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Abstract: Conjugate gradient methods are widely used and attractive for large-scale unconstrained
smooth optimization problems, with simple computation, low memory requirements, and interesting
theoretical information on the features of curvature. Based on the strongly convergent property
of the Dai–Yuan method and attractive numerical performance of the Hestenes–Stiefel method, a
new hybrid descent conjugate gradient method is proposed in this paper. The proposed method
satisfies the sufficient descent property independent of the accuracy of the line search strategies.
Under the standard conditions, the trust region property and the global convergence are established,
respectively. Numerical results of 61 problems with 9 large-scale dimensions and 46 ill-conditioned
matrix problems reveal that the proposed method is more effective, robust, and reliable than the
other methods. Additionally, the hybrid method also demonstrates reliable results for some image
restoration problems.

Keywords: hybrid conjugate gradient method; acceleration scheme; sufficient descent property;
global convergence; ill-conditioned matrix; image restoration
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1. Introduction

In this paper, we consider the following unconstrained problem:

min
x∈Rn

f (x), (1)

where f : Rn → R is continuously differentiable, bound below, and its gradient is avail-
able. There are many effective methods for problem (1), such as Newton-type methods,
quasi-Newton-type methods, spectral gradient methods, and conjugate gradient (CG
for abbreviation) methods [1–11], etc. Meanwhile, there are also various free gradient
optimization tools such as Nelder–Mead, generalized simulated annealing, and genetic
algorithm [12–14], etc., for problem (1). In this part, we focus on CG methods and propose
a new hybrid CG method for a large-scale problem (1). Actually, CG methods are one of
the most effective methods for unconstrained problems, especially for large-scale cases,
due to their low storage and globally convergent properties [3], in which the iterative point
is usually generated by

xk+1 = xk + αkdk, k = 0, 1, . . . , (2)
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where xk is the current iteration; the scalar αk > 0 is the step length, determined by some
line search strategy; and dk is the search direction, defined by

dk =

{
−gk, if k = 0,
−gk + βkdk−1, if k ≥ 1,

(3)

where gk := g(xk) = ∇ f (xk) and βk is called the conjugate parameter. A number of CG
methods have been proposed by various modifications of the direction dk and the parameter
βk; see [4–11,15–20], etc. Some CG methods have strong convergence properties, but their
numerical performances may not be good in practice due to the jamming phenomenon [4].
These methods include Fletcher–Reeves (FR) [5], Dai–Yuan (DY) [6], and Fletcher (CD) [7],
with the following conjugate parameters:

βFR
k+1 =

∥gk+1∥2

∥gk∥2 , βDY
k+1 =

∥gk+1∥2

yT
k dk

, βCD
k+1 = −∥gk+1∥2

gT
k dk

,

where gk+1 = ∇ f (xk+1), yk = gk+1 − gk, and ∥ · ∥ stands for the Euclidean norm. On
the other hand, some other CG methods may perform well in practice, but their conver-
gence may be not guaranteed, especially for nonconvex functions. These methods include
Hestenes–Stiefel (HS) [8], Polak–Ribière–Polyak (PRP) [9,10], and Liu–Storey (LS) [11], with
the following conjugate parameters:

βHS
k+1 =

gT
k+1yk

yT
k dk

, βPRP
k+1 =

gT
k+1yk

∥gk∥2 , βLS
k+1 = −

gT
k+1yk

gT
k dk

.

In fact, these methods possess an automatically approximate restart feature which can
avoid the jamming phenomenon, that is, when the step sk is small, the factor yk tends to
zero, resulting in the conjugate parameter βk+1 becoming small and the new direction dk+1
approximating to the steepest descent direction −gk+1.

To attain good computational performance and maintain the attractive feature of
strong global convergence, many scholars have paid special attention to hybridizing these
CG methods. Specifically, the authors in [21] proposed a hybrid PRP-FR CG method (H1
method in [22]) and the corresponding conjugate parameter was defined as
βH1

k+1 = max
{

0, min{βFR
k+1, βPRP

k+1 }
}

. Moreover, based on the above hybrid conjugate pa-
rameter, a new form was proposed in [23], where the parameter was defined by βk+1 =
max{−βFR

k+1, min{βFR
k+1, βPRP

k+1 }}, and the global convergence property was established for
the general function without the convexity assumption. In [24], a hybrid of the HS
method and DY method was proposed in which the conjugate parameter was defined by
βH2

k+1 = max
{

0, min{βHS
k+1, βDY

k+1}
}

. The numerical results indicated that the above hybrid
method was more effective than the PRP algorithm. In the above hybrid CG methods,
the search direction was in the form of (3). Moreover, the authors in [25] proposed a new
hybrid three-term method in which the conjugate parameter is βH2

k+1 and the direction
is dk+1 = −gk+1 + (1 − λk+1)βH2

k+1dk + λk+1θk+1gk, where λk+1 is the convex parameter.
The above hybrid method demonstrates attractive numerical performance. Furthermore,
in [22], the authors proposed two new hybrid methods based on the above conjugate
parameters with different search directions. Concretely, the directions have the following
common form:

dk+1 = −
(

1 + βk+1
gT

k+1dk

∥gk+1∥2

)
gk+1 + βk+1dk, (4)

where βk+1 = βH1
k+1 or βk+1 = βH2

k+1. A remarkable feature of the above directions is that
the sufficient descent property is automatically satisfied, independent of the accuracy of
the line search strategy.
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Motivated by the above discussions, in this paper, we propose a new hybrid descent
CG method for large-scale nonconvex problems. The proposed hybrid method automati-
cally enjoys the sufficient descent property independent of the accuracy of the line search
technique. Furthermore, the global convergence for the general functions without convexity
is established under the standard conditions. Numerical results of 549 large-scale problems
and 46 ill-conditioned matrix problems indicate the proposed method is attractive and
promising. Finally, we also apply the proposed method to some image restoration problems,
which also verifies its reliability and effectiveness.

The rest of the paper is organized as follows. In Section 2, we propose a descent hybrid
CG method which is based on the MHS method and DY method. Moreover, the sufficient
descent property is satisfied independent of the accuracy of the line search techniques.
Global convergence is established for the general function in Section 3. Numerical results
are given in Section 4 to indicate the effectiveness and reliability of the proposed algorithm.
Finally, some conclusions are presented.

2. Motivation, Algorithm, and Sufficient Descent Property

As mentioned in the above section, the HS method is generally regarded as one of the
most effective CG methods, but its global convergence for general nonlinear functions is
still erratic. Additionally, the HS method does not guarantee the descent property during
the iterative process, that is, the condition gT

k dk < 0 may not be satisfied for ∀ k ≥ 1.
Therefore, many researchers have been devoted to designing some descent HS conjugate
gradient methods [4,24,26–30], etc. Specifically, to obtain an intuitively modified conjugate
parameter, the authors in [26] approximated the direction dTHS

k+1 by the two-term direction (3),
where dTHS

k+1 was defined by (4) with βk+1 = βHS
k+1. Concretely, the least squares problem

minβ ∥ − gk+1 + βk+1dk − dTHS
k+1 ∥

2 was solved. After some algebraic manipulations, the
unique solution was

βMHS
k+1 =

gT
k+1yk

yT
k dk

(
1 −

(gT
k+1dk)

2

∥gk+1∥2∥dk∥2

)
= βHS

k+1ϑk, (5)

where

ϑk = 1 −
(gT

k+1dk)
2

∥gk+1∥2∥dk∥2 . (6)

The above parameter and its modifications have some nice theoretical properties [26] and
the method with (5) and (3) performs well. Meanwhile, it is clear that if the exact line search
is adopted (i.e., gT

k+1dk = 0), it holds that βMHS
k+1 = βHS

k+1 = βPRP
k+1 .

To attain attractive computational performance and good theoretical properties, many
researchers have proposed hybrid CG methods. Among these methods, hybridizations of
the HS method and the DY method have shown promising numerical performance [31–34],
etc. The HS method has a nice property of automatically satisfying the conjugate condition
dT

k+1yk = 0 for ∀ k ≥ 0 independent of the accuracy of the line search strategies and the
convexity of the objective function and performs well in practice. On the other hand,
the DY method has remarkable convergence properties. These characteristics motivate
us to propose new hybridizations of the HS method and the DY method which not only
have attractive theoretical properties but also better numerical performance for large-scale
nonconvex problems.

In the following, we focus on the conjugate parameter βMHS
k+1 and propose a new hybrid

conjugate parameter of βDY
k+1 and βMHS

k+1 :

βN
k+1 = max

{
0, min

{
βDY

k+1, βMHS
k+1

}}
. (7)

Now, based on the new hybrid conjugate parameter βN
k+1 and the modified descent direc-

tion (8), we propose our hybrid algorithm (NMHSDY) in detail.
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It should be noted that the line search technique in Algorithm 1 is not fixed: It can be
selected by the users. Next, we show that the search direction dk generated by Algorithm 1
automatically has a sufficient descent property independent of any line search strategy.

Algorithm 1 New descent hybrid algorithm of MHS and DY methods (NMHSDY) for
nonconvex functions.
Step 0 . Input and Initialization. Select an initial point x0 ∈ Rn, parameter ε ≥ 0 and
compute f0 = f (x0) and g0 = g(x0). Set d0 = −g0 and k = 0;
Step 1. If ∥gk∥ ≤ ε, then stop;
Step 2. Compute step length αk along direction dk by some line search strategy;
Step 3. Let xk+1 = xk + αkdk;
Step 4. Compute the conjugate parameter βN

k+1 by (7) and the search direction dk+1 by

dk+1 = −
(

1 + βN
k+1

gT
k+1dk

∥gk+1∥2

)
gk+1 + βN

k+1dk, (8)

Step 5. Set k := k + 1 and go to Step 2.

Theorem 1. Let the search direction dk be defined by (8) in Algorithm 1. Then, for any line search
strategy, the sufficient descent property holds for nonconvex function f (x), that is,

gT
k dk = −∥gk∥2, ∀ k ≥ 0. (9)

Proof. By the definition of dk+1 in (8), we have

gT
k+1dk+1 = −∥gk+1∥2 − βk+1gT

k+1dk + βk+1gT
k+1dk = −∥gk+1∥2.

Since d0 = −g0, then dT
0 g0 = −∥g0∥2. All in all, (9) holds. This completes the proof.

3. Convergence for General Nonlinear Functions

In this section, the global convergence of the NMHSDY method is presented. Before
that, some common assumptions are listed.

Assumption 1. The level set L = {x ∈ Rn : f (x) ≤ f (x0)} is bounded, where x0 is the initial
point, i.e., there exists a positive constant D > 0 such that

∥x∥ ≤ D, ∀ x ∈ L. (10)

Assumption 2. In some neighborhood N of L, the gradient g(x) = ∇ f (x) is Lipschitz continuous,
i.e., there exists a constant L1 > 0 such that

∥g(x)− g(y)∥ ≤ L1 ∥x − y∥, ∀ x, y ∈ N. (11)

Based on the above assumptions, we further obtain that there exists a constant M > 0
such that

∥g(x)∥ ≤ M, ∀ x ∈ L. (12)

In fact, it holds that ∥g(x)∥ = ∥g(x) − g(x0) + g(x0)∥ ≤ ∥g(x) − g(x0)∥ + ∥g(x0)∥ ≤
L1∥x − x0∥ + ∥g(x0)∥ ≤ 2L1D + ∥g(x0)∥; hence, M can be 2L1E + ∥g(x0)∥ or larger
than that.

The line search strategy is another important element in iterative methods. In this part,
we take the standard Wolfe line search strategy:

f (xk + αkdk) ≤ fk + σ1αkgT
k dk, g(xk + αkdk)

Tdk ≥ σ2gT
k dk, (13)
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where 0 < σ1 < σ2 < 1. By property (9) and line search (13), it is satisfied that

fk+1 ≤ fk − σ1αk∥gk∥2 ≤ fk,

that is, the sequence { fk} is non-increasing and the sequence {xk} generated by Algorithm 1
is contained in the level set L. Since f is continuously differentiable and the set L is bounded,
then there exists a constant f ∗ such that

lim
k→∞

f (xk) = f ∗.

The Zoutendijk condition [35] plays an essential role in the global convergence of
nonlinear CG methods. For completeness, we here state the lemma but omit its proof.

Lemma 1. Suppose that Assumptions 1 and 2 hold. Consider any nonlinear CG method, in which
αk is obtained by the standard Wolfe line search (13) and dk is a descent direction (gT

k dk < 0). Then,
we have

∞

∑
k=1

(gT
k dk)

2

∥dk∥2 < ∞. (14)

Thereafter, the convergence property is presented in the following theorem for the
general functions without convexity assumption.

Theorem 2. Let Assumptions 1 and 2 hold and the sequence {xk} be generated by the NMHSDY

algorithm. Set lk+1 =
βN

k+1
βDY

k+1
, and if lk+1 ∈ [− 1−σ2

1+σ2
, 1 − σ2] holds, then we have

lim inf
k→∞

∥gk∥ = 0. (15)

Proof. We now prove (15) by contradiction and assume that there exists a constant µ > 0
such that

∥gk∥ ≥ µ, ∀ k ≥ 0. (16)

Let γk+1 be 1 + βN
k+1

gT
k+1dk

∥gk+1∥2 , then the direction (8) can be rewritten as

dk+1 = −γk+1gk+1 + βN
k+1dk.

After some algebraic manipulation, we have

∥dk+1∥2 = (βN
k+1)

2∥dk∥2 − 2γk+1gT
k+1dk+1 − γ2

k+1∥gk+1∥2.

Dividing both sides of the above equality by (gT
k+1dk+1)

2, from (9), we have

∥dk+1∥2

∥gk+1∥4 = (βN
k+1)

2 ∥dk∥2

∥gk+1∥4 +
2γk+1

∥gk+1∥2 −
γ2

k+1
∥gk+1∥2

= (βN
k+1)

2 ∥dk∥2

∥gk+1∥4 +
1

∥gk+1∥2 − (γk+1 − 1)2

∥gk+1∥2 ,

= l2
k+1

∥dk∥2

(dT
k yk)2

+
1

∥gk+1∥2 − (γk+1 − 1)2

∥gk+1∥2 ,

≤
l2
k+1

(1 − σ2)2
∥dk∥2

∥gk∥4 +
1

∥gk+1∥2 ≤ ∥dk∥2

∥gk∥4 +
1

∥gk+1∥2 , (17)
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where the first inequality holds by dT
k yk ≥ (σ2 − 1)gT

k dk = (1 − σ2)∥gk∥2 and the last
inequality holds by the bound for the scale lk+1. By (17) and ∥d0∥2 = ∥g0∥2, it holds that

∥dk∥2

∥gk∥4 ≤
k

∑
i=0

1
∥gi∥2 .

Then, by the above inequality and (16), it follows that

∥gk∥4

∥dk∥2 ≥ µ2

k + 1
,

which indicates that
∞

∑
k=1

∥gk∥4

∥dk∥2 =
∞

∑
k=1

(gT
k dk)

2

∥dk∥2 = ∞,

which contradicts the Zoutendijk condition (14). So, (15) holds.

Remark 1. In [24], the authors presented a class of hybrid conjugate parameters, one of which
is βk+1 = max{0, min{βDY

k+1, βHS
k+1}}, with the corresponding interval for lk+1 being [−(1 −

σ2)/(1 + σ2), 1]. It is reasonable that the interval in our paper is smaller since we take βMHS
k+1

instead of βHS
k+1 and 0 < ϑk ≤ 1.

In the following, we discuss the global convergence of Algorithm 1 for general non-
linear functions in the case of lk+1 /∈ [− 1−σ2

1+σ2
, 1 − σ2]. Motivated by the modified secant

conditions in [36,37], in this part, based on the Wolfe line search strategy (13), we consider
the following settings:

ȳk = yk + msk, (18)

where m > 0 is a constant. With the above setting, the modified conjugate
parameter becomes

βNN
k+1 = max

{
0, min

{
βNDY

k+1 , βNMHS
k+1

}}
, (19)

where βNDY
k+1 and βNMHS

k+1 are, respectively,

βNDY
k+1 =

∥gk+1∥2

ȳT
k sk

, βNMHS
k+1 =

gT
k+1ȳk

ȳT
k sk

(
1 −

(gT
k+1sk)

2

∥gk+1∥2∥sk∥2

)
.

Meanwhile, the corresponding direction turns to

dN
k+1 = −

(
1 + βNN

k+1
gT

k+1sk

∥gk+1∥2

)
gk+1 + βNN

k+1sk, (20)

The following lemma indicates the property of the scalar ȳT
k sk and ∥ȳk∥.

Lemma 2. Let ȳk be defined by (18); then, adopting the Wolfe line search strategy (13), we obtain

ȳT
k sk ≥ m∥sk∥2, (21)

and
∥ȳk∥ ≤ (L1 + m)∥sk∥. (22)

Proof. By the Wolfe line search strategy (13), we have

yT
k sk = (gk+1 − gk)

Tsk ≥ (σ2 − 1)gT
k sk ≥ (1 − σ2)αk∥gk∥2 ≥ 0,
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which indicates yT
k sk ≥ 0. Therefore, it holds that

ȳT
k sk = yT

k sk + m∥sk∥2 ≥ m∥sk∥2.

Hence, (21) holds. Meanwhile, we also have

∥ȳk∥ = ∥yk + msk∥ ≤ ∥yk∥+ m∥sk∥ ≤ (L1 + m)∥sk∥,

where the second inequality holds by Assumption 2. Hence, (22) holds. This completes
the proof.

In the following, we assume that Algorithm 1 never stops and there exists a constant
µ > 0 such that for all k, (16) holds.

Lemma 3. Suppose that Assumptions 1 and 2 and (16) hold. The sequences {xk} and {dN
k } are

generated by Algorithm 1 with the conjugate parameter βNN
k and adopting the Wolfe line search

technique (13). Then, there exists a positive constant Γ such that

∥gk∥ ≤ ∥dN
k ∥ ≤ (1 + 2Γ)∥gk∥. (23)

Proof. Based on the Wolfe line search technique (13), it holds that

ȳT
k dN

k = yT
k dN

k + mαk∥dN
k ∥2 ≥ yT

k dN
k = −(1 − σ2)gT

k dN
k = (1 − σ2)∥gk∥2, (24)

where the first inequality holds by the non-negativity of αk and the last inequality holds by
the sufficient descent property (9). Meanwhile, by (9) and the Cauchy–Schwartz inequality,
it holds that, for ∀ k ≥ 0,

∥gk∥∥dN
k ∥ ≥ −gT

k dN
k = ∥gk∥2,

which implies that from condition (16),

∥dN
k ∥ ≥ ∥gk∥ ≥ µ, ∀ k ≥ 0. (25)

By the definition of βNN
k+1, we obtain that

|βNN
k+1| ≤ max

{
∥gk+1∥2

|ȳT
k sk|

,
|gT

k+1ȳk|
|ȳT

k sk|

}
≤ max

{
∥gk+1∥2

m∥sk∥2 ,
∥gk+1∥∥ȳk∥

m∥sk∥2

}

≤ ∥gk+1∥
∥sk∥

max
{
∥gk+1∥
m∥sk∥

,
L1 + m

m

}
≤ ∥gk+1∥

∥sk∥
max

{
M

mᾱ∥dN
k ∥

,
L1 + m

m

}

≤ ∥gk+1∥
∥sk∥

max
{

M
mᾱ∥gk∥

,
L1 + m

m

}
≤ ∥gk+1∥

∥sk∥
max

{
M

mᾱµ
,

L1 + m
m

}
:= Γ

∥gk+1∥
∥sk∥

,

where the second inequality holds by (21), the third inequality holds by (22), the fourth
inequality holds by the condition αk ≥ α > 0 for all k ≥ 0, the fifth inequality holds by (25),
and the last inequality holds by the condition (16). Furthermore, we have∣∣∣∣∣βNN

k+1
gT

k+1sk

∥gk+1∥2

∣∣∣∣∣ ≤ |βNN
k+1|

∥gk+1∥∥sk∥
∥gk+1∥2 ≤ Γ

∥gk+1∥
∥sk∥

∥sk∥
∥gk+1∥

= Γ.

By the definition of dN
k in (20) and the above discussions, it holds that
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∥dN
k+1∥ ≤ ∥gk+1∥+

∣∣∣∣∣βNN
k+1

gT
k+1sk

∥gk+1∥2

∣∣∣∣∣∥gk+1∥+ |βNN
k+1|∥sk∥

≤ ∥gk+1∥+ Γ∥gk+1∥+ Γ
∥gk+1∥
∥sk∥

∥sk∥

= (1 + 2Γ)∥gk+1∥.

With the help of (25), we conclude that

∥gk+1∥ ≤ ∥dN
k+1∥ ≤ (1 + 2Γ)∥gk+1∥.

Hence, (23) holds. This completes the proof.

Theorem 3. Suppose that Assumptions 1 and 2 hold. The sequences {xk} and {dN
k } are generated

by Algorithm 1 with the conjugate parameter βNN
k and the Wolfe line search technique (13) is

adopted. Then, Algorithm 1 converges in the sense of (15).

Proof. We prove the conclusion by contradiction and assume that there exists a positive
constant µ such that (16) holds. Otherwise, Algorithm 1 converges in the sense of (15).
From (9), we conclude that the new direction enjoys the sufficient descent property. There-
fore, Lemma 1 holds, which implies that

+∞ =
+∞

∑
k=1

µ2

(1 + 2Γ)2 ≤
+∞

∑
k=1

∥gk∥2

(1 + 2Γ)2 =
+∞

∑
k=1

∥gk∥4

(1 + 2Γ)2∥gk∥2 ≤
+∞

∑
k=1

(gT
k dN

k )2

∥dN
k ∥2

< +∞,

where the first inequality holds by (16), the second inequality holds by (9) and (23), and the
last inequality holds by Lemma 1. However, that is a contradiction and the assumption
does not hold. So, the lim infk→+∞ ∥gk∥ = 0 holds. This completes the proof.

4. Numerical Performance

In this section, we focus on the numerical performance of Algorithm 1 and compare it
with several effective CG methods. In the experiment, we code these algorithms in Matlab
2016b and perform them on a PC computer, whose processor has AMD 2.10 GHz, RAM of
16.00 GB and the Windows 10 operating system.

4.1. Performance on Benchmark Problems

In this subsection, we check the performance of the NMHSDY method and compare it
with two effective modified HS methods in [26,28] and the hybrid method in [24]. In [26],
the authors proposed an effective modified HS method (MHSCG method for abbreviation)
in which the conjugate parameter is

βk+1 = max{0, β̄MHS
k+1 }, β̄MHS

k+1 = βMHS
k+1 − λ

(
∥yk∥ϑk

yT
k dk

)2

gT
k+1dk,

where λ > 1/4 is a parameter. The direction in [26] is in the form of (3) and the correspond-
ing method has attractive numerical performance. Dai and Kou in [28] introduced another
effective class of CG schemes (DK+ method for abbreviation) depending on the parameter
τk, where the corresponding conjugate parameter βk+1 is defined by

βDK
k+1(τk) = βHS

k+1 −
(

τk +
∥yk∥2

yT
k sk

−
yT

k sk

∥sk∥2

)
gT

k+1sk

yT
k dk

, sk = xk+1 − xk.
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The direction in [28] is also in the form of (3). To establish global convergence for general
nonlinear functions, a truncated strategy is used, that is,

βDK+
k+1 (τk) = max

{
βDK

k+1(τk), η
gT

k+1dk

∥dk∥2

}
,

where η ∈ [0, 1) is a parameter. The numerical results indicated the DK+ method has good
and reliable numerical performance. Dai and Yuan, in [24], proposed an effective hybrid
CG method (HSDY method for abbreviation) in which the conjugate parameter is

βk+1 = max{0, min{βDY
k+1, βHS

k+1}}.

The hybrid method also has global convergence and attractive numerical performance.
In the following, we focus on the numerical performance and the large-scale un-

constrained problems in Table 1 (see [38] for details). In order to improve numerical
performance, Andrei, in [39], proposed an accelerated strategy which modified the step in
a multiplicative manner. In this part, we also utilize this strategy and regard Algorithm 1
with the accelerated strategy as Algorithm 1. To compare the conjugate parameters and the
search directions fairly, here we adopt the Wolfe line search technique (13) for all methods.

Table 1. The test problems.

No. Problem No. Problem

1 Extended Freudenstein and Roth Function 32 ARWHEAD (CUTE)
2 Extended Trigonometric Function 33 NONDIA (Shanno-78) (CUTE)
3 Extended Rosenbrock Function 34 DQDRTIC (CUTE)
4 Extended Beale Function 35 EG2 (CUTE)
5 Extended Penalty Function 36 DIXMAANA (CUTE)
6 Perturbed Quadratic Function 37 DIXMAANB (CUTE)
7 Raydan 1 Function 38 DIXMAANC (CUTE)
8 Raydan 2 Function 39 DIXMAANE (CUTE)
9 Diagonal 3 Function 40 Broyden Tridiagonal

10 Generalized Tridiagonal-1 Function 41 Almost Perturbed Quadratic
11 Extended Tridiagonal-1 Function 42 Tridiagonal Perturbed Quadratic
12 Extended Three Exponential Terms 43 EDENSCH Function (CUTE)
13 Generalized Tridiagonal-2 44 VARDIM Function (CUTE)
14 Diagonal 4 Function 45 LIARWHD (CUTE)
15 Diagonal 5 Function 46 DIAGONAL 6
16 Extended Himmelblau Function 47 DIXMAANF (CUTE)
17 Generalized PSC1 Function 48 DIXMAANG (CUTE)
18 Extended PSC1 Function 49 DIXMAANH (CUTE)
19 Extended Powell Function 50 DIXMAANI (CUTE)
20 Extended Cliff Function 51 DIXMAANJ (CUTE)
21 Quadratic Diagonal Perturbed Function 52 DIXMAANK (CUTE)
22 Extended Wood Function 53 DIXMAANL (CUTE)
23 Extended Hiebert Function 54 DIXMAAND (CUTE)
24 Quadratic Function QF1 55 ENGVAL1 (CUTE)
25 Extended Quadratic Penalty QP1 Function 56 COSINE (CUTE)
26 Extended Quadratic Penalty QP2 Function 57 Extended DENSCHNB (CUTE)
27 A Quadratic Function QF2 Function 58 Extended DENSCHNF (CUTE)
28 Extended EP1 Function 59 SINQUAD (CUTE)
29 Extended Tridiagonal-2 Function 60 Scaled Quadratic SQ1
30 BDQRTIC (CUTE) 61 Scaled Quadratic SQ2
31 TRIDIA (CUTE)

In the experiment, for each problem we consider nine large-scale dimensions with
300, 600, 900, 3000, 6000, 9000, 30,000, 60,000 and 90,000 variables. The parameters used in
the Wolfe line search are σ1 = 0.20 and σ2 = 0.85. The other parameters for the MHSCG
method and the DK+ method are as default.
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During the progress, the Himmeblau stopping rule is adopted: if | f (xk)| > ε1, let
stop1 =

| f (xk)− f (xk+1)|
| f (xk)|

, otherwise, stop1 = | f (xk)− f (xk−1)|. If the conditions ∥gk∥ ≤ ε or
stop1 ≤ ε2 are satisfied, then the progress is stopped, where the values of parameters ε, ε1,
and ε2 are ε = 10−6, and ε1 = ε2 = 10−5. Meanwhile, we also stop the algorithm when the
number of iterations is greater than 5000.

In order to present the performances of methods more intuitively, the tool in [40]
is adopted to analyze the profiles of these methods. Robustness and efficiency rates are
readable on the right and left vertical axes of the corresponding performance profiles,
respectively. To present a detailed numerical comparison, two different scales have been
considered for the τ-axis. One is τ ∈ [1, 1.5], which shows what happens for the values of τ
near to 1. The other is used to present the trend for large values of τ. In Figures 1–3, we,
respectively, show the performance of these methods relative to the number of iterations
(NI), the number of function-gradient valuations (NFG; which is the sum of the number of
function valuations and gradient valuations), and the CPU time consumed in seconds.
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Figure 1. Performance profiles of the methods in the number of iterations case.
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Figure 3. Performance profiles of the methods in the CPU time consumed case.

From Figures 1–3, we have that Algorithm 1 is comparable and a little more effective
than the HSDY method, the DK+ method, and the MHSCG method for the above problems.
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Meanwhile, Algorithm 1, with the accelerated strategy, is much effective and performs
best in the experiment, which indicates that the accelerated technique indeed works and
reduces the number of iterations and the number of function and gradient evaluations.

4.2. Comparison for Stability

In this subsection, we consider the numerical stability of Algorithm 1 for the ill-
conditioned matrix problems and compare it with the MHSCG method in [26]. In fact, the
quadratic objective function f (x) = xTIx of (1) is ill-conditioned if matrix I ∈ Rn×n is in
the form

Ii,j =
1

i + j − 1
, i, j = 1, 2, . . . , n.

It is clear that the matrix I is ill-conditioned and positive definite [41], with different
dimensions n = 5, 6, . . . , 50. Furthermore, the authors in [42] show that the ℓ∞ norm
condition number of the Hessian matrix I gradually increases from 9.4366 × 105 for n = 5
to 6.9007 × 1020 for n = 50. In the following, we explore the numerical performance. The
experimental environment, the parameter values, and the stop rule remain the same as
in the above subsection. Meanwhile, the initial point is selected as x0 = (10, 10, · · · , 10).
The corresponding numerical results are presented in Tables 2 and 3, in which Dim is the
dimension of x, NI means the number of iterations, NFG is the sum of the number of
function and gradient evaluations, Time means the CPU time consumed in seconds, and f ∗

denotes the optimal function obtained by the methods.

Table 2. Numerical results of the MHSCG method and Algorithm 1 in 5–40 dimensions.

MHSCG Method Algorithm 1

Dim NI NFG Time f∗ NI NFG Time f∗

5 5 22 0.000000 0.000000 5 22 0.000000 0.000000

6 13 48 0.031250 0.000000 13 48 0.000000 0.000000

7 21 72 0.000000 0.000000 21 72 0.000000 0.000000

8 21 72 0.000000 0.000000 21 72 0.015625 0.000000

9 27 92 0.000000 0.000006 24 82 0.000000 0.000000

10 41 143 0.000000 0.000007 29 97 0.000000 0.000000

11 75 246 0.000000 0.000009 55 192 0.000000 0.000000

12 58 203 0.000000 0.000003 70 249 0.000000 0.000008

13 57 190 0.000000 0.000004 70 246 0.000000 0.000000

14 86 276 0.031250 0.000008 123 429 0.000000 0.000000

15 75 264 0.031250 0.000009 89 314 0.000000 0.000009

16 98 330 0.000000 0.000008 52 177 0.000000 0.000001

17 24 82 0.000000 0.000002 66 232 0.000000 0.000002

18 65 215 0.031250 0.000009 28 97 0.000000 0.000000

19 31 105 0.000000 0.000007 27 94 0.000000 0.000000

20 111 373 0.031250 0.000009 131 452 0.000000 0.000010

21 117 379 0.031250 0.000008 31 108 0.000000 0.000000

22 96 333 0.000000 0.000010 66 236 0.000000 0.000000

23 68 233 0.000000 0.000009 85 303 0.031250 0.000000
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Table 2. Cont.

MHSCG Method Algorithm 1

Dim NI NFG Time f∗ NI NFG Time f∗

24 50 175 0.031250 0.000000 43 151 0.000000 0.000000

25 96 318 0.000000 0.000009 103 377 0.000000 0.000000

26 113 370 0.000000 0.000009 112 410 0.000000 0.000004

27 22 78 0.000000 0.000000 129 473 0.031250 0.000001

28 104 372 0.000000 0.000009 24 87 0.000000 0.000000

29 156 513 0.000000 0.000010 130 449 0.000000 0.000001

30 54 185 0.000000 0.000001 121 446 0.000000 0.000007

31 39 144 0.000000 0.000003 97 341 0.000000 0.000008

32 26 97 0.000000 0.000001 79 292 0.031250 0.000001

33 87 309 0.000000 0.000010 66 234 0.031250 0.000002

34 58 213 0.000000 0.000006 60 217 0.031250 0.000000

35 97 327 0.000000 0.000009 25 95 0.000000 0.000002

36 24 86 0.000000 0.000000 132 481 0.000000 0.000003

37 23 84 0.000000 0.000004 55 192 0.000000 0.000001

38 93 312 0.046875 0.000010 40 142 0.000000 0.000003

39 148 487 0.046875 0.000005 124 442 0.140625 0.000010

40 66 231 0.000000 0.000007 136 496 0.031250 0.000007

Table 3. Numerical results of the MHSCG method and Algorithm 1 in 41–50 dimensions.

MHSCG Method Algorithm 1

Dim NI NFG Time f∗ NI NFG Time f∗

41 76 267 0.031250 0.000005 65 239 0.000000 0.000005

42 130 438 0.046875 0.000008 85 302 0.000000 0.000010

43 164 546 0.031250 0.000009 136 488 0.000000 0.000009

44 184 594 0.031250 0.000007 29 103 0.000000 0.000006

45 17 64 0.000000 0.000000 17 64 0.000000 0.000000

46 155 519 0.031250 0.000010 62 222 0.000000 0.000000

47 123 421 0.031250 0.000010 107 379 0.031250 0.000010

48 20 74 0.000000 0.000000 68 250 0.015625 0.000010

49 135 473 0.031250 0.000010 102 375 0.031250 0.000010

50 178 594 0.062500 0.000010 151 542 0.031250 0.000009

From Tables 2 and 3, it can be found that for the dimensions from 5 to 50, Algorithm 1
and the MHSCG method successfully solve all of them and obtain reasonable optimal
function values, which are all not greater than 10−5. For most problems, Algorithm 1 needed
fewer iterations and function and gradient evaluations and obtained better optimal values.
In order to show numerical performance intuitively, here we also adopt the performance
profiles in [40] for the NI and NFG cases. The corresponding performance profiles are given
in Figures 4 and 5.
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Figure 4. Performance profiles of Algorithm 1 and the MHSCG method in NI case.
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Figure 5. Performance profiles of Algorithm 1 and the MHSCG method in NFG case.

Figure 4 shows that Algorithm 1 and the MHSCG method solve these testing problems
with the least total number of iterations in 63% and 48% of cases, respectively. Figure 5
indicates that Algorithm 1 and the MHSCG method solve these testing problems with
the least total number of function and gradient evaluations in 61% and 50% of cases,
respectively. All in all, the numerical results show that Algorithm 1 is more effective and
stable than the MHSCG method for these ill-conditioned matrix problems.

4.3. Application to Image Restoration

In this subsection, we apply Algorithm 1 to some image restoration problems [43–45].
During the process, the normal Wolfe line search technique is adopted, the corresponding
parameters remain unchanged, and two noise level cases for the Barbara.png (512 × 512)
and Baboon.bmp (512 × 512) images are considered. In this part, we stop the process when
the following criteria are both satisfied:

| f (xk+1)− f (xk)|
| f (xk)|

< 10−3, ∥g(xk)∥ < 10−3(1 + | f (xk)|).

Meanwhile, to assess the restoration performance qualitatively, we also utilize the peak
signal to noise ratio [45] (PSNR), which is defined by PSNR = 10 log10

2552
1

M×N ∑i,j(ur
i,j−u∗

i,j)
2 ,

where M and N are the true image pixels, and ur
i,j and u∗

i,j denote the pixel values of the
restored image and the original image, respectively. For the noise level, we consider two
cases: 20% (a low-level case) and 60% (a high-level case). The consumed CPU time and the
corresponding PSNR values are given in Table 4. Meanwhile, the detailed performances
are presented in Figures 6 and 7, respectively.
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Table 4. Test results for Algorithm 1 and the MHSCG method.

Algorithm 1 MHSCG Method
Image Noise Level PSNR CPU Time PSNR CPU Time

Barbara 20% 29.6638 2.265625 29.5831 2.578125
Baboon 20% 27.9223 2.609375 27.8455 3.250000
Barbara 60% 23.1256 3.593750 23.1103 3.765625
Baboon 60% 21.1836 3.484375 21.1582 3.671875

Figure 6. The noisy Barbara image, corrupted by salt-and pepper noise (the first column); the images
restored via Algorithm 1 (the second column), and via the MHSCG method (the third column).

Figure 7. The noisy Baboon image, corrupted by salt-and pepper noise (the first column); the images
restored via Algorithm 1 (the second column), and via the MHSCG method (the third column).

From Table 4 and Figures 6 and 7, we have that Algorithm 1 and the MHSCG method
can all solve the image restoration problems successfully within a suitable time, and
Algorithm 1 seems to perform a little better than the MHSCG method.

5. Conclusions

Conjugate gradient methods are attractive and effective for large-scale unconstrained
optimization smooth problems due to their simple computation and low memory require-
ments. The Dai–Yuan conjugate gradient method has good theoretical properties and



Mathematics 2024, 12, 3088 15 of 16

generates a descent direction in each iteration. Whereas, the Hestenes–Stiefel conjugate
gradient method automatically satisfies the conjugate condition yT

k dk+1 = 0 without any
line search technique and performs well in practice. By the above discussions, we propose
a new descent hybrid conjugate gradient method. The proposed method has a sufficient
descent property independent of any line search technique. Under some mild conditions,
the proposed method is globally convergent. In the experiments, we first consider 61 uncon-
strained problems with 9 different dimensions up to 90, 000. Thereafter, 46 ill-conditioned
matrix problems are also tested. The primary numerical results show that the proposed
method is more effective and stable. Finally, we apply the hybrid method to some image
restoration problems. The results indicate our method is attractive and reliable.

Author Contributions: Conceptualization, S.W., X.W., Y.T. and L.P.; methodology, S.W. and X.W.;
software, X.W.; validation, X.W., L.P. and Y.T.; formal analysis, X.W., Y.T. and L.P. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partially supported by Science Foundation of Zhejiang Sci-Tech University
(ZSTU) under Grant No. 21062347-Y.

Data Availability Statement: All data included in this study are available upon reasonable request.

Conflicts of Interest: The authors declare no competing interests.

References
1. Li, D.; Fukushima, M. A global and superlinear convergent Gauss-Newton-based BFGS method for symmetric nonlinear

equations. SIAM J. Numer. Anal. 1999, 37, 152–172. [CrossRef]
2. Yuan, G.; Wei, Z.; Wang, Z. Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex minimiza-

tion. Comput. Optim. Appl. 2013, 54, 45–64. [CrossRef]
3. Dai, Y.; Han, J.; Liu, G.; Sun, D.; Yin, H.; Yuan, Y. Convergence properties of nonlinear conjugate gradient methods. SIAM J.

Optim. 2000, 10, 345–358. [CrossRef]
4. Hager, W.; Zhang, H. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim.

2005, 16, 170–192. [CrossRef]
5. Fletcher, R.; Reeves, C.M. Function minimization by conjugate gradients. Comput. J. 1964, 7, 149–154. [CrossRef]
6. Dai, Y.; Yuan, Y. A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 1999, 10,

177–182. [CrossRef]
7. Fletcher, R. Practical Methods of Optimization; Unconstrained Optimization; John Wiley & Sons: New York, NY, UAS, 1987;

Volume 1.
8. Hestenes, R.; Stiefel, L. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 1952, 49, 409–436.

[CrossRef]
9. Polyak, B.T. The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys. 1969, 9, 94–112. [CrossRef]
10. Polak, E.; Ribière, G. Note sur la convergence de méthodes de directions conjuguées. Rev. Fr. Informat Rech. Opér. 1969, 16, 35–43.

[CrossRef]
11. Liu, Y.; Storey, C. Efficient generalized conjugate gradient algorithms Part 1: Theory. J. Optim. Theory Appl. 1991, 69, 129–137.

[CrossRef]
12. Xiang, Y.; Gong, X.G. Efficiency of generalized simulated annealing. Phys. Rev. E 2000, 62, 4473–4476. [CrossRef] [PubMed]
13. Yuan, Q.; Qian, F. A hybrid genetic algorithm for twice continuously differentiable NLP problems. Comput. Chem. Eng. 2010, 34,

36–41. [CrossRef]
14. Gao, F.C.; Han, L.X. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput. Optim. Appl. 2012, 51,

259–277. [CrossRef]
15. Yuan, G.; Wang, X.; Sheng, Z. The projection technique for two open problems of unconstrained optimization problems. J. Optim.

Theory Appl. 2020, 186, 590–619. [CrossRef]
16. Yuan, G.; Wang, X.; Sheng, Z. Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions.

Numer. Algorithms 2020, 84, 935–956. [CrossRef]
17. Mousavi, A.; Esmaeilpour, M.; Sheikhahmadi, A. A new family of Polak-Ribière-Polyak conjugate gradient method for impulse

noise removal. Soft Comput. 2023, 27, 17515–17524. [CrossRef]
18. Polyak, B.T. Introduction to Optimization; Optimization Software Inc., Publications Division: New York, NY, USA, 1987.
19. Wang, X.; Yuan, G.; Pang, L. A class of new three-term descent conjugate gradient algorithms for large-scale unconstrained

optimization and applications to image restoration problems. Numer. Algorithms 2023, 93, 949–970. [CrossRef]
20. Wang, X. A class of spectral three-term descent Hestenes-Stiefel conjugate gradient algorithms for large-scale unconstrained

optimization and image restoration problems. Appl. Numer. Math. 2023, 192, 41–56. [CrossRef]

http://doi.org/10.1137/S0036142998335704
http://dx.doi.org/10.1007/s10589-012-9485-8
http://dx.doi.org/10.1137/S1052623494268443
http://dx.doi.org/10.1137/030601880
http://dx.doi.org/10.1093/comjnl/7.2.149
http://dx.doi.org/10.1137/S1052623497318992
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1016/0041-5553(69)90035-4
http://dx.doi.org/10.1051/m2an/196903R100351
http://dx.doi.org/10.1007/BF00940464
http://dx.doi.org/10.1103/PhysRevE.62.4473
http://www.ncbi.nlm.nih.gov/pubmed/11088992
http://dx.doi.org/10.1016/j.compchemeng.2009.09.006
http://dx.doi.org/10.1007/s10589-010-9329-3
http://dx.doi.org/10.1007/s10957-020-01710-0
http://dx.doi.org/10.1007/s11075-019-00787-7
http://dx.doi.org/10.1007/s00500-023-09232-3
http://dx.doi.org/10.1007/s11075-022-01448-y
http://dx.doi.org/10.1016/j.apnum.2023.05.024


Mathematics 2024, 12, 3088 16 of 16

21. Touati-Ahmed, D.; Storey, C. Efficient hybrid conjugate gradient techniques. J. Optim.Theory Appl. 1990, 64, 379–397. [CrossRef]
22. Zhang, L.; Zhou, W. Two descent hybrid conjugate gradient methods for optimization. J. Comput. Appl. Math. 2008, 216, 251–264.

[CrossRef]
23. Gilbert, J.; Nocedal, J. Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 1992, 2,

21–42. [CrossRef]
24. Dai, Y.; Yuan, Y. An efficient hybrid conjugate gradient method for unconstrained optimization. Ann. Oper. Res. 2001, 103, 33–47.

[CrossRef]
25. Jiang, X.; Liao, W.; Yin, J.; Jian, J. A new family of hybrid three-term conjugate gradient methods with applications in image

restoration. Numer. Algorithms 2022, 91, 161–191. [CrossRef]
26. Amini, K.; Faramarzi, P.; Pirfalah, N. A modified Hestenes-Stiefel conjugate gradient method with an optimal property. Optim.

Methods Softw. 2019, 34, 770–782. [CrossRef]
27. Narushima, Y.; Yabe, H.; Ford, J. A three-term conjugate gradient method with sufficient descent property for unconstrained

optimization. SIAM J. Optim. 2011, 21, 212–230. [CrossRef]
28. Dai, Y.; Kou, C. A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. SIAM J.

Optim. 2013, 23, 296–320. [CrossRef]
29. Woldu, T.; Zhang, H.; Zhang, X.; Yemane, H. A modified nonlinear conjugate gradient algorithm for large-scale nonsmooth

convex optimization. J. Optim. Theory Appl. 2020, 185, 223–238. [CrossRef]
30. Yuan, G.; Meng, Z.; Li, Y. A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations

and nonlinear equations. J. Optim. Theory Appl. 2016, 168, 129–152. [CrossRef]
31. Babaie-Kafaki, S.; Fatemi, M.; Mahdavi-Amiri, N. Two effective hybrid conjugate gradient algorithms based on modified BFGS

updates. Numer. Algorithms 2011, 58, 315–331. [CrossRef]
32. Livieris, I.; Tampakas, V.; Pintelas, P. A descent hybrid conjugate gradient method based on the memoryless BFGS update. Numer.

Algorithms 2018, 79, 1169–1185. [CrossRef]
33. Khoshgam, Z.; Ashrafi, A. A new hybrid conjugate gradient method for large-scale unconstrained optimization problem with

non-convex objective function. Comp. Appl. Math. 2019, 38, 186. [CrossRef]
34. Narayanan, S.; Kaelo, P. A linear hybridization of Dai-Yuan and Hestenes-Stiefel conjugate gradient method for unconstrained

optimization. Numer.-Math.-Theory Methods Appl. 2021, 14, 527–539.
35. Zoutendijk, G. Nonlinear Programming, Computational Methods; Integer & Nonlinear Programming: Amsterdam, The Netherlands,

1970; pp. 37–86.
36. Li, D.; Fukushima, M. A modified BFGS method and its global convergence in nonconvex minimization. J. Comput. Appl. Math.

2001, 129, 15–35. [CrossRef]
37. Babaie-Kafaki, S.; Ghanbari, R. A modified scaled conjugate gradient method with global convergence for nonconvex functions.

B Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 465–477. [CrossRef]
38. Andrei, N. An unconstrained optimization test functions collection. Environ. Ence Technol. 2008, 10, 6552–6558.
39. Andrei, N. An acceleration of gradient descent algorithm with backtracking for unconstrained optimization. Numer. Algorithms

2006, 42, 63–73. [CrossRef]
40. Dolan, E.; Moré, J. Benchmarking optimization software with performance profiles. Math. Program 2002, 91, 201–213. [CrossRef]
41. Watkins, S. Fundamentals of Matrix Computations; John Wiley and Sons: New York, NY, USA, 2002.
42. Babaie-Kafaki, S. A hybrid scaling parameter for the scaled memoryless BFGS method based on the ℓ∞ matrix norm. Int. J.

Comput. Math. 2019, 96, 1595–1602. [CrossRef]
43. Yu, G.; Huang, J.; Zhou, Y. A descent spectral conjugate gradient method for impulse noise removal. Appl. Math. Lett. 2010, 23,

555–560. [CrossRef]
44. Yuan, G.; Lu, J.; Wang, Z. The PRP conjugate gradient algorithm with a modified WWP line search and its application in the

image restoration problems. Appl. Numer. Math. 2020, 152, 1–11. [CrossRef]
45. Bovik, A. Handbook of Image and Video Processing; Academic: New York, NY, USA, 2000.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BF00939455
http://dx.doi.org/10.1016/j.cam.2007.04.028
http://dx.doi.org/10.1137/0802003
http://dx.doi.org/10.1023/A:1012930416777
http://dx.doi.org/10.1007/s11075-022-01258-2
http://dx.doi.org/10.1080/10556788.2018.1457150
http://dx.doi.org/10.1137/080743573
http://dx.doi.org/10.1137/100813026
http://dx.doi.org/10.1007/s10957-020-01636-7
http://dx.doi.org/10.1007/s10957-015-0781-1
http://dx.doi.org/10.1007/s11075-011-9457-6
http://dx.doi.org/10.1007/s11075-018-0479-1
http://dx.doi.org/10.1007/s40314-019-0973-7
http://dx.doi.org/10.1016/S0377-0427(00)00540-9
http://dx.doi.org/10.36045/bbms/1407765884
http://dx.doi.org/10.1007/s11075-006-9023-9
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1080/00207160.2018.1465940
http://dx.doi.org/10.1016/j.aml.2010.01.010
http://dx.doi.org/10.1016/j.apnum.2020.01.019

	Introduction
	Motivation, Algorithm, and Sufficient Descent Property
	Convergence for General Nonlinear Functions
	Numerical Performance
	Performance on Benchmark Problems
	Comparison for Stability
	Application to Image Restoration

	Conclusions
	References

