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Abstract: In this study, trapezoidal-type inequalities in fuzzy settings have been investigated. The
theory of fuzzy analysis has been discussed in detail. The integration by parts formula of analysis
of fuzzy mathematics has been employed to establish an equality. Trapezoidal-type inequality for
functions with values in the fuzzy number-valued space is proven by applying the proven equality
together with the properties of a metric defined on the set of fuzzy number-valued space and Höler’s
inequality. The results proved in this research provide generalizations of the results from earlier
existing results in the field of mathematical inequalities. An example is designed by defining a
function that has values in fuzzy number-valued space and validated the results numerically using
the software Mathematica (latest v. 14.1). The p-levels of the defined fuzzy number-valued mapping
have been shown graphically for different values of p ∈ [0, 1].
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1. Introduction

Mathematical inequalities play an important role in proving several results in different
areas of pure and applied mathematics. That is why this topic has emerged as an important
topic in mathematics over the past several years, and mathematicians have successfully
applied this subject to provide new generalizations, refine existing results, and even prove
new results.

In classical analysis, a trapezoidal-type inequality is an inequality that provides upper
and/or lower bounds for the quantity:

ν(k) + ν(ℓ)

2
(ℓ− k)−

∫ ℓ

k
ν(t)dt, (1)

that is the error in approximating the integral by a trapezoidal rule, for various classes of
integrable functions ν defined on the compact interval [k, ℓ].

Cerone et al. obtained trapezoidal-type inequalities for functions of bounded variation
in [1].

Theorem 1 ([1]). Let ν : [k, ℓ] → C be a function of bounded variation. We have the inequality∣∣∣∣∫ ℓ

k
ν(t)dt − ν(k) + ν(ℓ)

2
(ℓ− k)

∣∣∣∣ ≤ 1
2
(ℓ− k)

ℓ
∨
k
(ν), (2)

where
ℓ
∨
k
(ν) denotes the total variation of ν on the interval [k, ℓ]. The constant 1

2 is the best

possible one.

If the mapping ν is Lipschitzian, then the following result holds as well [2].
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Theorem 2 ([2]). Let ν : [k, ℓ] → C be an L-Lipschitzian function on [k, ℓ], i.e., ν satisfies
the condition:

|ν(t)− ν(s)| ≤ L|t − s|u

for all t, s ∈ [k, ℓ], L > 0. Then, we have the inequality:∣∣∣∣∫ ℓ

k
ν(t)dt − ν(k) + ν(ℓ)

2
(ℓ− k)

∣∣∣∣ ≤ 1
4
(ℓ− k)2L. (3)

The constant 1
4 is best in (3).

With the assumption of absolute continuity for the function ν, then the following
estimates in terms of the Lebesgue norms of the derivative ν′ hold [3] (p. 93).

Theorem 3 ([3]). Let ν : [k, ℓ] → C be an absolutely continuous function on [k, ℓ]. Then, we have∣∣∣∣∫ ℓ

k
ν(t)dt − ν(k) + ν(ℓ)

2
(ℓ− k)

∣∣∣∣

≤



1
4 (ℓ− k)2∥ν′∥∞, if ν′ ∈ L∞[k, ℓ],

1

2(r+1)
1
r
(ℓ− k)1+ 1

r ∥ν′∥w, if ν′ ∈ Lw[k, ℓ],

1
2 (ℓ− k)∥ν′∥1,

(4)

where w, r > 1 with 1
w + 1

r = 1 and ∥·∥w (w ∈ [1, ∞]) are the Lebesgue norms, i.e.,∥∥ν′
∥∥

∞ = ess sup
s∈[k,ℓ]

∣∣ν′(s)∣∣
and ∥∥ν′

∥∥
w :=

(∫ ℓ

k

∣∣ν′(s)∣∣wds
) 1

w

, w ≥ 1.

The next is a result on trapezoidal-type inequalities for operator convex functions.

Definition 1 ([4]). A continuous function ν : I → R is operator convex on the interval I if

ν((1 − t)A + tB) ≤ (1 − t)ν(A) + tν(B) (5)

holds in the operator order, for all t ∈ [0, 1], where A and B are self-adjoint operators in a Hilbert
space (H, ⟨·, ·⟩) with spectra Sp(A), Sp(B) ⊂ I.

Theorem 4 ([4]). Let ν : C ⊂ E → F (E, F are Banach spaces and C is an open subset of E) be an
operator convex function on I and A, B, A ̸= B, self-adjoint operators on H with Sp(A), Sp(B) ⊂
I. If ν is Gâteaux differentiable on V = [A, B] := {(1 − t)A + tB, t ∈ [0, 1]} and φ : [0, 1] →
[0, ∞) is Lebesgue integrable and symmetric about 1

2 , that is φ(1 − t) = φ(t) for all t ∈ [0, 1], then

0 ≤
(∫ 1

0
φ(t)dt

)
ν(A) + ν(B)

2
−
∫ 1

0
φ(t)ν((1 − t)A + tB)dt

≤ 1
2

∫ 1

0

(
1
2
−
∣∣∣∣t − 1

2

∣∣∣∣)φ(t)dt[▽νB(B − A)−▽νA(B − A)], (6)

where ▽νB(V) is the Gâteaux derivative over C in the direction V connecting the operators A
and B.
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A particular result of the above result can be obtained by taking for φ ≡ 1. Hence, for
φ ≡ 1, we obtain

0 ≤ ν(A) + ν(B)
2

−
∫ 1

0
ν((1 − t)A + tB)dt ≤ 1

8
[▽νB(B − A)−▽νA(B − A)]. (7)

For some trapezoid operator inequalities in Hilbert spaces, see [5–8].

Definition 2 ([9]). Let X be a complex Banach space. We say that the vector valued function
ν : [k, ℓ] → X is strongly differentiable on the interval (k, ℓ) if the limit

ν′(t) = lim
h→0

ν(t + h)− ν(t)
h

exists in the norm topology for all t ∈ (k, ℓ).

The following weighted version of generalized trapezoid inequality involving two
functions with one function that contains values in Banach spaces was proven in Dragomir [9].

Theorem 5 ([10]). Assume that φ : [k, ℓ] → C and ν : [k, ℓ] → X are continuous and ν is
strongly differentiable on (k, ℓ), then for all λ ∈ [k, ℓ], then we have the following inequality:∥∥∥∥(∫ ℓ

λ
φ(s)ds

)
ν(ℓ) +

(∫ λ

k
φ(s)ds

)
ν(k)−

∫ ℓ

k
φ(t)ν(t)dt

∥∥∥∥ ≤ C(φ, ν, λ), (8)

where

C(φ, ν, λ) :=
∫ ℓ

λ

(∫ t

λ
|φ(s)|ds

)∥∥ν′(t)
∥∥dt +

∫ λ

k

(∫ λ

t
|φ(s)|ds

)∥∥ν′(t)
∥∥dt.

Moreover, the following bounds for C(φ, ν, λ) hold:

C(φ, ν, λ)

≤



(∫ ℓ
λ |φ(s)|ds

)(∫ ℓ
λ∥ν′(t)∥dt

)
+
(∫ λ

k |φ(s)|ds
)(∫ λ

k ∥ν′(t)∥dt
)

,

[∫ ℓ
λ

(∫ t
λ|φ(s)|ds

)w
dt
] 1

w
(∫ ℓ

λ∥ν′(t)∥rdt
) 1

r

+
[∫ λ

k

(∫ λ
t |φ(s)|ds

)w
dt
] 1

w
(∫ λ

k ∥ν′(t)∥rdt
) 1

r ,

[∫ ℓ
λ

(∫ t
λ|φ(s)|ds

)
dt
]

sup
t∈[λ,ℓ]

∥ν′(t)∥

+
[∫ λ

k

(∫ λ
t |φ(s)|ds

)
dt
]

sup
t∈[k,λ]

∥ν′(t)∥,

(9)

where w, r > 1 with 1
w + 1

r = 1.

A dual result for Theorem 5 is given as follows:

Theorem 6 ([9]). Assume that φ : [k, ℓ] → C and ν : [k, ℓ] → X are continuous and φ is
continuously differentiable on (k, ℓ), then for all λ ∈ [k, ℓ] the inequality∥∥∥∥(∫ ℓ

λ
ν(s)ds

)
φ(ℓ) +

(∫ λ

k
ν(s)ds

)
φ(k)−

∫ ℓ

k
φ(t)ν(t)dt

∥∥∥∥ ≤ C̃(φ, ν, λ), (10)
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where

C̃(φ, ν, λ) ≤
∫ ℓ

λ

(∫ t

λ
∥ν(s)∥ds

)∣∣φ′(t)
∣∣dt +

∫ λ

k

(∫ λ

t
∥ν(s)∥ds

)∣∣φ′(t)
∣∣dt

The following bounds hold for C̃(φ, ν, λ):

C̃(φ, ν, λ)

≤



∫ ℓ
λ∥ν(s)∥ds

∫ ℓ
λ |φ

′(t)|dt +
∫ λ

k |ν(s)|ds
∫ λ

k |φ′(t)|dt,

[∫ ℓ
λ

(∫ t
λ∥ν(s)∥ds

)w
dt
] 1

w
(∫ ℓ

λ |φ
′(t)|rdt

) 1
r

+
[∫ λ

k

(∫ λ
t ∥ν(s)∥ds

)w
dt
] 1

w
(∫ λ

k |φ′(t)|rdt
) 1

r ,

sup
t∈[λ,ℓ]

|φ′(s)|
∫ ℓ

λ

(∫ t
λ∥ν(s)∥ds

)
dt

+ sup
t∈[k,λ]

|φ′(s)|
∫ λ

k

(∫ λ
t ∥ν(s)∥ds

)
dt,

(11)

where w, r > 1 with 1
w + 1

r = 1.

This study contains trapezoidal-type inequalities for fuzzy number-valued functions
that can be seen as the most general inequalities of the trapezoidal type in this field so far.
The inequalities proven in this paper not only generalize the earlier studies for trapezoidal-
type inequalities for functions having values in the set of real numbers but also extend
those studies that have been established for functions with values in Banach spaces. The
results of this paper extend the results of Theorems 5 and 6 to fuzzy settings and hence also
generalize the results of Theorem 3. The novelty of the results presented in this study is that
they have not been previously investigated in any studies related to fuzzy environments.
The researchers can uncover significant extensions and numerous applications in the
mathematical sciences and other areas of science related to fuzzy mathematics. More
recent studies on Ostrowski-, trapezoidal-, and midpoint-type inequalities can be explored
in [11–20] and the references cited in these researches.

The next section is devoted to the basic definitions and results of fuzzy numbers and
fuzzy number-valued functions.

2. Preliminaries

In this section we point out some basic definitions and results which would help us in
the sequel of this paper, we begin with the following:

Definition 3 ([21]). Let us denote by RF the class of fuzzy subsets of real axis R (i.e., α : R −→
[0, 1]), satisfying the following properties:

(i) ∀α ∈ RF , α is normal, i.e., with α(τ) = 1 for some τ ∈ R.
(ii) ∀α ∈ RF , α is convex fuzzy set, i.e.,

α(tτ + (1 − t)τ) ≥ min{α(τ), α(τ)}, ∀t ∈ [0, 1], ∀τ, τ ∈ R.

(iii) ∀ α ∈ RF , α is upper semi-continuous on R.
(iv) {τ ∈ R : α(τ) > 0} is compact.

The set RF is called the space of fuzzy real numbers.

Remark 1. It is clear that R ⊂ RF , because any real number τ0 ∈ R, can be described as the fuzzy
number whose value is 1 for τ = τ0 and zero otherwise.
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It is clear that R ⊂ RF , because any real number τ0 ∈ R, can be described as the
fuzzy number whose value is 1 for τ = τ0 and zero otherwise. We will collect some further
definitions and notations as needed in the sequel [22].

For 0 < p ≤ 1 and α ∈ RF, we define

[α]p = {τ ∈ R : α(τ) ≥ p}

and
[α]0 = {τ ∈ R : α(τ) > 0}.

Now, it is well known that for each p ∈ [0, 1], [α]p, is a bounded closed interval.
For α, γ ∈ RF and λ ∈ R, we have the sum α ⊕ γ and the product λ ⊙ α are defined by
[α ⊕ γ]p = [α]p + [γ]p, [λ ⊙ α]p = λ[α]p, ∀p ∈ [0, 1], where [α]p + [γ]p means the usual
addition of two intervals as subsets of R and λ[α]p means the usual product between a
scalar and a subset of R. It should be noted that the intervals [α ⊕ γ]p and [λ ⊙ α]p uniquely
determine the sum α ⊕ γ of fuzzy numbers α and γ, and the product λ ⊙ α of a real number
λ and a fuzzy number α.
Now, we define D : RF ×RF −→ R∪ {0} by

D(α, γ) = sup
p∈[0,1]

(
max

{∣∣∣αp
− − γ

p
−

∣∣∣, ∣∣∣αp
+ − γ

p
+

∣∣∣}),

where [α]p =
[
α

p
−, α

p
+

]
, [γ]p =

[
γ

p
−, γ

p
+

]
, then (D,RF ) is a metric space and it possesses

the following properties:

(i) D(α ⊕ β, γ ⊕ β) = D(α, γ), ∀α, γ, β ∈ RF .
(ii) D(λ⊙ α, λ ⊙ γ) = λD(α, γ), ∀α, γ ∈ RF , ∀λ ∈ R.
(iii) D(α ⊕ γ, β ⊕ e) ≤ D(α, β) +D(γ, e), ∀α, γ, β, e ∈ RF

Moreover, it is well known that (RF ,D) is a complete metric space.
Also we have the following theorem:

Theorem 7 ([23]). We have the following properties of a fuzzy number:

(i) If we denote õ = X{0}, then õ ∈ RF is neutral element with respect to ⊕, i.e., α ⊕ õ = õ ⊕ α,
for all α ∈ RF .

(ii) With respect to 0̃ none of α ∈ RF\R has opposite in RF with respect to ⊕.
(iii) For any k, ℓ ∈ R with k, ℓ ≥ 0 or k, ℓ ≤ 0, any α ∈ RF , we have (k + ℓ)⊙ α = k ⊙ α ⊕ ℓ⊙

α∀k, ℓ ∈ R the above property does not hold.
(iv) For any λ ∈ R and any α, γ ∈ RF , we have λ ⊙ (α ⊕ γ) = λ ⊙ α ⊕ λ ⊙ γ.
(v) For any λ, µ ∈ R and any α ∈ RF , we have λ ⊙ (µ ⊙ γ) = (λ · µ)⊙ γ.
(vi) If we denote ∥α∥F = D(α, õ), ∀α ∈ RF then ∥.∥F has the properties of a usual norm

on RF , i.e., ∥α∥F = 0 if and only if α = õ, ∥λ ⊙ α∥F = |λ| · ∥α∥F and ∥α ⊕ γ∥F ≤
∥α∥F + ∥γ∥F , |∥α∥F − ∥γ∥F | ≤ D(α, γ).

Remark 2. The propositions (ii) and (iii) in theorem show us that (RF ,⊕,⊙) is not a vector space
over R and consequently (RF , ∥·∥F ) cannot be a normed space. However, the properties of D and
those in theorem (iv)–(vi), have the effect that most of the metric properties of functions defined
as R with values in a Banach space can be extended to functions ν : R −→ RF , called fuzzy
number-valued functions.

In this paper, for the ranking concept, we will use a partial ordering which was
introduced in [24].
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Definition 4 ([24]). Let the partial ordering ≼ in RF by α ≼ γ if and only if α
p
− ≤ γ

p
− and

α
p
+ ≤ γ

p
+, ∀p ∈ [0, 1], and the strict inequality ≺ in RF is defined by α ≺ γ if and only if

α
p
− < γ

p
− and α

p
+ < γ

p
+, ∀p ∈ [0, 1], where [α]p =

[
α

p
−, α

p
+

]
, [γ]p =

[
γ

p
−, γ

p
+

]
.

Definition 5 ([25]). Let τ, τ ∈ RF . If there exists a z ∈ RF such that τ = τ ⊕ z, then we call z
the H-difference of τ and τ, denoted by z = τ ⊖ τ.

Definition 6 ([26]). Given two fuzzy numbers α, γ ∈ RF , the generalized Hukuhara difference
(φH-difference for short) is the fuzzy number β, if it exists, such that

α ⊖φH γ = β ⇐⇒


(i) α = γ ⊕ β,

or (ii) α = γ ⊕ (−1)β.

Remark 3. It is easy to show that (i) and (ii) are both valid if and only if β is a crisp number.

In terms of p-levels, we have[
α ⊖φH γ

]p
=
[
min

{
α

p
− − γ

p
−, α

p
+ − γ

p
+

}
, max

{
α

p
− − γ

p
−, α

p
+ − γ

p
+

}]
,

and the conditions for the existence of β = α ⊖φH γ ∈ RF are as follows:

Case (i)


β

p
− = α

p
− − γ

p
− and β

p
+ = α

p
+ − γ

p
+ ∀p ∈ [0, 1],

with β
p
− increasing w.r.t p, β

p
+ decreasing w.r.t p, β

p
− ≤ β

p
+.

Case (ii)


β

p
+ = α

p
+ − γ

p
+ and β

p
− = α

p
− − γ

p
− ∀p ∈ [0, 1],

with β
p
− increasing w.r.t p, β

p
+ decreasing w.r.t p, β

p
− ≤ β

p
+.

If the φH-difference α ⊖φH γ does not define a proper fuzzy number, the nested property
can be used for p-levels and obtain a proper fuzzy number by[

α ⊖φ γ
]p

= ∪
p0≥p

(
[α]p0 ⊖φH [γ]p0

)
, p ∈ [0, 1],

where α ⊖φ γ defines the generalized difference of two fuzzy numbers α, γ ∈ RF defined
in [25], and extended and studied in [26].

Remark 4. Throughout this paper, we assume that if α, γ ∈ RF , then α ⊖φH γ ∈ RF .

Proposition 1 ([27]). For α, γ ∈ RF , we have

D
(
α ⊖φH γ, õ

)
≤ D(α, γ).

Proposition 2 ([25]). Let α, γ ∈ RF . If α ⊖φH γ exists in the sense of Definition 6, it is unique
and has the following properties ( õ denotes the crisp set {0}):

(i) α ⊖φH α = õ.
(ii) (a) (α ⊕ γ)⊖φH γ = α, (b) α ⊖φH (α ⊖ γ) = γ.
(iii) If α⊖φH γ exists then also (−γ)⊖φH (−α) does and õ⊖φH (α⊖φH γ) = (−γ)⊖φH (−α).
(iv) If α ⊖φH γ exists, then γ ⊖φH α exists and α ⊖φH γ = −

(
γ ⊖φH α

)
.

(v) α⊖φH γ exists if and only if γ⊖φH α and (−γ)⊖φH (−α) exist and α⊖φH γ = (−γ)⊖φH
(−α) = −

(
γ ⊖φH α

)
.

(vi) α ⊖φH γ = γ ⊖φH α = β if and only if β = −β (in particular β = õ if and only if α = γ).
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(vii) If γ⊖φH α exists then either α⊕ (γ⊖φH α) = α or γ⊖ (γ⊖φH α) = α and if both equalities
hold then γ ⊖φH α is a crisp set õ.

Definition 7 ([25]). Let α, γ ∈ RF have p-levels [α]p =
[
α

p
−, α

p
+

]
, [γ]p =

[
γ

p
−, γ

p
+

]
, with

õ /∈ [γ]p, ∀p ∈ [0, 1]. The φH-division ÷φH is the operation that calculates the fuzzy number (if it
exists) β = α ÷φH γ ∈ RF defining by

α ÷ φHγ = β ⇔


(i) α = γ ⊙ β,

or (ii) γ = α ⊙ β−1,

provided that β is a proper fuzzy number.

Proposition 3 ([25]). Let α, γ ∈ RF (here 1 is the same as {1}). We have the following:

(i) If õ /∈ [α]p,∀p, then α ÷φH α = 1.
(ii) If õ /∈ [γ]p,∀p, then αγ ÷φH γ = α.
(iii) If õ /∈ [γ]p,∀p, then 1 ÷φH γ = γ−1 and 1 ÷φH γ−1 = γ.

(iv) If γ ÷φH α exists then either α
(
γ ÷φH α

)
= γ or γ

(
γ ÷φH α

)−1
= α and both equalities

hold if and only if γ ÷φH α is a crisp set.

Remark 5. Let ν : [k, ℓ] → RF be a fuzzy-valued function. Then, the p-level representation of
ν given by ν(τ; p) = [ν(τ; p), ν(τ; p)], τ ∈ [k, ℓ], p ∈ [0, 1]. Here, ν(τ; p) and ν(τ; p) are the
lower and upper p-level representations for all τ ∈ [k, ℓ] and p ∈ [0, 1].

Definition 8 ([28]). Let ν : [k, ℓ] → RF be a fuzzy-valued function and τ0 ∈ [k, ℓ]. If ∀ε > 0, ∃
δ > 0, such that ∀ τ

0 < |τ − τ0| < δ ⇒ D(ν(τ), L) < ε,

then we say that L ∈ RF is limit of ν in τ0, which is denoted by lim
τ→τ0

ν(τ) = L.

Definition 9 ([28]). A function ν : R −→ RF is said to be continuous at τ0 ∈ R if for every
ε > 0 we can find δ > 0 such that D(ν(τ), ν(τ0)) < ε, whenever |τ − τ0| < δ. ν is said to be
continuous on R if it is continuous at every τ0 ∈ R. We say that ν is continuous at each τ0 ∈ [k, ℓ]
if it is continuous at each τ0 ∈ (k, ℓ) such that the continuity of ν is one-sided at end points k, ℓ.

Lemma 1 ([29]). For any k, ℓ ∈ R, k, ℓ ≥ 0 and α ∈ RF , we have

D(k ⊙ α, ℓ⊙ α) ≤ |k − ℓ|D(α, õ),

where õ ∈ RF is defined by õ := X{0}.

Definition 10 ([26]). Let τ0 ∈ (k, ℓ) and h be such that τ0 + h ∈ (k, ℓ), then the φH-derivative of
a function ν : (k, ℓ) → RF at τ0 is defined as

ν′φH(τ0) = lim
h→0+

ν(τ0 + h)⊖φH ν(τ0)

h

If ν′φH(τ0) ∈ RF in the sense of Definition 3, we say that ν is generalized Hukuhara differentiable
(φH-differentiable for short) at τ0.

Definition 11 ([26]). Let ν : [k, ℓ] → RF and τ0 ∈ (k, ℓ), with ν(τ; p) and ν(τ; p) both
differentiable at τ0, where ν(τ; p) and ν(τ; p) are p-level representations of ν(τ; p) for p ∈ [0, 1].
Then the function ν(τ; p) is φH-differentiable at a fixed τ0 ∈ (k, ℓ) if and only if one of the following
two cases holds:
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(i) (ν)′(τ0; p) is increasing and (ν)′(τ0; p) is decreasing as functions of r and

(ν)′(τ0; p) ≤ (ν)′(τ0; p), 0 ≤ p ≤ 1 or (12)

(ii) (ν)′(τ0; p) is increasing and (ν)′(τ0; p) is decreasing as functions of p and

(ν)′(τ0; p) ≤ (ν)′(τ0; p), 0 ≤ p ≤ 1. (13)

Moreover, for all p ∈ [0, 1]

(ν)′φH(τ0; p) =
[
min

{
(ν)′(τ0; p), (ν)′(τ0; p)

}
, max

{
(ν)′(τ0; p) ≤ (ν)′(τ0; p)

}]
.

Definition 12 ([27]). We say that a point τ0 ∈ (k, ℓ), is a switching point for the differentiability
of ν, if in any neighborhood V of τ0 there exist points τ1 < τ0 < τ2 such that

type (i): at τ1 (12) holds while (13) does not hold and at τ2 (13) holds and (12) does not hold, or
type (ii): at τ1 (13) holds while (12) does not hold and at τ2 (12) holds and (13) does not hold.

Definition 13 ([28]). Let ν : (k, ℓ) → RF be φH-differentiable at c ∈ (k, ℓ). Then ν is fuzzy
continuous at c.

Theorem 8 ([28]). Let I be closed interval in R. Let φ : I → ϕ := φ(I) ⊆ R be differentiable at τ,
and ν : ϕ → RF be φH-differentiable α = φ(τ). Assume that φ is strictly increasing on I. Then,
(ν ◦ φ)′φH(τ) exists and

(ν ◦ φ)′φH(τ) = ν′φH(φ(τ))⊙ φ′(τ), ∀τ ∈ I.

Definition 14 ([22]). Let ν : [k, ℓ] −→ RF . We say that ν is a fuzzy Riemann integrable if
the ∑∗(γ − α) ⊙ ν(ξ) converges to I ∈ RF in the metric topology D of RF for any division
P = {[α, γ]; ξ} of [k, ℓ], that is, ν is fuzzy Riemann integrable for every ε > 0, there exists δ > 0
such that for any division P = {[α, γ]; ξ} of [k, ℓ] with the norms ∆(P) < δ, we have

D
(

∑∗

P
(γ − α)⊙ ν(ξ), I

)
< ε,

where ∑∗
P

denotes the fuzzy summation. We choose to write

I := (FR)
∫ ℓ

k
ν(τ)dτ.

We also call a ν as above (FR)-integrable.

Theorem 9 ([30]). Let ν : [k, ℓ] −→ RF be integrable and c ∈ [k, ℓ]. Then,

∫ ℓ

k
ν(τ)dτ =

∫ c

k
ν(τ)dτ ⊕

∫ ℓ

c
ν(τ)dτ.

Corollary 1 ([22]). If ν ∈ C([k, ℓ],RF ) then ν is (FR)-integrable.

Lemma 2 ([31]). If ν, φ : [k, ℓ] ⊆ R −→ RF are fuzzy continuous (with respect to the metric D),
then the function F : [k, ℓ] −→ R+ ∪ {0} defined by F(τ) := D(ν(τ), φ(τ)) is continuous on
[k, ℓ], and

D
(
(FR)

∫ ℓ

k
ν(α)dα, (FR)

∫ ℓ

k
φ(α)dα

)
≤
∫ ℓ

k
D(ν(τ), φ(τ))dτ.
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Lemma 3 ([31]). Let ν : [k, ℓ] ⊆ R −→ RF be fuzzy continuous. Then,

(FR)
∫ τ

k
ν(t)dt

is fuzzy continuous function w.r.t. τ ∈ [k, ℓ].

Proposition 4 ([32]). Let F(t) := tn ⊙ α, t ≥ 0, n ∈ N and α ∈ RF be fixed. The (the
φH-derivative)

F′(t) = ntn−1 ⊙ α.

In particular when n = 1 then F′(t) = α.

Theorem 10 ([33]). Let I be an open interval of R and let ν : I −→ RF be φH-fuzzy differentiable,
c ∈ R. Then, (c ⊙ ν)′φH exist and (c ⊙ ν(τ))′φH = c ⊙ ν′φH(τ).

Theorem 11 ([32]). Let ν : [k, ℓ] −→ RF be fuzzy differentiable function on [k, ℓ] with φH-
derivative ν′ which is assumed to be fuzzy continuous. Then,

D(ν(d), ν(c)) ≤ (d − c) sup
t∈[c,d]

D
(
ν′(t), õ

)
,

for any c, d ∈ [k, ℓ] with d ≥ c.

Theorem 12 ([26]). If ν is φH-differentiable with no switching point in the interval [k, ℓ], then
we have ∫ ℓ

k
ν′φH(τ)dτ = ν(ℓ)⊖φH ν(k).

Theorem 13 ([28]). Let ν : [k, ℓ] → RF be a continuous fuzzy-valued function. Then,

F(t) =
∫ t

k
ν(τ)dτ, t ∈ [k, ℓ]

is φH-differentiable and F′
φH(t) = ν(t).

Theorem 14 ([33]). Let ν : [k, ℓ] → RF and φ : [k, ℓ] → R+ be two differentiable functions (ν is
φH-differentiable), then

∫ ℓ

k
ν′φH(τ)⊙ φ(τ)dτ = (ν(ℓ)⊙ φ(ℓ))⊖φH (ν(k)⊙ φ(k))⊖φH

∫ ℓ

k
ν(τ)⊙ φ′(τ)dτ.

Theorem 15 ([33]). Let ν : [k, ℓ] → RF and φ : [k, ℓ] → R+ are two differentiable functions (ν is
φH-differentiable), then∫ τ

k
ν′φH(τ)⊙ φ(τ)dτ = (ν(τ)⊙ φ(τ))⊖φH

∫ τ

k
ν(τ)⊙ φ′(τ)dτ.

3. Main Results

Since fuzziness is a natural reality different from randomness and determinism, Anas-
tassiou [14] extended Ostrowski’s result [34] to the context of a fuzzy setting in 2003. In
fact, Anastassiou [14] proved important results for fuzzy Hölder and fuzzy differentiable
functions, respectively. Those inequalities where shown to be sharp, as equalities are
attained by the choice of simple fuzzy number-valued functions. For further details on
these inequalities, we refer interested readers to [14].

We begin with the following result which generalizes Theorem 6.
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Theorem 16. Suppose that φ : [k, ℓ] → R+ and ν : [k, ℓ] → RF are continuous and ν, φ are
differentiable on (k, ℓ) (ν is φH-differentiable), then for all λ ∈ [k, ℓ] the inequality

D
((∫ ℓ

λ
φ(s)ds

)
⊙ ν(ℓ)⊖φH

(
−
∫ λ

k
φ(s)ds

)
⊙ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt, 0̃

)
≤ B(φ, ν, λ), (14)

holds, where

B(φ, ν, λ) :=
∫ ℓ

λ

(∫ ℓ

t
φ(s)ds

)
D
(

ν′φH(t), 0̃
)

dt +
∫ λ

k

(∫ t

k
φ(s)ds

)
D
(

ν′φH(t), 0̃
)

dt.

We have the following bounds for B(φ, ν, λ):

B(φ, ν, λ) ≤



∫ ℓ
λ φ(s)ds

∫ ℓ
λ D

(
ν′φH(t), 0̃

)
dt

+
∫ λ

k φ(s)ds
∫ λ

k D
(

ν′φH(t), 0̃
)

dt

[∫ ℓ
λ

(∫ t
λ[φ(s)]

wds
)

dt
] 1

w
(∫ ℓ

λ

[
D
(

ν′φH(t), 0̃
)]r

dt
) 1

r

+
[∫ λ

k

(∫ λ
t [φ(s)]wds

)
dt
] 1

w
(∫ λ

k

[
D
(

ν′φH(t), 0̃
)]r

dt
) 1

r
,

sup
t∈[λ,ℓ]

D
(

ν′φH(t), 0̃
) ∫ ℓ

λ

(∫ ℓ
t φ(s)ds

)
dt

+ sup
t∈[k,λ]

D
(

ν′φH(t), 0̃
) ∫ λ

k

(∫ t
k φ(s)ds

)
dt.

(15)

Proof. Let λ ∈ [k, ℓ]. Using the integration by parts formula given in Theorem 14, we have

∫ ℓ

k

(∫ t

k
φ(s)ds −

∫ λ

k
φ(s)ds

)
⊙ ν′φH(t)dt

=

(∫ ℓ

k
φ(s)ds −

∫ λ

k
φ(s)ds

)
⊙ ν(ℓ)⊖φH

(∫ k

k
φ(s)ds −

∫ λ

k
φ(s)ds

)
⊙ ν(k)

⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt

=

(∫ ℓ

λ
φ(s)ds

)
⊙ ν(ℓ)⊖φH

(
−
∫ λ

k
φ(s)ds

)
⊙ ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt. (16)

We also noticed that

∫ ℓ

k

(∫ t

k
φ(s)ds −

∫ λ

k
φ(s)ds

)
⊙ ν′φH(t)dt

=
∫ λ

k

(∫ t

k
φ(s)ds −

∫ λ

k
φ(s)ds

)
⊙ ν′φH(t)dt ⊕

∫ ℓ

λ

(∫ t

k
φ(s)ds −

∫ λ

k
φ(s)ds

)
⊙ ν′φH(t)dt

=
∫ λ

k

(∫ t

λ
φ(s)ds

)
⊙ ν′φH(t)dt ⊕

∫ ℓ

λ

(
−
∫ λ

t
φ(s)ds

)
⊙ ν′φH(t)dt. (17)

Hence(∫ ℓ

λ
φ(s)ds

)
⊙ ν(ℓ)⊖φH

(
−
∫ λ

k
φ(s)ds

)
⊙ ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt

=
∫ λ

k

(∫ t

λ
φ(s)ds

)
⊙ ν′φH(t)dt ⊕

∫ ℓ

λ

(
−
∫ λ

t
φ(s)ds

)
⊙ ν′φH(t)dt (18)
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The equality (18) implies that

D
((∫ ℓ

λ
φ(s)ds

)
⊙ ν(ℓ)⊖φH

(
−
∫ λ

k
φ(s)ds

)
⊙ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt, 0̃

)
= D

(∫ λ

k

(∫ t

λ
φ(s)ds

)
⊙ ν′φH(t)dt ⊕

∫ ℓ

λ

(
−
∫ λ

t
φ(s)ds

)
⊙ ν′φH(t)dt, 0̃

)
=

∥∥∥∥∫ λ

k

(∫ t

λ
φ(s)ds

)
⊙ ν′φH(t)dt ⊕

∫ ℓ

λ

(
−
∫ λ

t
φ(s)ds

)
⊙ ν′φH(t)dt

∥∥∥∥
F

≤
∥∥∥∥∫ λ

k

(∫ t

λ
φ(s)ds

)
⊙ ν′φH(t)dt

∥∥∥∥
F
+

∥∥∥∥∫ ℓ

λ

(
−
∫ λ

t
φ(s)ds

)
⊙ ν′φH(t)dt

∥∥∥∥
F

=

∣∣∣∣∫ λ

k

(∫ t

u
φ(s)ds

)∣∣∣∣∥∥∥ν′φH(t)
∥∥∥
F

dt +
∣∣∣∣∫ ℓ

λ

(
−
∫ λ

t
φ(s)ds

)∣∣∣∣∥∥∥ν′φH(t)dt
∥∥∥
F

dt

≤
∫ λ

k

(∫ t

λ
φ(s)ds

)∥∥∥ν′φH(t)dt
∥∥∥
F

dt +
∫ ℓ

λ

(∫ λ

t
φ(s)ds

)∥∥∥ν′φH(t)dt
∥∥∥
F

dt

=
∫ ℓ

λ

(∫ ℓ

t
φ(s)ds

)
D
(

ν′φH(t)dt, 0̃
)

dt

+
∫ λ

k

(∫ t

k
φ(s)ds

)
D
(

ν′φH(t)dt, 0̃
)

dt. (19)

Hence the inequality (14) is established.
Applying the Hölder’s inequality and properties of supremum, we obtain for w, r > 1

with 1
w + 1

r = 1, that

∫ ℓ

u

(∫ ℓ

t
φ(s)ds

)
D
(

ν′φH(t)dt, 0̃
)

dt

≤



sup
t∈[λ,ℓ]

(∫ t
u φ(s)ds

) ∫ ℓ
λ D

(
ν′φH(t)dt, 0̃

)
dt,

[∫ ℓ
u

(∫ t
λ[φ(s)]

wds
)

dt
] 1

w
(∫ ℓ

λ

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
) 1

r
,

sup
t∈[λ,ℓ]

D
(

ν′φH(t)dt, 0̃
) ∫ ℓ

λ

(∫ t
u φ(s)ds

)
dt,

=



∫ ℓ
λ φ(s)ds

∫ ℓ
λ D

(
ν′φH(t)dt, 0̃

)
dt,

[∫ ℓ
λ

(∫ t
λ[φ(s)]

wds
)

dt
] 1

w
(∫ ℓ

λ

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
) 1

r
,

sup
t∈[λ,ℓ]

D
(

ν′φH(t)dt, 0̃
) ∫ ℓ

λ

(∫ t
u φ(s)ds

)
dt,

(20)

and

∫ λ

k

(∫ λ

t
φ(s)ds

)
D
(

ν′φH(t)dt, 0̃
)

dt
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≤



sup
t∈[k,λ]

(∫ λ
t φ(s)ds

) ∫ λ
k D

(
ν′φH(t)dt, 0̃

)
dt,

[∫ λ
k

(∫ λ
t [φ(s)]wds

)
dt
] 1

w
(∫ λ

k

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
) 1

r
,

sup
t∈[k,λ]

D
(

ν′φH(t)dt, 0̃
) ∫ λ

k

(∫ λ
t φ(s)ds

)
dt.

=



∫ λ
k φ(s)ds

∫ λ
k D

(
ν′φH(t)dt, 0̃

)
dt,

[∫ λ
k

(∫ λ
t [φ(s)]wds

)
dt
] 1

w
(∫ λ

k

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
) 1

r
,

sup
t∈[k,λ]

D
(

ν′φH(t)dt, 0̃
) ∫ λ

k

(∫ λ
t φ(s)ds

)
dt.

(21)

Substituting (20) and (21) in (19), we obtain the inequality (14).

The immediate consequence of Theorem 16 is the following corollary.

Corollary 2. Suppose that the assumptions of Theorem 16 are satisfied, then the inequalities

D
((∫ ℓ

λ
φ(s)ds

)
⊙ ν(ℓ)⊖φH

(
−
∫ λ

k
φ(s)ds

)
⊙ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt, 0̃

)
≤
∫ ℓ

λ
φ(s)ds

∫ ℓ

λ
D
(

ν′φH(t)dt, 0̃
)

dt +
∫ λ

k
φ(s)ds

∫ λ

k
D
(

ν′φH(t)dt, 0̃
)

dt

≤


max

{∫ λ
k φ(s)ds,

∫ ℓ
λ φ(s)ds

} ∫ ℓ
k D

(
ν′φH(t)dt, 0̃

)
dt

max
{∫ λ

k D
(

ν′φH(t)dt, 0̃
)

dt,
∫ ℓ

λ D
(

ν′φH(t)dt, 0̃
)

dt
} ∫ ℓ

k φ(s)ds

≤
∫ ℓ

k
φ(s)ds

∫ ℓ

k
D
(

ν′φH(t)dt, 0̃
)

dt (22)

for all λ ∈ [k, ℓ].

Proof. Proof follows from the first part of the inequality in (14) and by using the properties
of the max function.

Remark 6. If m ∈ (k, ℓ) is such that

∫ m

k
φ(s)ds =

∫ ℓ

m
φ(s)ds =

1
2

∫ ℓ

k
φ(s)ds,

then (22) becomes the following inequality

D
((∫ ℓ

m
φ(s)ds

)
⊙ ν(ℓ)⊖φH

(
−
∫ m

k
φ(s)ds

)
⊙ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt, 0̃

)
≤ 1

2

∫ ℓ

k
φ(s)ds

∫ ℓ

k
D
(

ν′φH(t)dt, 0̃
)

dt. (23)
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Corollary 3. With the assumptions of Theorem 16, we have

D
((∫ ℓ

λ
φ(s)ds

)
⊙ ν(ℓ)⊖φH

(
−
∫ λ

k
φ(s)ds

)
⊙ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt, 0̃

)
≤ sup

t∈[k,ℓ]
D
(

ν′φH(t)dt, 0̃
)[∫ ℓ

λ
(ℓ− t)φ(t)dt +

∫ λ

k
(t − k)φ(t)dt

]
(24)

for all λ ∈ [k, ℓ].

Proof. From the third part in the bounds (14), we have

D
((∫ ℓ

λ
φ(s)ds

)
⊙ ν(ℓ)⊖φH

(
−
∫ λ

k
φ(s)ds

)
⊙ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt, 0̃

)
≤ sup

t∈[λ,ℓ]
D
(

ν′φH(t)dt, 0̃
) ∫ ℓ

λ

(∫ t

λ
φ(s)ds

)
dt

+ sup
t∈[k,λ]

D
(

ν′φH(t)dt, 0̃
) ∫ λ

k

(∫ λ

t
φ(s)ds

)
dt

≤ sup
t∈[k,ℓ]

D
(

ν′φH(t)dt, 0̃
)[∫ ℓ

λ

(∫ t

u
φ(s)ds

)
dt +

∫ λ

k

(∫ λ

t
φ(s)ds

)
dt
]

. (25)

Using integration by parts, we have for λ ∈ [k, ℓ] that

∫ ℓ

λ

(∫ t

λ
φ(s)ds

)
dt = t

∫ t

u
φ(s)ds

∣∣∣∣ℓ
u
−
∫ ℓ

λ
tφ(t)dt

= ℓ
∫ ℓ

λ
φ(t)dt −

∫ ℓ

λ
tφ(t)dt =

∫ ℓ

λ
(ℓ− t)φ(t)dt

and

∫ λ

k

(∫ λ

t
φ(s)ds

)
dt = t

∫ λ

t
φ(s)ds

∣∣∣∣u
k
+
∫ λ

k
tφ(t)dt

= −k
∫ λ

k
φ(t)dt +

∫ λ

k
tφ(t)dt =

∫ λ

k
(t − k)φ(t)dt.

Thus

∫ λ

k

(∫ λ

t
φ(s)ds

)
dt +

∫ ℓ

λ

(∫ t

λ
φ(s)ds

)
dt =

∫ λ

k
(t − k)φ(t)dt +

∫ ℓ

λ
(ℓ− t)φ(t)dt. (26)

Using (26) in (14), we derive (22).

Corollary 4. Under the assumptions of Theorem 16, we have the following non-commutative
trapezoidal-type inequalities for functions with values in the space of fuzzy real numbers

D
((∫ ℓ

λ
φ(s)ds

)
⊙ ν(ℓ)⊖φH

(
−
∫ λ

k
φ(s)ds

)
⊙ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt, 0̃

)
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≤ sup
t∈[k,ℓ]

D
(

ν′φH(t)dt, 0̃
)
×



[
1
2 (ℓ− k) +

∣∣∣u − k+ℓ
2

∣∣∣] ∫ ℓ
k φ(t)dt,

[
(u−k)r+1+(ℓ−λ)r+1

(r+1)
1
r

] 1
r (∫ ℓ

k (φ(t))wdt
) 1

w ,

[
1
4 (ℓ− k)2 +

(
u − k+ℓ

2

)2
]

sup
t∈[k,ℓ]

φ(t)

(27)

for all λ ∈ [k, ℓ].

Proof. By applying the Hölder’s inequality for w, r > 1 with 1
w + 1

r = 1, we obtain

∫ ℓ

λ
(ℓ− t)φ(t)dt ≤



sup
t∈[λ,ℓ]

(ℓ− t)
∫ ℓ

λ φ(t)dt,

(∫ ℓ
λ (ℓ− t)rdt

) 1
r
(∫ ℓ

λ (φ(t))wdt
) 1

w ,

sup
t∈[λ,ℓ]

φ(t)
∫ ℓ

λ (ℓ− t)dt,

=



(ℓ− λ)
∫ ℓ

λ φ(t)dt,

(ℓ−λ)1+ 1
r

(r+1)
1
r

(∫ ℓ
λ (φ(t))wdt

) 1
w ,

1
2 (ℓ− λ)2 sup

t∈[λ,ℓ]
φ(t).

Similarly, we also have

∫ λ

k
(t − k)φ(t)dt ≤



(u − k)
∫ λ

k φ(t)dt,

(u−k)1+ 1
r

(r+1)
1
r

(∫ λ
k (φ(t))wdt

) 1
w ,

1
2 (u − k)2 sup

t∈[k,λ]
φ(t).

Hence, we obtain

D
((∫ ℓ

λ
φ(s)ds

)
⊙ ν(ℓ)⊖φH

(
−
∫ λ

k
φ(s)ds

)
⊙ ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt, 0̃

)

≤ sup
t∈[k,ℓ]

D
(

ν′φH(t)dt, 0̃
)
×



(u − k)
∫ λ

k φ(t)dt + (ℓ− λ)
∫ ℓ

λ φ(t)dt,

(u−k)1+ 1
r
(∫ λ

k (φ(t))wdt
) 1

w
+(ℓ−λ)1+ 1

r
(∫ ℓ

λ (φ(t))wdt
) 1

w

(r+1)
1
r

,

1
2 (u − k)2 sup

t∈[k,λ]
φ(t) + 1

2 (ℓ− λ)2 sup
t∈[λ,ℓ]

φ(t)

(28)

for all λ ∈ [k, ℓ].
Since
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(u − k)
∫ λ

k
φ(t)dt + (ℓ− λ)

∫ ℓ

λ
φ(t)dt = max{u − k, ℓ− λ}

[∫ λ

k
φ(t)dt +

∫ ℓ

λ
φ(t)dt

]
=

[
1
2
(ℓ− k) +

∣∣∣∣u − k + ℓ

2

∣∣∣∣] ∫ ℓ

k
φ(t)dt. (29)

By using the elementary inequality (see [35] (p. 129)):

kℓ+ cd ≤ (kw + cw)
1
w (ℓr + dr)

1
r

for k, ℓ, c, d ≥ 0 and w, r > 1 with 1
w + 1

r = 1, we obtain

(u − k)1+ 1
r

(∫ λ

k
(φ(t))wdt

) 1
w

+ (ℓ− λ)1+ 1
r

(∫ ℓ

λ
(φ(t))wdt

) 1
w

≤
([

(u − k)1+ 1
r
]r

+
[
(ℓ− λ)1+ 1

r
]r
) 1

r

×

(∫ λ

k
(φ(t))wdt

) 1
w

w

+

(∫ ℓ

λ
(φ(t))wdt

) 1
w

w
1
w

=
[
(u − k)r+1 + (ℓ− λ)r+1

] 1
r
[∫ λ

k
(φ(t))wdt +

∫ ℓ

λ
(φ(t))wdt

] 1
w

=
[
(u − k)r+1 + (ℓ− λ)r+1

] 1
r
[∫ ℓ

k
(φ(t))wdt

] 1
w

(30)

Moreover, we also observe that

1
2
(λ − k)2 sup

t∈[k,λ]
φ(t) +

1
2
(ℓ− λ)2 sup

t∈[λ,ℓ]
φ(t) ≤ (u − k)2 + (ℓ− λ)2

2
sup

t∈[k,ℓ]
φ(t)

=

[
1
4
(ℓ− k)2 +

(
u − k + ℓ

2

)2
]

sup
t∈[k,ℓ]

φ(t). (31)

Then, by applying (29)–(31) in (28), we derive (27).

One more interesting consequence of Theorem 16 is the following result.

Corollary 5. Suppose that the assumptions of Theorem 16 are satisfied, then the following inequali-
ties can be obtained:

D
((∫ ℓ

λ
φ(s)ds

)
⊙ ν(ℓ)⊖φH

(
−
∫ λ

k
φ(s)ds

)
⊙ ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt, 0̃

)

≤
[(∫ ℓ

λ
φ(t)dt

)w

(ℓ− λ) +

(∫ λ

k
φ(t)dt

)w

(u − k)

] 1
w(∫ ℓ

k

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
) 1

r

≤ (ℓ− k)
1
w

[(∫ ℓ

λ
φ(t)dt

)w

+

(∫ λ

k
φ(t)dt

)w
] 1

w(∫ ℓ

k

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
) 1

r

(32)

for all λ ∈ [k, ℓ].

Proof. By using the inequality (see [35] (p. 129)):

(kℓ+ cd) ≤ (kw + cw)
1
w (ℓr + dr)

1
r
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for k, ℓ, c, d > 0 and w, r > 1with 1
w + 1

r = 1, we have

(∫ λ

k

(∫ λ

t
φ(s)ds

)w

dt
) 1

w
(∫ λ

k

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
) 1

r

+

(∫ ℓ

λ

(∫ t

u
φ(s)ds

)w
dt
) 1

w
(∫ ℓ

λ

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
) 1

r

≤
[∫ λ

k

(∫ λ

t
φ(s)ds

)w

dt +
∫ ℓ

λ

(∫ t

λ
φ(s)ds

)w
dt
] 1

w

×
[∫ λ

k

[
D
(

ν′φH(t)dt, 0̃
)]r

dt +
∫ ℓ

λ

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
] 1

r

=

[∫ λ

k

(∫ λ

t
φ(s)ds

)w

dt +
∫ ℓ

λ

(∫ t

u
φ(s)ds

)w
dt
] 1

w
[∫ ℓ

k

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
] 1

r

≤
[(∫ λ

k
φ(s)ds

)w ∫ λ

k
dt +

(∫ ℓ

λ
φ(s)ds

)w ∫ ℓ

λ
dt

] 1
w [∫ ℓ

k

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
] 1

r

=

[(∫ λ

k
φ(s)ds

)w

(u − k) +
(∫ ℓ

λ
φ(s)ds

)w

(ℓ− λ)

] 1
w [∫ ℓ

k

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
] 1

r

≤ (ℓ− k)
1
w

[(∫ λ

k
φ(s)ds

)w

+

(∫ ℓ

λ
φ(s)ds

)w
] 1

w [∫ ℓ

k

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
] 1

r

which proves the inequality (32).

Remark 7. If m ∈ (k, ℓ) is such that

∫ m

k
φ(s)ds =

∫ ℓ

m
φ(s)ds =

1
2

∫ ℓ

k
φ(s)ds,

then from (32), we obtain

D
((∫ ℓ

m
φ(s)ds

)
⊙ ν(ℓ)⊖φH

(
−
∫ m

k
φ(s)ds

)
⊙ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt, 0̃

)

≤ 1
2
(ℓ− k)

1
w

(∫ ℓ

k
φ(t)dt

)(∫ ℓ

k

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
) 1

r

. (33)

Remark 8. Suppose that the assumptions of Theorem 16 are fulfilled, then we obtain the following
inequalities:

D
((∫ ℓ

k+ℓ
2

φ(s)ds
)
⊙ ν(ℓ)⊖φH

(
−
∫ k+ℓ

2

k
φ(s)ds

)
⊙ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt, 0̃

)
≤ M(φ, ν), (34)

where

M(φ, ν) :=
∫ ℓ

k+ℓ
2

(∫ ℓ

t
φ(s)ds

)
D
(

ν′φH(t)dt, 0̃
)

dt+
∫ k+ℓ

2

k

(∫ t

k
φ(s)ds

)
D
(

ν′φH(t)dt, 0̃
)

dt.
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We have the following bounds for M(φ, ν):

M(φ, ν) ≤



(∫ ℓ
k+ℓ

2
φ(s)ds

) ∫ ℓ
k+ℓ

2
D
(

ν′φH(t)dt, 0̃
)

dt

+

(∫ k+ℓ
2

k φ(s)ds
) ∫ k+ℓ

2
k D

(
ν′φH(t)dt, 0̃

)
dt

[∫ ℓ
k+ℓ

2

(∫ t
k+ℓ

2
φ(s)ds

)
dt
] 1

w
(∫ ℓ

k+ℓ
2

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
) 1

r

+

[∫ k+ℓ
2

k

(∫ k+ℓ
2

t φ(s)ds
)

dt
] 1

w
(∫ k+ℓ

2
k

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
) 1

r
,

sup
t∈[ k+ℓ

2 ,ℓ]
D
(

ν′φH(t)dt, 0̃
) ∫ ℓ

k+ℓ
2

(∫ t
k+ℓ

2
φ(s)ds

)
dt

+ sup
t∈[k, k+ℓ

2 ]
D
(

ν′φH(t)dt, 0̃
) ∫ k+ℓ

2
k

(∫ k+ℓ
2

t φ(s)ds
)

dt.

(35)

From (22), we obtain that

D
((∫ ℓ

k+ℓ
2

φ(s)ds
)
⊙ ν(ℓ)⊖φH

(
−
∫ k+ℓ

2

k
φ(s)ds

)
⊙ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt, 0̃

)

≤
∫ ℓ

k+ℓ
2

φ(s)ds
∫ ℓ

k+ℓ
2

D
(

ν′φH(t)dt, 0̃
)

dt +
∫ k+ℓ

2

k
φ(s)ds

∫ k+ℓ
2

k
D
(

ν′φH(t)dt, 0̃
)

dt

≤


max

{∫ k+ℓ
2

k φ(s)ds,
∫ ℓ

k+ℓ
2

φ(s)ds
} ∫ ℓ

k D
(

ν′φH(t)dt, 0̃
)

dt

max
{∫ k+ℓ

2
k D

(
ν′φH(t)dt, 0̃

)
dt,
∫ ℓ

k+ℓ
2
D
(

ν′φH(t)dt, 0̃
)

dt
} ∫ ℓ

k φ(s)ds

≤
∫ ℓ

k
φ(s)ds

∫ ℓ

k
D
(

ν′φH(t)dt, 0̃
)

dt. (36)

From (27) we derive the non-commutative mid-point type inequalities forfunctions with values in
space of fuzzy real numbers

D
((∫ ℓ

k+ℓ
2

φ(s)ds
)
⊙ ν(ℓ)⊖φH

(
−
∫ k+ℓ

2

k
φ(s)ds

)
⊙ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt, 0̃

)

≤ sup
t∈[k,ℓ]

D
(

ν′φH(t)dt, 0̃
)
×



1
2 (ℓ− k)

∫ ℓ
k φ(t)dt,

(ℓ−k)1+ 1
r

2(r+1)
1
r

(∫ ℓ
k (φ(t))wdt

) 1
w ,

1
4 (ℓ− k)2 sup

t∈[k,ℓ]
φ(t).

(37)

From (32), we can obtain

D

((∫ ℓ

k+ℓ
2

φ(s)ds
)
⊙ ν(ℓ)⊖φH

(
−
∫ k+ℓ

2

k
φ(s)ds

)
⊙ν(k)⊖φH

∫ ℓ

k
φ(t)⊙ ν(t)dt, 0̃

)

≤
(
ℓ− k

2

) 1
w
[(∫ ℓ

k+ℓ
2

φ(t)dt
)w

+

(∫ k+ℓ
2

k
φ(t)dt

)w] 1
w
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×
(∫ ℓ

k

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
) 1

r

. (38)

If we consider the case when φ(t) = 1, t ∈ [k, ℓ], then by (14) we obtain

D
(
(ℓ− λ)⊙ ν(ℓ)⊖φH (−(λ − k))⊙ ν(k)⊖φH

∫ ℓ

k
ν(t)dt, 0̃

)
≤ B(ν, λ), (39)

where

B(ν, λ) :=
∫ ℓ

λ
(t − u)D

(
ν′φH(t)dt, 0̃

)
dt +

∫ λ

k
(u − t)D

(
ν′φH(t)dt, 0̃

)
dt.

The bounds of B(ν, λ) are given by

B(ν, λ) ≤



(ℓ− λ)
∫ ℓ

λ D
(

ν′φH(t)dt, 0̃
)

dt

+(λ − k)
∫ λ

k D
(

ν′φH(t)dt, 0̃
)

dt

(ℓ−λ)1+ 1
w

(w+1)
1
w

(∫ ℓ
λ

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
) 1

r

+ (λ−k)1+ 1
w

(w+1)
1
w

(∫ λ
k

[
D
(

ν′φH(t)dt, 0̃
)]r

dt
) 1

r
,

1
2 (ℓ− λ)2 sup

t∈[λ,ℓ]
D
(

ν′φH(t)dt, 0̃
)

+ 1
2 (k − λ)2 sup

t∈[λ,u]
D
(

ν′φH(t)dt, 0̃
)

(40)

for all λ ∈ [k, ℓ] for w, r > 1 and 1
w + 1

r = 1.
From the first inequality in (22), we obtain

D
(
(ℓ− λ)⊙ ν(ℓ)⊖φH (−(λ − k))⊙ ν(k)⊖φH

∫ ℓ

k
ν(t)dt, 0̃

)
≤
[

1
2
(ℓ− k) +

∣∣∣∣λ − k + ℓ

2

∣∣∣∣] ∫ ℓ

k
D
(

ν′φH(t)dt, 0̃
)

dt (41)

for all λ ∈ [k, ℓ].
From (27), we alsohave the following Ostrowski-type inequality

D
(
(ℓ− λ)⊙ ν(ℓ)⊖φH (−(λ − k))⊙ ν(k)⊖φH

∫ ℓ

k
ν(t)dt, 0̃

)

≤ (ℓ− k)
1
w
[
(λ − k)w+1 + (ℓ− λ)w+1

] 1
w
(∫ ℓ

k
D
(

ν′φH(t)dt, 0̃
)

dt
) 1

r

(42)

for all λ ∈ [k, ℓ].

A dual result can be stated as follows:

Theorem 17. Suppose that φ : [k, ℓ] → R+ and ν : [k, ℓ] → RF are continuous and ν, φ are
differentiable on (k, ℓ) (ν is φH-differentiable), then for all λ ∈ [k, ℓ] the inequality

D
((∫ ℓ

k
φ(t)⊙ ν(t)dt

)
⊖φH

(
−φ(ℓ)⊙

∫ ℓ

λ
ν(s)ds

)
⊖φH

(
φ(k)⊙

∫ λ

k
ν(s)ds

)
, 0̃
)
≤ B̃(φ, ν, λ), (43)
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where

B̃(φ, ν, λ) :=
∫ ℓ

λ
φ
′
(t)
(∫ t

λ
D
(
ν(s), 0̃

)
ds
)

dt +
∫ λ

k
φ
′
(t)
(∫ λ

t
D
(
ν(s), 0̃

)
ds
)

dt.

We have the following bounds for B(φ, ν, λ):

B̃(φ, ν, λ) ≤



(∫ ℓ
λ φ

′
(t)dt

)(∫ ℓ
λ D

(
ν(s), 0̃

)
ds
)

+
(∫ λ

k φ
′
(t)dt

)(∫ λ
k D

(
ν(s), 0̃

)
ds
)

[∫ ℓ
λ

(∫ t
λ D
(
ν(s)dt, 0̃

)
ds
)w

dt
] 1

w
[∫ ℓ

λ

(
φ
′
(t)
)r

dt
] 1

r

+
[∫ λ

k

(∫ λ
t D

(
ν(s)dt, 0̃

)
ds
)w

dt
] 1

w
[∫ λ

k

(
φ
′
(t)
)r

dt
] 1

r
,

∫ ℓ
λ

(∫ t
λ D
(
ν(s)dt, 0̃

)
ds
)

dt sup
t∈[λ,ℓ]

φ(t)

+
∫ λ

k

(∫ λ
t D

(
ν(s)dt, 0̃

)
ds
)

dt sup
t∈[k,λ]

φ(t)

(44)

for w, r > 1 with 1
w + 1

r = 1.

Proof. Using integration by parts given by Theorem 14, we obtain

∫ ℓ

λ
φ
′
(t)⊙

(∫ t

λ
ν(s)ds

)
dt = φ(ℓ)⊙

∫ ℓ

λ
ν(s)ds ⊖φH 0̃ ⊖φH

∫ ℓ

λ
φ(t)⊙ ν(t)dt (45)

and

∫ λ

k
φ
′
(t)⊙

(∫ λ

t
ν(s)ds

)
dt

= −0̃ ⊖φH φ(k)⊙
∫ λ

k
ν(s)ds ⊖φH

(
−
∫ λ

k
φ(t)⊙ ν(t)dt

)
=

(
−
∫ λ

k
φ(t)⊙ ν(t)dt

)
⊖φH

(
φ(k)⊙

∫ λ

k
ν(s)ds

)
. (46)

Hence, by using (iii), (iv) and (v) of Proposition 2, we obtain from (45) and (46) that

∫ ℓ

λ
φ
′
(t)⊙

(∫ t

u
ν(s)ds

)
dt ⊖φH

∫ λ

k
φ
′
(t)⊙

(∫ λ

t
ν(s)ds

)
dt

=

(
φ(ℓ)⊙

∫ ℓ

λ
ν(s)ds

)
⊖φH 0̃ ⊖φH

(∫ ℓ

λ
φ(t)⊙ ν(t)dt

)
⊖φH

(
−
∫ λ

k
φ(t)⊙ ν(t)dt

)
⊖φH

(
φ(k)⊙

∫ λ

k
ν(s)ds

)
= 0̃ ⊖φH

(
−φ(ℓ)⊙

∫ ℓ

λ
ν(s)ds

)
⊖φH

(∫ ℓ

λ
φ(t)⊙ ν(t)dt

)
⊖φH

(
−
∫ λ

k
φ(t)⊙ ν(t)dt

)
⊖φH

(
φ(k)⊙

∫ λ

k
ν(s)ds

)
=

(∫ ℓ

λ
φ(t)⊙ ν(t)dt

)
⊖φH

(
(−1)

∫ λ

k
φ(t)⊙ ν(t)dt

)
⊖φH

(
−φ(ℓ)⊙

∫ ℓ

λ
ν(s)ds

)
⊖φH

(
φ(k)⊙

∫ λ

k
ν(s)ds

)
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=
∫ ℓ

k
φ(t)⊙ ν(t)dt ⊖φH

(
−φ(ℓ)⊙

∫ ℓ

λ
ν(s)ds

)
⊖φH φ(k)⊙

∫ λ

k
ν(s)ds. (47)

Thus from (47), using the properties of the metric D and the norm∥·∥F induced by the
metric D, we have

D
(∫ ℓ

k
φ(t)⊙ ν(t)dt ⊖φH

(
−φ(ℓ)⊙

∫ ℓ

λ
ν(s)ds

)
⊖φH

(
φ(k)⊙

∫ λ

k
ν(s)ds

)
, 0̃
)

= D
(∫ ℓ

λ

(
φ
′
(t)⊙

∫ t

λ
ν(s)ds

)
dt ⊖φH

∫ λ

k

(
φ
′
(t)⊙

∫ λ

t
ν(s)ds

)
dt, 0̃

)
≤ D

(∫ ℓ

λ
φ
′
(t)⊙

(∫ t

u
ν(s)ds

)
dt,
∫ λ

k
φ
′
(t)⊙

(∫ λ

t
ν(s)ds

)
dt
)

= D
(∫ ℓ

λ
φ
′
(t)⊙

(∫ t

λ
ν(s)ds

)
dt ⊕ 0̃, 0̃ ⊕

∫ λ

k
φ
′
(t)⊙

(∫ λ

t
ν(s)ds

)
dt
)

≤ D
(∫ ℓ

λ
φ
′
(t)⊙

(∫ t

u
ν(s)ds

)
dt, 0̃

)
+ D

(
0̃,
∫ λ

k
φ
′
(t)⊙

(∫ λ

t
ν(s)ds

)
dt
)

= D
(∫ ℓ

λ
φ
′
(t)⊙

(∫ t

λ
ν(s)ds

)
dt, 0̃

)
+ D

(∫ λ

k
φ
′
(t)⊙

(∫ λ

t
ν(s)ds

)
dt, 0̃

)
≤
∫ ℓ

λ
φ
′
(t)
(∫ t

u
∥ν(s)∥Fds

)
dt +

∫ λ

k
φ
′
(t)
(∫ λ

t
∥ν(s)∥Fds

)
dt.

The inequality (43) is thus established.

Example 1. Consider the fuzzy number-valued mapping ν: [2, 3] → RF defined by

ν(t)(θ) =



θ−2+t
1
2

1−t
1
2

, θ ∈
[
2 − t

1
2 , 3
]

2+t
1
2 −θ

t
1
2 −1

, θ ∈
(

3, 2 + t
1
2

]
0, otherwise.

Then, for each p ∈ [0, 1], we have

νp(t) =
[
(1 − p)

(
2 − t

1
2

)
+ 3p, (1 − p)

(
2 + t

1
2

)
+ 3p

]
=
[
ν

p
−(t), ν

p
+(t)

]
.

We also define a mapping φ : [2, 3] → R+ by φ(t) = t2. Then, according to the metric D :
RF × RF −→ R+ ∪ {0} as defined in the beginning of Section 2 with λ = 5

2 ∈ [2, 3] and
w = 4, r = 4

3 , then the inequality (14) takes the following form:

D
((∫ 3

5
2

φ(s)ds
)
⊙ ν(3)⊖φH

(
−
∫ 5

2

2
φ(s)ds

)
⊙ν(2)⊖φH

∫ 3

2
φ(t)⊙ ν(t)dt, 0̃

)
≤ B

(
φ, ν,

5
2

)
. (48)

We now calculate the left hand side in (48) as follows:

D
((∫ 3

5
2

φ(s)ds
)
⊙ ν(3)⊖φH

(
−
∫ 5

2

2
φ(s)ds

)
⊙ ν(2)⊖φH

∫ 3

2
φ(t)⊙ ν(t)dt, 0̃

)

= D
((∫ 3

5
2

s2ds
)
⊙ ν(3)−

(
−
∫ 5

2

2
s2ds

)
⊙ ν(2)−

∫ 3

2
t2 ⊙ ν(t)dt, 0̃

)
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=
(

2 + 3
1
2

)(∫ 3

5
2

s2ds
)
+
(

2 + 2
1
2

)(∫ 5
2

2
s2ds

)
−
∫ 3

2
t2
(

2 + t
1
2

)
dt

=
61
24

(√
2 + 2

)
+

91
24

(√
3 + 2

)
+

1
168

(
384

√
2 − 375

√
10 − 854

)
= 0.0327721.

where

B
(

φ, ν,
5
2

)
:=

∫ 3

5
2

(∫ 3

t
φ(s)ds

)
D
(

ν′φH(t), 0̃
)

dt +
∫ 5

2

2

(∫ t

2
φ(s)ds

)
D
(

ν′φH(t), 0̃
)

dt.

Now, we calculate the bounds for B
(

φ, ν, 5
2
)

as follows:

B
(

φ, ν,
5
2

)
≤



∫ 3
5
2

s2ds
∫ 3

5
2

1
2
√

t
dt +

∫ 5
2

2 s2ds
∫ 5

2
2

1
2
√

t
dt

[∫ 3
5
2

(∫ t
5
2

s8ds
)

dt
] 1

4
(∫ 3

5
2

[
1

2
√

t

] 4
3 dt
) 3

4

+

[∫ 5
2

2

(∫ 5
2

t s8ds
)

dt
] 1

4
(∫ 5

2
2

[
1

2
√

t

] 4
3 dt
) 3

4

,

1
2

√
2
5

∫ 3
5
2

(∫ 3
t s2ds

)
dt + 1

2
√

2

∫ 5
2

2

(∫ t
2 s2ds

)
dt.

We use the software Mathematica to evaluate the above integrals as follows:

∫ 3

5
2

s2ds
∫ 3

5
2

1
2
√

t
dt +

∫ 5
2

2
s2ds

∫ 5
2

2

1
2
√

t
dt

=
91
24

(
√

3 −
√

5
2

)
+

61
(√

5 − 2
)

24
√

2
= 0.996476,

[∫ 3

5
2

(∫ t

2
s8ds

)
dt
] 1

4
(∫ 3

5
2

[
1

2
√

t

] 4
3
dt

) 3
4

+

[∫ 5
2

2

(∫ 3

t
s8ds

)
dt

] 1
4
(∫ 5

2

2

[
1

2
√

t

] 4
3
dt

) 3
4

=
1
16

(
3
√

6 − 3
√

5
)3/4 4

√
144,237,333

5
+

1
16

4

√
10,228,879

10

(
3
(

3
√

10 − 2
))3/4

= 1.97398

and

1
2

√
2
5

∫ 3

5
2

(∫ 3

t
s2ds

)
dt +

1
2
√

2

∫ 5
2

2

(∫ t

2
s2ds

)
dt =

83
192

√
5
2
+

165
128

√
2

= 1.59502.

Hence, it can be observed from the above calculations of that the inequality (14) of Theorem 16 is
valid for the above choices of functions over the interval [2, 3] Figure 1.
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Grapshs of ν-
p(t) and ν+

p(t)

for p=0.1, 0.2, 0.3, 0.4, 0.5

2.2 2.4 2.6 2.8
t

1.0

1.5

2.0

2.5

3.0

3.5

p-Levels

Figure 1. Graphs of p-levels of vp
−(t) are shown in green and those of vp

+(t) are shown in blue.

4. Concluding Remarks

In the last forty years, there has been significant growth in the field of mathematical
inequalities. Many researchers have published a plethora of articles using innovative
approaches. Within the extensive literature on mathematical inequalities, trapezoidal-type
inequalities stand out as important. These inequalities are utilized to estimate the absolute
deviation of the average value of a function’s values at the end points of a closed interval
of the real line from its integral mean.

Mathematicians have established various generalizations of trapezoidal-type inequali-
ties, such as those for functions of bounded variation, Lipschitzian mappings, absolutely
continuous functions, operator convex functions, and those involving two functions with
values in Banach spaces. One of the notable studies on the generalizations of trapezoidal-
type inequalities is highlighted in the paper [9].

In the present study, a more general result of the trapezoidal-type in the fuzzy context
is proven, which generalizes not only the results from [9] but also extends the results
from [1,2,4,7,8]. In order to obtain the results, a number of novel results from the theory
of calculus of fuzzy number-valued functions were used. An identity has been proven by
using the integration by parts, the properties of space of fuzzy numbers, and by employing
the Hölder inequality to prove several new and novel inequalities of the trapezoidal-type
for functions that have values in the space of fuzzy numbers. A numerical example is
given to exhibit the validity of the obtained results. The results of this study can be a good
source to obtain more new results for the researchers working in the field of mathematical
inequalities in fuzzy number-valued calculus.
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