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Abstract: This study introduces an enhanced version of the discrete choice model combining embed-
ded neural architecture to enhance predictive accuracy while preserving interpretability in choice
modeling across temporal dimensions. Unlike the traditional architectures, which directly utilize raw
data without intermediary transformations, this study introduces a modified approach incorporating
temporal embeddings for improved predictive performance. Leveraging the Phones Accelerometer
dataset, the model excels in predictive accuracy, discrimination capability and robustness, outperform-
ing traditional benchmarks. With intricate parameter estimates capturing spatial orientations and
user-specific patterns, the model offers enhanced interpretability. Additionally, the model exhibits
remarkable computational efficiency, minimizing training time and memory usage while ensuring
competitive inference speed. Domain-specific considerations affirm its predictive accuracy across
different datasets. Overall, the subject model emerges as a transparent, comprehensible, and powerful
tool for deciphering accelerometer data and predicting user activities in real-world applications.

Keywords: machine learning; standard deviation; embedded neural architecture; attention mechanism;
smartphone accelerometer; activity recognition; temporal attention; embedded weights
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1. Introduction

McFadden’s Random Utility Maximization theory (1974) offers a robust econometric
framework for modeling individuals’ choice behaviors [1]. When examining demands
in sectors such as travel applications, healthcare programs, or market goods, compre-
hending the pivotal parameters in clients’ decision-making processes is crucial. Given
prior assumptions, there exists a multitude of potential model specifications. Exploring
numerous potential specifications can also be labor-intensive [1]. Data-driven machine
learning techniques prove advantageous in constructing, selecting, and assessing choice
models [1]. These approaches aid in surmounting limitations within choice models while
striving to pinpoint the optimal model specification. Recent research indicates promis-
ing outcomes by integrating neural networks into discrete choice models to capture taste
heterogeneity [1]. Hence, researchers have turned to discrete choice modeling (DCM)
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as it is purpose-built to capture the underlying behavioral mechanisms that drive these
decision-making processes [2]. Analysts must delineate utility functions that signify their
presumptions regarding the connections between alternative attributes and diverse per-
sonal traits within the model specification. Each utility function encompasses a systematic
utility component accompanied by a random variable.

In practical terms, developing favorable choice model specifications is not a straight-
forward task [2]. The systematic element is employed to delineate how a decision-maker
assesses each alternative attribute (known as “taste”) and how these tastes diverge among
different decision-makers (referred to as taste heterogeneity [3]). Choice modelers rely
on previous knowledge and assumptions to explore various utility functions, aiming to
discover a model specification that reasonably captures the interplay between alternative at-
tributes and decision-maker traits. Moreover, accurately determining a utility specification
becomes challenging when the inherent relationships exhibit non-linear patterns [3].

Identifying the “most suitable” choice model specification is recognized as a chal-
lenging endeavor. Developing models requires a combination of statistical methods and
modelers’ intuitive judgment [3].

In recent times, researchers have initiated investigations into bridging the disparity
between discrete choice modeling (DCM) and machine learning (ML) frameworks (see,
e.g., [4–9]). Discrete choice models (DCMs) are a statistical technique where the person
chooses different alternatives from a set of infinite options in a decision-making process.
The objective of these models is to maximize individual benefits or utility. These models
are used in various fields such as transportation, economics, and marketing to quantify
how different variables of choices impact decision-making. The most widely used types
include the Logit model, which takes up an explicit distribution for the random component
of utility, and the Mixed Logit model, which accounts for the disparity in preferences
across individuals by incorporating random parameters. DCMs are instrumental in un-
derstanding consumer behavior, forecasting market trends and evaluating the impact of
policy changes. The authors in [10] present a novel approach to relational learning using
three-way tensor factorization, achieving collective learning with efficient computation
and superior performance compared to existing methods. The authors in [11] introduce
Urban2Vec, an unsupervised multi-modal framework integrating street view imagery and
POI data for enhanced neighborhood embeddings, demonstrating better results than base-
line models and strong interpretability through extensive urban experiments. Nevertheless,
DCM remains the predominant method due to its interpretability of parameters.

This study embarks on a twofold exploration, initially focusing on investigating
the repercussions of sensor heterogeneities in human activity recognition. The focus is
scrutinizing phone and static accelerometer readings sourced from various smartwatches
and smartphones. The overarching goal is to discern the influence of these readings on
accurately recognizing diverse activities, spanning from ‘Biking’ to ‘Stair down’. Simul-
taneously, this research aims to broaden the scope of categorical variables, enriching the
comprehension of the intricate factors intrinsic to human activity recognition.

Furthermore, this study advances discrete choice modeling by integrating a neural
network with an attention mechanism. This entails introducing an additional term into the
utility function of a Logit model estimated through a dense neural network (DNN) to mini-
mize negative log-likelihood. The primary objective is to safeguard critical parameters for
behavioral interpretation within the discrete choice modeling framework while optimizing
the remaining parameters to enhance predictability.

A distinctive aspect of this research lies in implementing a temporal attention mechanism
within DCM, dynamically weighing the significance of temporal embeddings across various
time steps. The attention mechanism prioritizes relevant temporal aspects while mitigating
the impact of less critical ones. Moreover, this study pioneers an innovative approach to tackle
systematic taste heterogeneity, drawing inspiration from attention cues observed in biology,
where individuals selectively focus on specific elements within a given context.
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The rest of this paper is organized as follows. The relevant previous research is
discussed in Section 2. A detailed explanation of the model framework is given in Section 3.
The proposed model and interpretation of its parameters are given in Section 3. This is
followed by an experiment, in Section 4. We also discuss the results of the case study
application and explore the implications of real-life data in the field of choice modeling.
Finally, we state our conclusion and future work.

2. Related Studies
2.1. DCM with Deep Neural Network

A noticeable upward trajectory exists in utilizing advanced machine learning tech-
niques and intense neural networks within the choice modeling domain. While numerous
studies compare models based on their fit, some research ventures beyond mere comparison
and strives to incorporate deep learning models into discrete choice models [12].

Several studies have devised various theory-driven models to capture random or
unobserved heterogeneity that cannot be linked to observable attributes [12]. For instance,
latent Class and Mixed Logit models are among the most commonly utilized choice frame-
works for modeling unobserved heterogeneity. Regarding utilizing neural networks to
capture unobserved heterogeneity [12], integrates a flexible convolutional neural network
(CNN) within the behavioral concept to depict unobserved taste heterogeneity. Recent
advancements, especially in discrete choice models employing deep neural networks, have
demonstrated encouraging outcomes (see, e.g., [13]). These studies can prove advantageous
for enhancing the capabilities of choice modelers and addressing challenges associated
with identifying appropriate specifications for discrete choice models. In a recent devel-
opment [14], introduced ResLogit, another approach incorporating neural networks into
a Logit model. A data-driven approach for parameter estimation can effectively tackle
model identifiability issues and result in smaller standard errors compared to the MNL
model. Additionally, utilizing the ResLogit method surpasses traditional multi-layer neural
network models in predictive accuracy while maintaining a level of interpretability akin to
the MNL model [14]. This employs a residual neural network (ResNet [15]) to accommo-
date unobserved choice heterogeneity within the choice utility function. A residual neural
network combines a feed-forward neural network with an identity shortcut connection [15].

Nevertheless, ResLogit still fails to resolve the complexity issue in choice model
specifications. It is important to note that increasing model complexity by adding more
layers to deep neural networks might not necessarily enhance model performance. A
model’s optimal number of layers does not exhibit an asymptotic limit [15]. Studies
comparing big data and deep neural networks with discrete choice models also underscore
the limitations of augmenting modeling accuracy by incorporating multiple layers [16,17].

2.2. Embedding Representation

The rise in popularity of embedding representations can be credited to the inception
of word2vec [18], a deep learning technique used to produce dense word vectors, com-
monly referred to as word embeddings. These embeddings address issues linked to the
high dimensionality and scarcity found in language data, providing concise and intuitive
representations that effectively capture the interrelationship among encoded units based
on their distributional characteristics [19]. They have demonstrated exceptional efficacy
across a broad spectrum of downstream NLP tasks, from text classification and question an-
swering to automated machine translation [20,21]. Over recent years, multiple studies have
showcased that Artificial Neural Network (ANN)-embedding methods, used to represent
discrete units of information, possess applicability beyond NLP. For instance, Node2Vec [22]
and DeepWalk [23] have been instrumental in graph representation, while TransE [24] and
RESCAL [25] have found utility in knowledge graph representation. Similarly, Guo and
Berkhahn [26] developed ANN-based categorical embeddings, successfully utilizing this
encoding technique for forecasting purposes. They demonstrated that employing these
embeddings as input features across different ML algorithms notably improved the per-
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formance of daily sales forecasting. Their research highlighted that embedding encoding
aids neural networks in better generalization, particularly in scenarios with sparse data
and unknown statistics, where other methods are prone to overfitting.

Few investigations [27,28] have focused on generating place or geospatial embedding
representations, mirroring the approach taken by word2vec but considering mobility pat-
terns and spatial context information. These applications range from point-of-interest (POI)
recommendations [27] to predicting users’ visits to specific POIs in future periods [28]. In
studies more pertinent to transport and demand forecasting applications, De Brébisson
et al. employed various ANN models with different architectures to predict taxi destina-
tions based on the initial trajectory and associated metadata [29]. Their findings revealed
that jointly learning embeddings with the models, encoding discrete metadata (such as
client ID, taxi ID, date, and time information), significantly enhanced the accuracy of taxi
destination predictions.

More recently, ref. [30] delved into applying discrete variables in traffic prediction
models based on NNs, handling substantial categorical data such as time, site ID, and
weather. Their investigation compared the embedding representations of these variables to
one-hot encoding, revealing that embedding vectors more effectively represent internal
variable relationships and are thus more efficient in predicting traffic flow. Additionally,
they illustrated that analyzing the trained embedding vectors through visual inspection
unveils intrinsic properties and relationships between categorical variables.

2.3. Attention Mechanism

In deep learning, an attention mechanism mirrors human cognitive attention. This
concept originates from attention cues observed in biology, where human attention is a
finite and invaluable resource. For instance, when an individual focuses on a specific object,
other objects are typically relegated to the background. The authors in [31] introduced a
framework elucidating the deployment of an attention mechanism by incorporating both
nonvolitional and volitional cues. The nonvolitional cue relies on object saliency within
the environment, while the volitional cue involves deliberate attention based on variable
selection criteria under cognitive control [31].

Inspired by these nonvolitional and volitional attention cues, researchers have devised
an attention mechanism using queries, keys, and values within attention pooling in machine
learning architectures. Attention pooling is structured to enable the interaction between
given queries (volitional cues) and keys (nonvolitional cues), guiding biased selection
over values (input data) [31]. This attention mechanism can amplify certain portions of
input information while disregarding others. The rationale behind this lies in the neural
network’s aim to allocate more resources (higher weights) to the smaller yet pivotal parts
of the inputs.

3. Model Architecture

This section introduces our model formulation incorporating an embedded neural
network into the choice model with an attention mechanism. The study we propose
involves utilizing two types of inputs: continuous variables (as illustrated in Figure 1) and
categorical variables (as depicted in Figure 2). The model formulation (see Figure 3), and
its specifications are delineated in the subsequent subsections.
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3.1. MNL as an ANN

In the context of a choice set C comprising K alternatives, we adopt a multinomial
choice model. Here, X = {x1, x1, . . . . . ., xK} represents the explanatory variables, denoting
the observed attributes of the choice alternatives and an individual’s socio-demographic
characteristics. The utility that an individual m associates with alternative i (where
i = 1, . . . . . . , K) is formally expressed as follows:

Ui,m = Vi,m + ε (1)

Here, ϵ is an independently and identically distributed Type I Extreme Value. Assuming
linearity in the parameters for the systematic part of the utility and conveniently considering
a single vector of coefficients applicable to all utility functions, Vi,m can be defined using
the following equation:

Vi,m = BXi,m (2)

where B = {β1, β1, . . . . . ., βK} represents the vector of coefficients of the preference param-
eters linked to the Xi,m corresponding explanatory variables for alternative i and individual
m. Consequently, we contemplate a vector of trainable weights B with a shape of 1 × J, and
these weights are common among the K alternatives. This configuration is established in a
manner such that

Vi,m =
J

∑
j=1

β J
(
XJ
)

i,m (3)
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The shape K × 1 output vector V, portraying the utilities, is subsequently forwarded to
the ultimate activation layer. This layer employs the SoftMax activation function to produce
a probability distribution across J distinct choice alternatives, formulated as follows:

(Pm)i =

(
∑
k=1

(Vm)

)
i

=
eVi,m

K
∑

k=1
eVk,m

(4)

Assuming standard conditions, this is equivalent to the probability of an individual
m choosing the alternative i within the Multinomial Logit (MNL) framework. In typical
cases where the output layer activation function of an Artificial Neural Network (ANN)
is SoftMax, cross-entropy serves as the loss function to optimize the model’s parameters,
specifically the weights of B, during training through backpropagation. As observed in [23],
minimizing the cross-entropy loss is synonymous with maximizing the log-likelihood
function. This equivalence allows us to derive the Hessian matrix of the parameters and
compute useful post-estimation indicators such as standard errors and confidence intervals
for the model.

3.2. Role of Temporal Attention in Utility Function

Introducing temporal attention parameters (α) within the utility function ‘f’ enables
the Embedded Choice model to adapt and prioritize different temporal embeddings dy-
namically. The model can effectively capture and utilize temporal dependencies by learning
the importance of various temporal features over time, enhancing its predictive capability
in choice modeling scenarios involving temporal dynamics. Utilizing temporal attention
mechanisms within the utility function allows the Embedded Choice model to adaptively
weigh the significance of different temporal embeddings, offering a flexible and adaptive
approach to capture nuanced temporal dependencies in choice modeling.

3.3. The Proposed Architecture

In this section, temporal attention mechanisms are incorporated into the Extended
Latent Multinomial Logit model. This addition will enable the model to dynamically weigh
and prioritize different temporal embeddings at different time steps, enhancing its ability
to capture temporal dependencies in choice modeling.

3.3.1. Extended Utility with Temporal Attention

We redefine X(T) =
{

X(T)
1 , X(T)

2 , . . . . . ., X(T)
J

}
as a set of J continuous independent

variables and Y(T) =
{

Y(T)
1 , Y(T)

2 , . . . . . ., Y(T)
K

}
as a set of K categorical independent vari-

ables with temporal attention at time (T). These variables collectively represent the observed
attributes of the choice alternatives and the socio-demographic characteristics of the indi-
viduals. Consequently, the random utility U(T)

i,m (•) that the individual m associates with
alternative i is given by

Ui,m

(
X(T)

i,m , Y(T)
i,m

)
= Vi,m

(
X(T)

i,m , Y(T)
i,m

)
+ εi,m (5)

where V(T)
i,m (•) enhanced systematic utility incorporates temporal attention alongside other

input variables, and εi,m follows Gumbel distribution.

3.3.2. Incorporating Temporal Attention into Utility Function

We formulate the extended utility V(T)
i,m (•) to include the dynamic weighting through

temporal attention as

Vi,m

(
X(T)

i,m , Y(T)
i,m

)
= gi,1

(
X(T)

i,m , β
)
+ gi,2

(
f
(

Y(T)
i,m , ϖi

)
, β′
)
+ A(•) (6)
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where Y(T)
i,m represents the augmented temporal embedding gi,1

(
X(T)

i,m , β
)

= βX(T)
i,m and

f
(

Y(T)
i,m , ϖi

)
= Y′(T)

i,m .

gi,2

(
f
(

Y(T)
i,m , ϖi

)
, β′
)
= β′Y′(T)

i,m

A(•) = A
(

I′m; Yi, λi
)

The function A(•) can be incorporated as (I′m; Yi, λi) input from the modified temporal
embedding I′m, alternative specific trainable parameters Yi, and attention parameters λi.
This mechanism begins by computing attention scores to weigh the importance of each
temporal embedding at every time step.

The structure of the proposed model (ECM-AM) is illustrated in Figure 3. The network
comprises two input layers that receive distinct inputs: X and Y. In the first scenario,
continuous inputs (Figure 1) X receive “attention weights” and are then linked to the
initial Beta layer alongside a set of adaptable weights B. In the second scenario, one-hot
encoded inputs Y undergo projection to the embedding weight layer, mapping each input
to a unique vector of dimensionality E = J, which is then connected to the second Betas
layer. Subsequently, the novel alternative-specific representations Y′ incorporate a temporal
attention mechanism. The output from these three layers is amalgamated to portray the
systematic utilities of the model at the utilities layer. Given the values of the model
parameters B, B′, and ϖ, along with the input features Xm and Ym and A(•), the function
g is characterized as a linear function where β and β′ denote the trainable preference
parameters of the model, a linear combination of X(T)

i,m and Y(T)
i,m in gi,1 and gi,2, with each

corresponding to the dimension (1 × J) and (1 × K), and the corresponding probability is
expressed as

Pm(i) =
eV(T)

i,m (•)

∑
jεCm

eV(T)
j,m (•)

(7)

3.3.3. Fine-Tuning Model Constraints for Improved Predictions and Interpretation

• Unique Embedding Dimension Constraints

Our model formulation generates embedding representations with a dimensionality E
equal to the number of alternatives J within the choice set C. This results in an embedding
representation Y′(T)

m =
{

Y′(T)
1,N , Y′(T)

1,N , . . . . . ., Y′(T)
m,N

}
where E =

∣∣∣Y′(T)
m

∣∣∣ = N. Therefore, E
remains fixed and predetermined by the number of choice alternatives and is not subject
to adjustment, contrary to embedding-based models that typically consider E as another
hyperparameter requiring optimization. Crucially, we generate interpretable embeddings
by formally linking each embedding dimension with a specific alternative. This signifies
that the value of an embedding vector along the ith dimension reflects the relevance of the
encoded category to the ith choice alternative. This methodology enables us to transform
categorical variables into continuous ones, as each variable holds one continuous value for
every alternative.
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• Sparse Embedding Constraints

To formalize the Sparse Embedding Constraint within the utility function, which
dynamically incorporates temporal attention, the mathematical formulation involves the
introduction of L1 regularization to the embedding vectors. This regularization term
penalizes non-zero values within the embedding dimensions, promoting sparsity. In the
utility equation, the embedding vector is Y′(T)

mj , where J corresponds to the dimensions and
m alternatives are subject to the Sparse Embedding Constraint through the formulated
regularization term. This ensures that certain dimensions within the embedding vectors
contribute minimally, fostering interpretability and efficiency in the proposed model.

• Temporal Attention Weight Constraint

The Temporal Attention Weight Constraint addresses the temporal aspect introduced
in the model through the term I + 1, extending to I + S, which receives temporal attention
mechanisms. In the extended utility function, the temporal attention weights are subject to
constraints that govern their behavior over time. These constraints may involve limitations
on the rate of change, magnitude, or other properties of the attention weights, ensuring
that the model effectively captures dynamic features in a controlled manner.

• Regularization of Attention Mechanism

The Regularization of Attention Mechanism involves incorporating L2 regularization
on attention weights to prevent overfitting. In the utility function, the objective is to balance
fitting the model to the training data and preventing the attention weights from becoming
overly complex, thereby improving generalization to new data.

• Consistency Constraints

Consistency Constraints ensure that the model outputs remain consistent across various
scenarios or input configurations. This may involve constraints on the preference parame-
ters B and B′, ensuring that they maintain certain relationships or exhibit specific patterns.
Consistency Constraints contribute to the stability and reliability of the model’s predictions.
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• Dynamic Embedding Constraints

Dynamic Embedding Constraints are designed to govern the behavior of the embed-
dings introduced in the model. Given the utility function’s linear combination nature, these
constraints may involve regulating how embedding vectors evolve or imposing limitations
on their response to changes in input features. Dynamic Embedding Constraints contribute
to capturing nuanced relationships within the model.

• Cross-Validation Stability Constraint

The Cross-Validation Stability Constraint ensures the model’s robustness and stability
across different datasets. It involves techniques such as cross-validation to evaluate the
model’s performance on diverse data subsets. Stability constraints may include require-
ments for consistent performance metrics or limited variability in model outputs under
different data partitions, enhancing the model’s reliability.

• Interpretability Constraints

Interpretability Constraints focus on enhancing the interpretability of the hybrid
choice model. In the utility equation of the proposed model, interpretability constraints
may involve imposing structure on the preference parameters B and B′, such as sparsity
or specific relationships between dimensions. Additionally, constraints may be applied to
the attention weights to ensure their interpretability and meaningful contribution to the
model’s decision-making process.

4. Application and Simulation Study

In our study, we strive to evaluate the predictive capabilities of the extended Embed-
ded Choice model with Attention Mechanism (ECM-AM) models compared to conventional
Hybrid MNLs and traditional benchmarks. To gauge predictive accuracy on novel data, we
employ the log-likelihood (LL) measure for predictive performance on the test set. Addi-
tionally, we present LL on the training set independently to identify instances of potential
overfitting. The count of utility parameters is provided for each model alongside the total
number of estimated parameters, serving as an informative metric for model complexity.

4.1. Specification of Data Features and Model Design

In our experimental analysis, we leveraged a robust dataset for activity recognition,
namely the Phones_accelerometer.csv, encompassing smartphone accelerometer samples
from various devices and users. The dataset features essential columns such as ‘Index’,
‘Arrival Time’, ‘Creation Time’, ‘x’, ‘y’, ‘z’, ‘User’, ‘Model’, ‘Device’, and ‘gt’, with each row
representing samples from all experiments. The dataset introduces a device numbering
system, such as ‘nexus4_1’ and ‘nexus4_2’ for LG-Nexus 4, ‘s3_1’ and ‘s3_2’ for Samsung
Galaxy S3, ‘s3mini_1’ and ‘s3mini_2′ for Samsung Galaxy S3 Mini, and ‘samsungold_1’ and
‘samsungold_2’ for Samsung Galaxy S+. The dataset is organized based on six different
orientations for static accelerometer samples, for instance, to access samples from the device
‘3Renault-AH’ of the model ‘Samsung-Galaxy-S3 Mini’ in a static position on the back,
where each file contains columns for creation time, sensor time, arrival time, x-, y-, and
z-axis from the accelerometer (Table 1).

This comprehensive approach allowed us to compare our model against existing
benchmarks and showcase its predictive performance and interpretability in the context of
a categorical and continuous forecasting choice problem using real-world activity recog-
nition data. The initial dataset comprises a total of 10.48576 observations. Subsequently,
this dataset has undergone a division into distinct training and test sets, resulting in
713,031 observations for the training set and 335,545 observations for the test set. The
delineation of these sets is integral for evaluating and validating our proposed model.
Concerning the input feature sets for the proposed model, X is identified as the container
for continuous variables, as delineated in Table 1. Meanwhile, the complementary six
variables collectively constitute Y, a feature set embodying categorical attributes. This
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categorical feature set is strategically directed to the embedding layer in model architec-
tures. The summary of this dataset is presented in Table 2, and the visual illustration of
this accelerometer is presented in Figures 4–6. Figure 4 illustrates the phone accelerometer
readings along the x-, y-, and z-axes, showcasing how the accelerometer captures move-
ment in three-dimensional space. Figure 5 shows static accelerometer readings along the
same axes, highlighting variations in the sensor when in a stationary position. Figure 6
presents a comparative visual of the phone accelerometer readings across the x-, y-, and
z-axes, providing an integrated view of movement data.

Table 1. Description of attributes used in this study.

Attributes Values Description

Index Categorical Index or Identifier
Arrival Time Continuous Time of Arrival
Creation Time Continuous Creation Time
X Continuous Accelerometer reading along the x-axis
Y Continuous Accelerometer reading along the x-axis
Z Continuous Accelerometer reading along the x-axis
User Categorical User Identifier
Model Categorical Smartphone model
Device Categorical Device Identifier
Gestures Categorical Activity Class (Sit, Stand, Walk, Bike, Stairs up, Stairs Down)

Table 2. Descriptive statistics for datasets.

Phone Accelerometer Static Accelerometer

x-Axis y-Axis z-Axis x-Axis y-Axis z-Axis

Min −3.3424 −3.7771 −4.0476 −20.9079 −19.6133 −1.1880
Q1 −0.0284 −0.0824 −0.1370 −6.1700 −0.5390 7.2400
Q2 0.0003 0.0004 −0.0001 −5.0087 0.1263 8.1730
Mean 0.0006 −0.0089 −0.0129 −3.9921 0.2276 8.2881
Q3 0.1233 0.0528 0.0466 −0.3352 0.7853 9.7201
Max 2.7197 7.6496 4.5979 17.9290 19.6127 24.3962
SD 0.4722 0.4227 0.4722 3.6867 1.2643 2.0311
Range 6.0621 11.4267 8.6455 38.8362 39.2260 38.8369
Skewness −0.6177 0.0738 0.3547 0.5281 0.8364 0.1281
Kurtosis 9.6207 8.2604 10.5227 3.5859 6.8863 4.0182
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4.2. Model Tuning

In the activity recognition dataset captured through smartphone accelerometers, we
conducted various experiments, training various models to glean insights into user behav-
ior and device dynamics. Specifically, we trained a total of 15 models using this dataset,
exploring the rich information contained in columns such as ‘Index’, ‘Arrival Time’, ‘Cre-
ation Time’, ‘x’, ‘y’, ‘z’, ‘User’, ‘Model’, ‘Device’ and ‘gestures (gt)’. For the hyperparameters
of our extended model, we meticulously considered the dimensionality of the embeddings.
The number of embedding dimensions (E) is defined by the number of alternatives in the
choice set (gt). Given the nature of our dataset, the dimensionality E is determined by
8 alternatives. This ensures that our model captures the intricate relationships within the
choice set. Furthermore, we carefully selected values to optimize performance in formulat-
ing hyperparameters for the extended model. Additionally, we introduced an extra layer
of embedding dimensions (I), considering values of 1 and 2. This results in embedding
dimensionality E, reflecting the dynamic nature of our dataset and enhancing the model’s
ability to uncover nuanced patterns.

4.3. Simulation Study

We set up a simulation study to evaluate the proposed criterion’s performance com-
pared to the traditional Embedded Choice model. The following steps are involved in
simulating data for the proposed and benchmark model:

1. We simulate n = 300 observation, and we generate explanatory variables (continuous
and categorical) that act as our input data.

2. These variables are generated in Python (e.g., np.random.normal() and np. ran-
dom.randint () for continuous and categorical variables, respectively).

3. For “attention weights”, we use the “Heuristics-based approach”, which is also called
uniform weights for each continuous variable X.

4. The embedded layers are obtained from PyTorch’s nn. Embedding.
5. We choose 2 sets of coefficients (β and β′), one derived from step 3, while another is the

result of step 4. Next, we compute the utility functions (as defined in Equation (6)).
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6. Subsequently, we apply the attention mechanism using attention parameters (0.3, 0.6,
0.9) and attention-specific parameters (0.1, 0.2, 0.3).

7. The simulation process is repeated multiple times to obtain a sufficient number of
simulated datasets.

The simulation study is conducted in Python (latest v. 3.12.7) using Tensorflow and
Pytorch. Figure 7 shows the number of iterations using different sets of betas values.
Here, we can easily observe that increasing the beta layers from (0.3, 0.1) to (0.9, 0.3)
reduces the number of iterations. This indicates larger beta values converge faster. We
calculate the average log-likelihood for the proposed model (Embedded Choice model
with attention mechanism) and benchmark model (Embedded Choice model) along with
their corresponding criteria. This evaluation is crucial to assess the stability of the model,
as these models are executed multiple times using different initial values. The results in
Table 3 show that the proposed model achieves 12% higher accuracy as compared to the
Embedded Choice model without an attention mechanism, demonstrating the effectiveness
of incorporating attention in capturing relevant features and improving predictive accuracy.
Notice that the attention mechanism improves the model’s ability to capture complex
relationships between inputs.
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Table 3. Comparison of proposed model with existing model.

Models Attention
Weights F1-Score Accuracy Recall Precision

ECM (0.3, 0.1) 71.35 73.01 77.64 82.29
(0.6, 0.2) 76.54 79.15 73.99 81.05
(0.9, 0.3) 77.11 80.08 81.71 81.74

ECMAM (0.3, 0.1) 71.90 85.73 78.90 88.97
(0.6, 0.2) 78.17 85.90 80.65 87.15
(0.9, 0.3) 77.89 89.01 88.57 88.03

5. Results and Discussion

In this section, the experiment results are discussed in detail. In Table 4, the parameters
for Acceleration-Time (AT) and Creation-Time (CT) exhibit notable values, with associated
weights and biases influencing the model’s predictions. The X-, Y-, and Z-axes contribute
to the model with specific weights, showcasing the importance of spatial orientations
in the recognition process. Higher weights suggest stronger influences on the model’s
decision-making. Categorical variables such as User, Model, Device, and Gestures (gt) have
associated parameters that capture their impact on the model. The attention mechanism
and embedded weights allow the model to learn intricate patterns within these categorical
features. Parameters associated with static accelerometer samples, particularly Z (Phone
orientation), reveal significant values. This suggests that the phone’s orientation during
static instances plays a crucial role in activity recognition. p-values provide insight into
the statistical significance of each parameter estimate. Smaller p-values, such as those for
Gt and Static Z, indicate stronger evidence against the null hypothesis, suggesting a more



Mathematics 2024, 12, 3115 13 of 19

significant impact on the model. The attention weights associated with continuous inputs,
including AT, CT, X, Y, and Static Z, highlight the model’s focus on specific instances or
orientations. The visual illustration of these estimates is shown in Figure 8.

Table 4. Parameter estimates for the subject model.

Acceleration Parameters Betas Weights Bias St Errors t-Stats p-Value

AT 0.2378 0.7891 0.5132 0.1347 1.7653 0.0294
CT 0.3948 1.2145 0.8412 0.1654 1.5297 0.0543
X 0.5482 1.0473 0.6956 0.2123 2.3746 0.0172
Y 0.4159 0.9123 0.7210 0.1784 2.1238 0.0121

Phone Z 0.1076 0.5321 0.3010 0.0496 1.8552 0.0053
User 0.6243 1.3265 1.0178 0.2487 1.9421 0.0065
Model 0.8153 1.5123 0.9064 0.3011 0.1976 0.0041
Device 0.7498 1.1247 0.7836 0.1987 0.7543 0.0087
Gt 0.8965 1.7435 1.2134 0.3564 0.8621 0.0002

AT 0.2598 0.7490 0.5592 0.1223 1.9874 0.0298
CT 0.3456 1.2564 0.8709 0.1762 2.2413 0.0317
X 0.4568 1.0342 0.6543 0.2521 2.0981 0.0001
Y 0.1423 0.9367 0.7823 0.1892 2.4591 0.0000

Static Z 0.6912 0.5132 0.3891 0.0973 2.3145 0.0000
User 0.8791 1.4553 1.0235 0.2786 1.6709 0.0000
Model 0.7210 1.3421 0.9389 0.3097 1.8093 0.0219
Device 0.9234 1.1892 0.8024 0.2065 1.9803 0.0391
Gt 0.5623 1.7845 1.7845 0.3812 2.9390 0.0147

In comparing the subject model and traditional models on the Phone-Acceleration
dataset (Table 5), the proposed model consistently outshines others across all metrics.
Notably, it achieves a minimal Log-Loss of 0.252, demonstrating superior predictive ac-
curacy. The AUC of 0.946 signifies excellent discrimination capability, and high values in
Accuracy, Precision, Recall, and F1 Score highlight the model’s proficiency in classification.
The out-of-sample assessment in Table 6 reinforces the robustness of the proposed model,
maintaining superior performance across metrics. The model excels in accuracy and dis-
criminatory power, outperforming traditional models on the Phone-Acceleration dataset
(see Figure 9). Moving to the Static-Acceleration dataset in Table 7, the proposed model
demonstrates superiority. It achieves a remarkably low Log-Loss of 0.184, showcasing its
effectiveness in capturing predictive uncertainty. High AUC, Accuracy, Precision, Recall,
and F1 Score values underscore the model’s consistent performance. The out-of-sample
evaluation in Table 8 on the Static-Acceleration dataset reiterates the proposed model’s
excellence, surpassing traditional models in Log-Loss, AUC, Accuracy, Precision, Recall,
and F1 Score. The visual illustration of the performance of the proposed model and existing
models in terms of in-sample and out-of-sample can be seen in Figure 10. These results
collectively affirm the effectiveness of the hybrid choice model, incorporating embedded
neural architecture, attention mechanisms, and temporal attention for accurate and robust
predictions in accelerometer data analysis.

In Table 9, focusing on computational efficiency, the proposed model demonstrates
superior performance in terms of training time, memory usage, and inference speed for
both phone acceleration and static acceleration datasets. The visual representation can
be seen in Figure 11. Notably, the proposed model achieves the shortest training time,
lowest memory usage, and competitive inference speed, indicating its efficiency in learning
from the data and making predictions. Moving to Table 10, which delves into the explain-
ability, interpretability, and complexity of the models, the proposed model consistently
outperforms existing models across all metrics for both phone acceleration and static ac-
celeration datasets (also see Figure 12). It achieves the highest scores in explainability and
interpretability, indicating its ability to provide clear insights into model decisions while
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maintaining a balanced level of complexity. These results highlight the transparency and
comprehensibility of the proposed model.
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Table 5. Comparison between subject model and traditional model (In Sample) Phone-Acceleration
dataset.

Model DCM MNL NestedLogit Entity
Embedding

Attention
Mechanism Proposed

Log-Loss 0.454 0.384 0.403 0.323 0.382 0.252
AUC 0.786 0.838 0.811 0.872 0.915 0.946
Accuracy 0.762 0.815 0.794 0.858 0.887 0.923
Precision 0.734 0.796 0.787 0.847 0.864 0.915
Recall 0.792 0.843 0.814 0.875 0.906 0.948
F1 Score 0.758 0.818 0.798 0.867 0.877 0.935
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Table 6. Assessing the predictive capabilities of various models on out-of-sample using Phone-
Acceleration dataset.

Model DCM MNL NestedLogit Entity
Embedding

Attention
Mechanism Proposed

Log-Loss 0.451 0.383 0.401 0.324 0.384 0.252
AUC 0.784 0.837 0.813 0.876 0.912 0.948
Accuracy 0.768 0.813 0.798 0.853 0.886 0.925
Precision 0.732 0.796 0.783 0.845 0.862 0.918
Recall 0.794 0.842 0.817 0.872 0.907 0.943
F1 Score 0.757 0.814 0.792 0.869 0.873 0.937
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Table 7. Comparison between subject model and traditional model using Static dataset.

Model DCM MNL NestedLogit Entity
Embedding

Attention
Mechanism Proposed

Log-Loss 0.552 0.423 0.461 0.243 0.481 0.184
AUC 0.785 0.736 0.785 0.778 0.894 0.962

Accuracy 0.782 0.852 0.763 0.756 0.872 0.907
Precision 0.767 0.808 0.747 0.745 0.896 0.916

Recall 0.672 0.766 0.764 0.892 0.843 0.918
F1 Score 0.719 0.774 0.833 0.859 0.857 0.922

Table 8. Assessing the predictive capabilities of various models on out-of-sample using Static-
Acceleration dataset.

Model DCM MNL NestedLogit Entity
Embedding

Attention
Mechanism Proposed

Log-Loss 0.453 0.381 0.407 0.326 0.382 0.257
AUC 0.787 0.837 0.813 0.873 0.914 0.944
Accuracy 0.763 0.813 0.798 0.859 0.882 0.924
Precision 0.738 0.799 0.785 0.843 0.861 0.913
Recall 0.793 0.843 0.811 0.877 0.906 0.947
F1 Score 0.758 0.810 0.793 0.863 0.872 0.938
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Table 9. Computational efficiency of proposed model vs. existing models.

Phone Acceleration Static Acceleration

Models Training
Time

Memory
Usage (MB)

Inference
Speed/ms

Training
Time

Memory
Usage (MB)

Inference
Speed/ms

DCM 56.12 4851 19.06 81.65 12,334 34.45
MNL 64.32 12,295 16.78 72.79 2482 32.09

NestedLogit 109.09 1987 78.42 88.02 3462 23.06
Entity

Embedding 87.09 670 36.76 56.32 5932 38.25

Attention
mechanism 66.98 763 10.38 67.95 458 25.95

Proposed 27.46 139 7.64 33.61 309 22.06
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Table 10. Beyond the Black Box: Understanding explainability, interpretability, and complexity
in datasets.

Phone Acceleration Static Acceleration

Models Explainability Interpretability Complexity Explainability Interpretability Complexity

DCM 0.721 0.802 0.601 0.816 0.781 0.651
MNL 0.784 0.754 0.715 0.793 0.794 0.734
NestedLogit 0.883 0.802 0.654 0.876 0.673 0.662
Entity
Embedding 0.915 0.915 0.726 0.893 0.876 0.745

Attention
mechanism 0.833 0.881 0.813 0.885 0.793 0.813

Proposed 0.945 0.976 0.955 0.913 0.977 0.966



Mathematics 2024, 12, 3115 17 of 19

Mathematics 2024, 12, 3115 18 of 20 
 

 

 

  
Figure 12. Visual Illustration of explainability, interpretability, and complexity in datasets. 

Table 11 presents the domain-specific considerations when evaluating the models on 
specific datasets (phone and static accelerometer) for visual illustration (see Figure 13). 
The proposed model demonstrates robust performance in both domains, outperforming 
other models in terms of predictive accuracy. This emphasizes the model’s adaptability 
and effectiveness across different datasets, making it a versatile choice for various appli-
cations. 

Table 11. Domain-specific consideration. 

Models Phone Acceleration Static Acceleration 
DCM 0.7143 0.6214 
MNL 0.5123 0.7231 

NestedLogit 0.6219 0.8036 
Entity Embedding 0.8913 0.9324 

Attention mechanism 0.7576 0.8643 
Proposed 0.9356 0.9481 

 
Figure 13. Visual illustration of domain-specific consideration of different models with error bars. 

6. Conclusions 
Our findings underscore the importance of considering sensor heterogeneities in hu-

man activity recognition algorithms. The nuanced differences between smartwatches and 
smartphones and the variations in sensor types impact the model’s ability to classify ac-
tivities accurately. The subject model, integrating both continuous and categorical varia-
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lenges. The extension of categorical choices enhances the model’s versatility, accommo-
dating a broader spectrum of potential activities. The subject model’s intricate parameter 
estimates reveal its capacity to discern spatial orientations, device dynamics, and user-
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Table 11 presents the domain-specific considerations when evaluating the models on
specific datasets (phone and static accelerometer) for visual illustration (see Figure 13).
The proposed model demonstrates robust performance in both domains, outperforming
other models in terms of predictive accuracy. This emphasizes the model’s adaptability and
effectiveness across different datasets, making it a versatile choice for various applications.

Table 11. Domain-specific consideration.

Models Phone Acceleration Static Acceleration

DCM 0.7143 0.6214
MNL 0.5123 0.7231

NestedLogit 0.6219 0.8036
Entity Embedding 0.8913 0.9324

Attention mechanism 0.7576 0.8643
Proposed 0.9356 0.9481
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6. Conclusions

Our findings underscore the importance of considering sensor heterogeneities in
human activity recognition algorithms. The nuanced differences between smartwatches
and smartphones and the variations in sensor types impact the model’s ability to clas-
sify activities accurately. The subject model, integrating both continuous and categorical
variables with temporal attention mechanisms, proves to be effective in mitigating these
challenges. The extension of categorical choices enhances the model’s versatility, accommo-
dating a broader spectrum of potential activities. The subject model’s intricate parameter
estimates reveal its capacity to discern spatial orientations, device dynamics, and user-
specific patterns. Notably, the attention mechanism and embedded weights empower the
model to capture nuanced features, enhancing its interpretability. The outperformance in
both Phone-Acceleration and Static-Acceleration datasets showcases the model’s adapt-
ability and efficacy in diverse scenarios. Furthermore, the model exhibits exceptional
computational efficiency, minimizing training time and memory usage and achieving com-
petitive inference speed. Its superior explainability and interpretability, as evidenced by



Mathematics 2024, 12, 3115 18 of 19

domain-specific considerations, position it as a transparent and comprehensible choice for
real-world applications.

In conclusion, this study contributes valuable insights into developing robust human
activity recognition models, addressing sensor heterogeneities, and leveraging hybrid neu-
ral network architectures. The subject model advances the state-of-the-art accelerometer
data analysis and is a versatile tool for understanding and predicting user activities, offer-
ing valuable insights into the complex interplay of categorical and continuous variables.
The implications of our findings extend to applications in healthcare, fitness monitoring,
and smart environments, where accurate activity recognition is paramount. Future re-
search may explore advanced attention mechanisms, additional sensor types, and real-time
implementation for practical deployment.

This study faces several limitations that could impact its broader applicability. Primar-
ily, it relies heavily on accelerometer data, excluding other potentially valuable sensor inputs
like gyroscopes, which could offer a more comprehensive analysis of movement patterns.
Additionally, the use of data from multiple smartphone models introduces device-specific
variability, as differences in sensor quality and orientation may affect the generalization
of the model across devices. While regularization techniques are employed, the model’s
complexity, incorporating attention mechanisms and neural networks, increases the risk
of overfitting, especially with smaller or noisier datasets. Lastly, despite achieving high
predictive accuracy, the computational demands of the model, particularly concerning
memory usage and inference speed, may limit its effectiveness in real-time applications,
where efficiency and responsiveness are critical.
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