costs:

Whole part Replacement: Requires the procurement of entire components or assem-
blies, which typically incurs higher costs as purchasing complete units is often more
expensive than buying individual parts.

Normal Repair: Usually only requires the replacement of faulty parts, resulting in
lower procurement costs.

2. Inventory Costs:

Whole part Replacement: Necessitates a larger inventory of whole parts, leading to
higher inventory costs, including storage fees and potential obsolescence.

Normal Repair: Involves a diverse range of parts with smaller quantities per part,
potentially resulting in lower overall inventory costs.

3. Repair Time and Labor Costs:

Whole part Replacement: Offers faster replacement times with lower labor costs,
reducing equipment downtime.

Normal Repair: May require longer repair times with higher labor costs, resulting in
extended equipment downtime.

4. Equipment Downtime Costs:
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Whole part Replacement: Due to quicker repair times, downtime is minimized, thereby
reducing production losses or service interruptions.

Normal Repair: ** Longer downtime can lead to higher production or service inter-
ruption costs.

5. Skills and Training Costs:

Whole part Replacement: Requires relatively lower skill levels, leading to reduced
training costs.

Normal Repair: Demands higher technical skills, resulting in higher training costs for
specialized expertise.

6. Long-Term Economic Benefits:

Whole part Replacement: Although it may increase costs in the short term, it can
potentially reduce overall operational costs in the long term by minimizing downtime and
enhancing equipment availability.

7. Discussion and Conclusions
7.1. Discussion

This study presents a comprehensive analysis of the maintenance strategy based on the
rotational repair of whole parts for shipboard equipment. Through the application of Monte
Carlo simulations and a systematic evaluation of spare parts requirements, the research
provides valuable insights into the operational readiness and maintenance efficiency of
naval vessels.

1. Impact of Maintenance Strategy on Spare Parts Demand:

The findings indicate that the whole parts replacement strategy significantly influences
the demand for spare parts. This strategy, compared to traditional repair methods, not
only expedites the repair process but also leads to a moderate increase in the number of
spare parts required. This increase is justified by the enhanced equipment availability and
reduced downtime, which are critical for maintaining operational readiness.

2. Simulation Accuracy and Practical Implications:

The Monte Carlo simulation method employed in this study demonstrates high ac-
curacy in predicting spare parts demand and equipment availability. This method’s ef-
fectiveness is particularly evident in scenarios where traditional forecasting models fall
short due to the stochastic nature of equipment failures. The practical application of
these findings can lead to more informed decision-making in inventory management and
maintenance planning.

3. Equipment Availability and Operational Readiness:

The research underscores the importance of equipment availability in determining the
operational readiness of ships. The whole parts replacement strategy, despite requiring a
higher initial investment in spare parts, results in superior availability rates. This outcome is
crucial for military and commercial fleets where downtime can have significant operational
and financial implications.

4. Economic Considerations:

While the whole parts replacement strategy may incur higher procurement and in-
ventory costs initially, the long-term economic benefits in terms of reduced downtime
and maintenance costs are substantial. This strategy aligns with the shift towards proac-
tive maintenance practices that prioritize system reliability and longevity over immediate
cost savings.
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7.2. Conclusions

1. Superiority of Whole Parts Replacement Strategy:

The study concludes that the whole parts replacement strategy is superior in enhancing
equipment availability and reducing downtime compared to traditional repair methods.
This strategy aligns with modern maintenance practices that focus on system efficiency and
operational readiness.

2. Validation of Simulation Methodology:

The Monte Carlo simulation methodology used in this research proves to be a reliable
tool for predicting spare parts demand and evaluating maintenance strategies. Its accuracy
and flexibility in handling stochastic variables make it a valuable asset in maintenance
planning and resource allocation.

3. Economic Benefits of Proactive Maintenance:

The economic analysis suggests that despite the higher upfront costs associated with
the whole parts replacement strategy, the long-term benefits in terms of operational effi-
ciency and reduced maintenance overheads justify its implementation. This conclusion
supports the adoption of proactive maintenance strategies that prioritize long-term system
health over immediate cost considerations.

4. Recommendations for Future Research:

Future research should explore the integration of advanced predictive analytics and
machine learning algorithms to further refine spare parts demand forecasting. Addition-
ally, studies on the environmental impact and lifecycle costs associated with different
maintenance strategies could provide a more comprehensive evaluation framework for
maintenance decision-making.

In conclusion, this research presents a robust analytical framework for evaluating
maintenance strategies and spare parts management in naval applications. The findings
advocate for a shift towards more proactive and system-oriented maintenance practices
that enhance operational readiness and long-term economic viability.
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Appendix A

The discrete random variable X obeys the Poisson distribution, which is expressed as

P(X = k) =
(λT)k

k!
e−λT (A1)
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Then, the mathematical expectation of the fill rate Y is

Pf (m, T) = EY =
m
∑

i=0
P(X = i) +

∞
∑

i=m+1

m + 1
i + 1

P(X = i)

= P(m, T) +
∞
∑

i=m+1

m + 1
i + 1

(λT)i

i!
e−λT

= P(m, T) +
m + 1

λT

∞
∑

i=m+1

(λT)i+1

(i + 1)!
e−λT

= P(m, T) +
m + 1

λT

∞
∑

i=m+2

(λT)i

i!
e−λT

(A2)

As
∞
∑

i=0

(λT)i

i!
= eλT , Equation (A1) reduces to

Pf (m, T) = P(m, T) + e−λT m + 1
λT

(
eλT −

m+1
∑

i=0

(λT)i

i!

)
= P(m, T) +

m + 1
λT

(1 − P(m + 1, T))

(A3)

where P(m + 1, T) is the initial spare parts support probability for m + 1 spare parts during
the task time T.

To simplify the fill rate model, P(m + 1, T) in Equation (A2) can be split, as follows.

(m + 1)P(m + 1, T)

= (m + 1)
[

1 + λT + (λT)2

2! + · · ·+ (λT)m

m! + (λT)m+1

(m+1)!

]
e−λT

=

[
(m + 1) + mλT + (m − 1) (λT)2

2! + (m − 2) (λT)3

3! + · · ·+ 2 (λT)m−1

(m−1)! + (λT)m

m!

]
e−λT

+λT
[

1 + λT + (λT)2

2! + · · ·+ (λT)m−1

(m−1)! + (λT)m

m!

]
e−λT

(A4)

Substituting Equation (A3) into Equation (A1) yields

Pf (m, T) = m + 1 −


 (m + 1) + mλT + (m − 1) (λT)2

2! + (m − 2) (λT)3

3!

+ · · ·+ 2 (λT)m−1

(m−1)! + (λT)m

m!

e−λT


= 1

T

[
(m + 1)−1

λ (e−λT − 1)− mTe−λT − (m − 1) λT2

2! e−λT − (m − 2) λ2T3

3! e−λT − · · ·
−2 λm−2Tm−1

(m−1)! e−λT − λm−1Tm

m! e−λT

] (A5)

In Equation (A4), − 1
λ

(
e−λT − 1

)
=
∫ T

0 e−λtdt can be combined with Equation (A5),∫
xneaxdx =

1
a

xneax − n
a

∫
xn−1eaxdx (A6)

to obtain
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Pf (m, T) =
1
T


∫ T

0 e−λtdt + m
(∫ T

0 e−λtdt − Te−λT
)
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(m − 1)!
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m!
e−λT


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1
T
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∫ T
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1
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0
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0

(λt)m
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e−λtdt

]
=

1
T
∫ T

0 P(m, t)dt

(A7)

Appendix B

Algorithm A1: main

1. For each simulation i from 1 to n
2. For each type of whole part j from 1 to N1
3. Initialize variables
4. For each equipment k from 1 to N0(j)
5. Set the current task time of the equipment T_current(k) to 0
6. Set the failure count of the equipment n_fail(k) to 0
7. Initialize an array rec_fail_T to record the failure moments of the current

equipment as a zero array
8. While T_current(k) < T_total
9. Generate a failure moment t_sim
10. If T_current(k) + t_sim < T_total
11. Record the failure moment
12. Update the task time T_current(k)
13. Increment the failure count n_fail(k)
14. Else
15. Update the task time T_current(k)
16. end
17. end
18. end
19. Record and sort all failure moments for the jth type of whole part
20. Count the total number of failures for each type of whole part
21. end
22. Initialize failure moments and counts for level repair
23. For each type of whole part j from 1 to N1
24. For each level repair moment m
25. Decide based on probability whether maintenance is needed
26. If maintenance is needed
27. Record the failure count and the maintenance moment
28. end
29. end
30. end
31. Merge and sort all moments of failure
32. For each type of whole part
33. Calculate the demand based on failure moments and specified time intervals
34. Calculate the support probability
35. Calculate the fill rate
36. end
37. end
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