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Abstract: An L(d, 1)-labeling of a graph G = (V, E) is a function f from the vertex set V(G) to the set
of nonnegative integers such that the labels on adjacent vertices differ by at least d and the labels on
vertices at distance two differ by at least one, where d ≥ 1. The span of f is the difference between the
largest and the smallest numbers in f (V). The λd

1-number of G, denoted by λd
1(G), is the minimum

span over all L(d, 1)-labelings of G. We prove that λd
1(X) ≤ 2d + 2, with equality if 1 ≤ d ≤ 4, for

direct graph bundle X = Cm ×σℓ Cn and Cartesian graph bundle X = Cm□σℓCn, if certain conditions
are imposed on the lengths of the cycles and on the cyclic ℓ-shift σℓ.
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1. Introduction

The Frequency Assignment Problem (FAP) is a combinatorial optimization problem
that arises in the field of telecommunications and radio frequency (RF) engineering. The
goal of the FAP is to assign a set of communication frequencies to a set of transmitters
while satisfying certain constraints and minimizing interference. This problem was first
formulated as a graph-coloring problem in 1980 by Hale [1]. According to Roberts [2], in
order to avoid interference, any two “close” transmitters must receive different channels,
and any two “very close” transmitters must receive channels that are at least two channels
apart. To translate the problem into the language of graph theory, the transmitters are
represented by the vertices of a graph; two vertices are “very close” if they are adjacent
and “close” if they are at a distance of two in the graph. Based on this problem, Griggs and
Yeh [3] introduced L(2, 1)-labeling on a simple graph.

Formally, an L(d, 1)-labeling of a graph G is an assignment f of non-negative integers
to vertices of G such that

| f (u)− f (v)| ≥
{

d; d(u, v) = 1,
1; d(u, v) = 2,

where d ≥ 1. The difference between the largest label and the smallest label assigned by
f is called the span of f , and the minimum span over all L(d, 1)-labeling of G is called
the λd

1-number of G, denoted by λd
1(G). The general problem of determining λd

1(G) is
NP-hard [4].

Griggs and Yeh [3] put forward a conjecture that λ2
1 ≤ ∆2 for any graph G with the

maximum degree ∆ ≥ 2. They proved that λ2
1(G) ≤ ∆2 + 2∆ for a general graph with

the maximum degree ∆. Later, Chang and Kuo [5] improved the bound to ∆2 + ∆ while
Král’ and Škrekovski [6] further reduced the bound to ∆2 + ∆ − 1. Furthermore, in 2005,
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Gonçalves [7] announced the bound ∆2 + ∆ − 2; the conjecture is still open. The L(2, 1)-
labeling has recently been extensively studied by many researchers; the common trend
is either to determine the value of the L(2, 1)-labeling number or to suggest bounds for
particular classes of graphs.

Graph products are one of the natural constructions that develop more complex graphs
from simple ones. Graph bundles [8,9], also called twisted products, are a generalization of
product graphs; these have been (under various names) frequently used as computer topolo-
gies or communication networks. A famous example is the ILIAC IV supercomputer [10].
While the labeling problem of Cartesian and direct products is well studied [11–18], much
less is known about the labeling problem of Cartesian and direct graph bundles [8,19].

The central result of this paper is that, for certain direct graph bundles Cm ×σℓ Cn and
certain Cartesian graph bundles Cm□σℓCn, where σℓ is a cyclic ℓ-shift, the preceding lower
bound corresponds to the exact value of λd

1. An analogous result is found with respect to
the λd

1-numbering of direct products of cycles and Cartesian products of cycles [12].
The rest of the paper is organized as follows. In the Section 2, we provide the basic

definitions and some preliminary observations that are needed to outline our results.
Section 3 deals with the λd

1-numbering of direct graph bundle cycles over cycles, while
Section 4 presents analogous results for Cartesian graph bundle cycles over cycles. The
methods of attack are similar.

2. Terminology and Preliminaries

A finite, simple, and undirected graph G = (V(G), E(G)) comprises a set of vertices
V(G) and a set of edges E(G). As usual, the edge {i, j} ∈ E(G) is denoted by ij. Although
here we are interested in undirected graphs, the order of the vertices will sometimes be
important; for example, when we will assign automorphisms to the edges of the base graph.
In such cases, we assign two opposite arcs {(i, j), (j, i)} to edge {i, j}.

Two graphs, G and H, are called isomorphic, denoted by the symbols G ≃ H, if there
exists a bijection φ from V(G) onto V(H) that preserves the adjacency and nonadjacency.
In other words, a bijection φ : V(G) → v(H) is an isomorphism when φ(i)φ(j) ∈ E(H) if
and only if ij ∈ E(G). An isomorphism of a graph G onto itself is called an automorphism.
The identity automorphism on G will be denoted by idG or id.

The cycle Cn on n vertices is defined by V(Cn) = {0, 1, . . . , n − 1} and ij ∈ E(Cn) if
i = (j ± 1)mod n. Pn denotes the path on n ≥ 1 distinct vertices 0, 1, 2, . . . , n − 1 with edges
ij ∈ E(Pn) if j = i + 1, 0 ≤ i < n − 1. For a graph G = (V, E) the distance dG(u, v), or d(u, v),
between vertices u and v is defined as the number of edges on the shortest u, v-path.

The automorphisms of a cycle have two types: a cyclic shift in the cycle by ℓ elements will
be referred to as cyclic ℓ-shift and reflections with one, two, or no fixed points (depending on
the parity of n). We will focus on the first type. A cyclic ℓ-shift, denoted by σℓ, 0 ≤ ℓ < n,
is defined as σℓ(i) = (i + ℓ)mod n for i = 0, 1, . . . , n − 1. As a special case, we have the
identity (ℓ = 0).

Let G = (V(G), E(G)) and H = (V(H), E(H)) be connected graphs. The direct prod-
uct G × H and the Cartesian product G□H of G and H are defined as follows: V(G ×
H) = V(G□H) = V(G)× V(H); E(G × H) = {{(g1, h1)(g2, h2)} | {g1, g2} ∈ E(G) and
{h1, h2} ∈ E(H)} and E(G□H) = {{(g1, h1)(g2, h2)} | {g1, g2} ∈ E(G) and h1 = h2, or
{h1, h2} ∈ E(H) and g1 = g2}. For more information on the direct and the Cartesian products
of graphs, we refer to [20].

Let B and G be graphs, and Aut(G) be the set of automorphisms of G. To any ordered
pair of adjacent vertices u, v ∈ V(B) we will assign an automorphism of G. Formally, let
σ : V(B)× V(B) → Aut(G). For brevity, we will write σ(u, v) = σu,v and assume that
σv,u = σ−1

u,v for any u, v ∈ V(B).
Now, we construct the graphs X1 and X2 as follows. The vertex set of X1 and X2

is the Cartesian product of vertex sets, V(X1) = V(X2) = V(B) × V(G). The edges of
X1 are obtained using the following rule: for any b1b2 ∈ E(B) and any g1g2 ∈ E(G), the
vertices (b1, g1) and (b2, σb1,b2(g2)) are adjacent in X1. We refer to X1 as a direct graph bundle
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with base B and fibre G, and write X1 = B ×σ G. The edges of X2 are obtained using
the following rule: for any g1g2 ∈ E(G) and any b ∈ V(B), the vertices (b, g1) and (b, g2)
are adjacent in X2, and for any b1b2 ∈ E(B) and any g ∈ V(G), the vertices (b1, g) and
(b2, σb1,b2(g)) are adjacent in X2. We refer to X2 as a Cartesian graph bundle with base B and
fibre G, and write X2 = B□σG.

Clearly, if all σu,v are identity automorphisms, the direct graph bundle is isomorphic
to the direct product B ×σ G = B × G and the Cartesian graph bundle is isomorphic to the
Cartesian product B□σG = B□G.

A graph bundle over a cycle can always be constructed in such a way that all but,
at most, one automorphism are identities. Fixing V(Cn) = {0, 1, 2, . . . , n − 1}, let us
denote σn−1,0 = α, σi−1,i = id for i = 1, 2, . . . , n − 1, and write Cn ×α G ≃ Cn ×σ G and
Cn□αG ≃ Cn□σG. In this article, we will frequently use this fact.

A graph bundle Cn ×α G can also be represented as the graph obtained from the
product Pn × G by adding a copy of K2 × G between vertex sets {n − 1} × V(G) and
{0} × V(G), such that if V(K2) = {1, 2} and (1, u) is adjacent to (2, v) in K2 × G, then
(n − 1, u) and (0, α(v)) are connected by an edge in Cn ×α G. Similarly, the graph bundle
Cn□αG can be represented by the product Pn□G by adding a copy of K2□G between vertex
sets {n − 1} × V(G) and {0} × V(G).

We shall need the following lemma; see [21].

Lemma 1. If G is a graph with maximum degree ∆ and G includes a vertex with ∆ neighbours,
each of which is of degree ∆, then λd

1(G) ≥ ∆ + 2d − 2, where 1 ≤ d ≤ ∆.

The following facts will also be useful in the sequel.

Claim 1. If a, b and n are integers with n ≥ 1, then |(a mod n)− (b mod n)| = (|a − b|mod n)
or n − (|a − b|mod n).

Corollary 1. If a, b, d and n are integers with d, n ≥ 1, then |(a mod n)− (b mod n)| ≥ d ⇔
d ≤ (|a − b|mod n) ≤ n − d.

Corollary 2. If a, b and n are integers with n ≥ 1, then |an − b|mod n = (b mod n) or n −
(b mod n).

3. Direct Graph Bundle Cm ×σℓ Cn

Theorem 1. Let d ≥ 1, m ≥ 3 and s = 2d + 3. Let X = Cm ×σℓ Cn be a direct graph bundle with
fibre Cn and base Cm. If n is a multiple of s and ℓ has the form of ℓ = [ks + (−1)a2m]mod n or
of ℓ = [ks − (−1)a(d + 1)m]mod n, where a ∈ {1, 2} and k ∈ ZZ, then λd

1(X) ≤ 2d + 2, with
equality if 1 ≤ d ≤ 4.

Proof. To prove this theorem, we will present several labelings of X. We will define four
L(d, 1) labelings of X using labels 0, 1, . . . , 2d + 2 according to the cyclic ℓ-shift σℓ. Let
v = (i, j) ∈ V(X).

(i) Let ℓ = [ks + (−1)a2m]mod n, where a ∈ {1, 2} and k ∈ ZZ. Define labeling fa of v as

fa(v) = [i + (d + a)j]mod s

(ii) Let ℓ = [ks − (−1)a(d + 1)m]mod n, where a ∈ {1, 2} and k ∈ ZZ. Define labeling ga
of v as

ga(v) = [(d + a)i + j]mod s

All assignments are clearly well-defined.

1. Since Cm ×σℓ Cn can be represented as the graph obtained from the product Pm × Cn
by adding edges between vertex sets {m − 1} × V(Cn) and {0} × V(Cn) (i.e., edges
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corresponding to the nontrivial automorphism σℓ, ℓ ̸= 0), first observe the product
Pm × Cn.
Let X have the labeling fa. Then, v can be assigned the integer

fa(v) = [i + (d + a)j]mod s.

Let w be a vertex adjacent to v in Pm × Cn, so w is of the form (i + i′, (j + j′)mod n)
with one of the following properties:

(a) i = 0, i′ = 1, |j′| = 1,
(b) i = m − 1, i′ = −1, |j′| = 1,
(c) i = 1, 2, . . . m − 2, |i′| = 1, |j′| = 1.

It is clear that
fa(w) =

[
i + (d + a)j + i′ + (d + a)j′

]
mod s.

Corollary 1 can be used to show that | fa(v)− fa(w)| ≥ d; therefore, it is sufficient to
show that

d ≤
[
|i′ + (d + a)j′|mod s

]
≤ s − d = d + 3

and, through symmetry, if X has the labeling ga, then

d ≤
[
|(d + a)i′ + j′|mod s

]
≤ d + 3.

The reader can easily verify that |i′ + (d + a)j′|mod s, |(d + a)i′ + j′|mod s ∈ {d, d +
1, d + 2, d + 3}.
Let z be a vertex, at twice the distance from v in Pm × Cn. Then, z takes the form
(i + i′′, (j + j′′)mod n), with one of the following properties:

(a) i ∈ {0, 1}, i′′ ∈ {0, 2}, j′′ ∈ {2, 0,−2}, i′′ and j′′ are not all zero;
(b) i ∈ {m − 2, m − 1}, i′′ ∈ {0,−2}, j′′ ∈ {2, 0,−2}, i′′ and j′′ are not all zero;
(c) i ∈ {2, 3, . . . , m − 3}, i′′, j′′ ∈ {2, 0,−2}, i′′ and j′′ are not all zero.

Let X have the labeling fa. Note that z receives the label

fa(z) =
[
i + (d + a)j + i′′ + (d + a)j′′

]
mod s.

To show that | fa(v)− fa(z)| ≥ 1, it is enough to show, via Corollary 1, that

1 ≤
[
|i′′ + (d + a)j′′|mod s

]
≤ 2d + 2

and, if X has labeling ga, that

1 ≤
[
|(d + a)i′′ + j′′|mod s

]
≤ 2d + 2.

Since |i′′ + (d + a)j′′|mod s, |(d + a)i′′ + j′′|mod s ∈ {1, 2, 3, 2d, 2d + 1, 2d + 2}, the
following hold:

2. We will now consider the edges between the fiber over m − 1 and the fiber over 0 in
X = Cm ×σℓ Cn. These are edges (m − 1, u)(0, (u + j′ + ℓ)mod n), where u ∈ V(Cn)
and |j′| = 1 or, in another form, (0, u)(m − 1, (u + j′ − ℓ)mod n), where u ∈ V(Cn)
and |j′| = 1 (recall that σℓ(i) = (i + ℓ)mod n and σ−1

ℓ (i) = (i − ℓ)mod n).

(a) First, let us consider two adjacent vertices, one from the fiber over m − 1 and
the other from the fiber over 0. Let X has labeling fa and let v = (m − 1, j).
If w is a neighbour from the fiber over 0, then w is of the form w = (0, (j +
j′ + ℓ)mod n), where |j′| = 1 and ℓ = [ks + (−1)a2m]mod n for some k ∈ ZZ.
Then,

fa(v) = [m − 1 + (d + a)j]mod s

and
fa(w) =

[
(d + a)(j + j′ + ℓ)

]
mod s.
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To show that | fa(v)− fa(w)| ≥ d, it is sufficient to show that

d ≤ [|m − 1 − (d + a)(j′ + ℓ)|mod s] ≤ d + 3, (1)

through Corollary 1.
Because ℓ = [ks + (−1)a2m]mod n for some k ∈ ZZ, there exists k′ ∈ ZZ such
that ℓ = k′s + (−1)a2m. Hence,

|m − 1 − (d + a)(j′ + ℓ)|mod s = |m − 1 − (d + a)(j′ + k′s + (−1)a2m)|mod s

= |m(1 − (−1)a2d − (−1)a2a)− 1 − (d + a)j′ − (d + a)k′s)|mod s

For a = 1, we can receive

|ms − 1 − (d + 1)j′ − (d + 1)k′s|mod s =

|s(m − (d + 1)k′)− (1 + (d + 1)j′)|mod s

and for a = 2

| − ms − 1 − (d + 2)j′ − (d + 2)k′s)|mod s =

|s(−m − (d + 2)k′)− (1 + (d + 2)j′)|mod s.

Since (1 + (d + a)j′)mod s ∈ {d + 2, d + 3} and s − (1 + (d + a)j′)mod s ∈
{d, d + 1}, the claim is true according to Corollary 2.
Let X have the labeling ga. Then, ℓ = k′s − (−1)a(d + 1)m for some k′ ∈ ZZ,
and for adjacent vertices v = (m − 1, j) and w = (0, (j + j′ + ℓ)mod n), we
need to show that

d ≤ [|(d + a)(m − 1)− (j′ + ℓ)|mod s] ≤ d + 3. (2)

Note that

|(d + a)(m − 1)− (j′ + ℓ)|mod s = |(d + a)(m − 1)− (j′ + k′s − (−1)a(d + 1)m)|mod s

= |m(d + a + (−1)ad + (−1)a)− (d + a)− j′ − k′s|mod s.

For a = 1, we obtain

| − k′s − ((d + 1) + j′)|mod s

and for a = 2

|ms − (d + 2)− j′ − k′s|mod s = |s(m − k′)− ((d + 2) + j′)|mod s.

Since ((d + 1) + j′)mod s, s − ((d + 2) + j′)mod s ∈ {d, d + 2} and ((d + 2) +
j′)mod s, s − ((d + 1) + j′)mod s ∈ {d + 1, d + 3}, the desired result follows.

(b) Finally, observe vertices at a distance of two, where the shortest path between
them contains at least one edge between the fiber over m − 1 and the fiber over
0. Let v and z be two such vertices. We claim that the label of v is not equal to
the label of z.
First, let v and z be vertices from the fiber over m − 1 (this is analogous if both
vertices are from the fiber over 0). Let v = (m − 1, j). Then, z is of the form
z = (m − 1, (j + j′)mod n), where |j′| = 2 (using the fact that (m − 1, j) and
(m − 1, (j + 2)mod n) have a common neighbour (0, (j + 1 + ℓ)mod n) and
(m − 1, j) and (m − 1, (j − 2)mod n) have a common neighbour (0, (j − 1 +
ℓ)mod n)). We already considered such vertices when we considered vertices
at a distance of two in the graph Pm × Cn.
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Let v be a vertex from the fiber over m − 1 and z a vertex from the fiber over 1
(similarly, v is from the fiber over m − 2 and z is from the fiber over 0).
Let v = (m − 1, j). Then, z is of the form z = (1, (j + j′ + ℓ)mod n), where
j′ ∈ {−2, 0, 2}. Let X have the labeling fa:

fa(v) = [m − 1 + (d + a)j)]mod s

and
fa(z) =

[
1 + (d + a)(j + j′ + ℓ)

]
mod s.

In this case, it is enough to show, via Corollary 1, that

1 ≤ [|m − 2 − (d + a)(j′ + ℓ)|mod s] ≤ 2d + 2.

In the proof of (1), we showed that m − 1 − (d + a)(j′ + ℓ) = k′′s − (1 + (d +
a)j′) for some k′′ ∈ ZZ. Therefore,

|m − 2 − (d + a)(j′ + ℓ)|mod s = |k′′s − (2 + (d + a)j′)|mod s.

Since (2 + (d + a)j′)mod s ∈ {1, 2, 3} and s − (2 + (d + a)j′)mod s ∈ {2d, 2d +
1, 2d + 2}, the claim is true according to Corollary 2.

Now, observe labeling ga. We will consider this as similar to the above. We
claim that

1 ≤ [|(d + a)(m − 2)− (j′ + ℓ)|mod s] ≤ 2d + 2.

In the proof of (2), we see that (d + a)(m − 1)− (j′ + ℓ) = k′′s − ((d + a) + j′)
for some k′′ ∈ ZZ. Therefore,

|(d + a)(m − 2)− (j′ + ℓ)|mod s = |k′′s − (2(d + a) + j′)|mod s.

Since (2(d + a) + j′)mod s, s − ((2(d + a) + j′)mod s) ∈ {1, 3, 2d, 2d + 2}, the
desired result follows. Accordingly, two vertices that are at a distance of two
from each other receive different labels.

We showed that λd
1(Cm ×σℓ Cn) ≤ 2d + 2. Further, as Cm ×σℓ Cn is a regular graph of

degree 4, the application of Lemma 1 to the preceding statement shows that λd
1(Cm ×σℓ

Cn) = 2d + 2, if 1 ≤ d ≤ 4.

Example 1. The aforementioned scheme is illustrated in Figure 1, where an L(2, 1)-labeling of
P9 × P7 occurs following that of C9 ×σℓ C7 for ℓ = 1, 3, 4, 6.
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0 3 6 2 5 1 4 0 3

1 4 0 3 6 2 5 1 4

2 5 1 4 0 3 6 2 5

3 6 2 5 1 4 0 3 6

4 0 3 6 2 5 1 4 0

5 1 4 0 3 6 2 5 1

6 2 5 1 4 0 3 6 2

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

(c)

0 4 1 5 2 6 3 0 4

1 5 2 6 3 0 4 1 5

2 6 3 0 4 1 5 2 6

3 0 4 1 5 2 6 3 0

4 1 5 2 6 3 0 4 1

5 2 6 3 0 4 1 5 2

6 3 0 4 1 5 2 6 2

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

(d)

0 1 2 3 4 5 6 0 1

3 4 5 6 0 1 2 3 4

6 0 1 2 3 4 5 6 0

2 3 4 5 6 0 1 2 3

5 6 0 1 2 3 4 5 6

1 2 3 4 5 6 0 1 2

4 5 6 0 1 2 3 4 5

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

(a)

0 1 2 3 4 5 6 0 1

4 5 6 0 1 2 3 4 5

1 2 3 4 5 6 0 1 2

5 6 0 1 2 3 4 5 6

2 3 4 5 6 0 1 2 3

6 0 1 2 3 4 5 6 0

3 4 5 6 0 1 2 3 4

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

(b)

Figure 1. Four L(2, 1)-labelings of P9 × P7 that determined L(2, 1)-labelings of direct graph bundle
C9 ×σℓ C7 according to the cyclic ℓ-shift σℓ: (a) ℓ = 3, f1(i, j) = [i + 3j]mod 7, (b) ℓ = 4, f2(i, j) =

[i + 4j)]mod 7, (c) ℓ = 6, g1(i, j) = [3i + j]mod 7, (d) ℓ = 1, g2(i, j) = [4i + j]mod 7.

4. Cartesian Graph Bundle Cm□σℓCn

Theorem 2. Let d ≥ 1, m ≥ 3 and s = 2d + 3. Let X = Cm□σℓCn be a Cartesian graph bundle
with fibre Cn and base Cm and let n be a multiple of s. Then, λd

1(X) ≤ 2d + 2, with equality if
1 ≤ d ≤ 4, if one of the following statements holds:

(a) ℓ has the form ℓ = [ks + (−1)a2dm]mod n, where a ∈ {1, 2} and k ∈ ZZ.

(b) d = 3t + 2 for some t ∈ {0, 1, . . .} and ℓ has the form

ℓ = [ks − (2t + 3)(d + a)m]mod n, where a ∈ {1, 2} and k ∈ ZZ.

(c) d = 3t + 1 for some t ∈ {0, 1, . . .} and ℓ has the form

ℓ = [ks + (2t + 1)(d + a)m]mod n, where a ∈ {1, 2} and k ∈ ZZ.

(d) d = 3t for some t ∈ {1, 2, . . .}, m = ps + 3t′ ≥ 3 for some p ∈ {0, 1, . . .} and some
t′ ∈ {0, 1, . . . , 2t} and ℓ has the form

ℓ =
[
ks + (i + a − 1)

s
3
− (−1)at′

]
mod n, where a ∈ {1, 2}, k ∈ ZZ and i ∈ {0, 1, 2}.

Proof. We will present four L(d, 1) labelings of Cm□σℓCn using labels 0, 1, . . . , 2d + 2 ac-
cording to the cyclic ℓ-shift σℓ. Let v = (i, j) ∈ V(X).

(i) Assume that statement (a) from the theorem holds. For a ∈ {1, 2} define labeling fa of
v as

fa(v) = [di + (d + a)j]mod s.
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(ii) Assume that one of statements (b), (c) or (d) holds. For a ∈ {1, 2}, define labeling ga
of v as

ga(v) = [(d + a)i + dj]mod s.

All assignments are clearly well-defined.

1. Since Cm□σℓCn can be represented as the graph obtained from the product Pm□Cn by
adding edges between vertex sets {m − 1} × V(Cn) and {0} × V(Cn), first observe
the product Pm□Cn.
Let X have labeling fa. Then, v can be assigned the integer

fa(v) = [di + (d + a)j]mod s.

Let w be a vertex adjacent to v in Pm□Cn. Then, v and w differ in exactly one coordinate.
More precisely, w has the form w = (i + i′, (j + j′)mod n), with one of the following
properties:

(a) if i = 0, then i′ = 1, j′ = 0 or i′ = 0, |j′| = 1;
(b) if i = m − 1, then i′ = −1, j′ = 0 or |j′| = 1, i′ = 0;
(c) if i ∈ {1, 2, . . . , m − 2}, then |i′| = 1, j′ = 0 or |j′| = 1, i′ = 0.

It is clear that
fa(w) =

[
di + (d + a)j + di′ + (d + a)j′

]
mod s.

Corollary 1 can show that | fa(v)− fa(w)| ≥ d; therefore, it is sufficient to show that

d ≤
[
|di′ + (d + a)j′|mod s

]
≤ s − d = d + 3

and, using symmetry, if X has labeling ga,

d ≤
[
|(d + a)i′ + dj′|mod s

]
≤ d + 3.

Both claims are true since |di′ + (d + a)j′|mod s, |(d + a)i′ + j′|mod s ∈ {d, d + 1, d +
2, d + 3}.
Next, let z be a vertex at a distance of two from v in Pm□Cn. Then, z is of the form
z = (i + i′′, (j + j′′)mod n), where v and z differ in exactly one (i) or both coordinates
(ii). In all cases, there are three options for the values of i′′ and j′′. In (i):

(a) if i ∈ {0, 1}, then i′′ = 0, |j′′| = 2 or i′′ = 2 and j′′ = 0;
(b) if i ∈ {m − 2, m − 1}, then i′′ = 0, |j′′| = 2 or i′′ = −2 and j′′ = 0;
(c) otherwise, i′′ = 0, |j′′| = 2 or |i′′| = 2, j′′ = 0.

In (ii):

(a) if i = 0, then i′′ = 1, |j′′| = 1;
(b) if i = m − 1, then i′′ = −1, |j′′| = 1;
(c) otherwise, |i′′| = 1, |j′′| = 1.

Let X have labeling fa. Then,

fa(z) =
[
di + (d + a)j + di′′ + (d + a)j′′

]
mod s.

Since we want to prove that | fa(v) − fa(z)| ≥ 1, it is sufficient to prove, using
Corollary 1, that

1 ≤ [|di′′ + (d + a)j′′|mod s] ≤ 2d + 2,

and if X has the labeling ga, that

1 ≤ [|(d + a)i′′ + dj′′|mod s] ≤ 2d + 2.

The reader can verify that in (i) we can obtain |di′′ + (d + a)j′′|mod s, |(d + a)i′′ +
dj′′|mod s ∈ {1, 3, 2d, 2d+ 2} and in (ii) |di′′+(d+ a)j′′|mod s, |(d+ a)i′′+ dj′′|mod s ∈
{1, 2, 2d + 1, 2d + 2}. Hence, both results follow.
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2. In the following, we are interested in edges in X = Cm□σℓCn between the fiber
over vertex m − 1 and the fiber over vertex 0. These are edges (m − 1, u)(0, (u +
ℓ)mod n), u ∈ V(Cn) or in another form (0, u)(m − 1, (u − ℓ)mod n), u ∈ V(Cn).

• Let us first observe two adjacent vertices v and w. Let X have the labeling fa
and let v = (m − 1, j). Then, w is of the form w = (0, (j + ℓ)mod n), where
ℓ = [ks + (−1)a2dm]mod n for some k ∈ ZZ. Vertex v can be assigned the integer

fa(v) = [d(m − 1) + (d + a)j]mod s

and w can be assigned the integer

fa(w) = [(d + a)(j + ℓ)]mod s.

We claim that | fa(v)− fa(w)| ≥ d or, through Corollary 1, that

d ≤ [|d(m − 1)− (d + a)ℓ|mod s] ≤ d + 3. (3)

Since there exists k′ ∈ ZZ such that ℓ = k′s + (−1)a2dm, it follows that

|d(m − 1)− (d + a)ℓ|mod s = |d(m − 1)− (d + a)(k′s + (−1)a2dm)|mod s =

= |dm(1 − (−1)a2d − (−1)a2a)− d − (d + a)k′s|mod s =

= |dm(−1)a+1s − d − (d + a)k′s|mod s = |s(dm(−1)a+1 − (d + a)k′)− d|mod s

(since 1 − (−1)a2d − (−1)a2a equals s for a = 1 and −s for a = 2). Using
Corollary 2, this can be shown to be equal to d or to s − d = d + 3 and the claim
is true.
Further, observe labeling ga. Then, one of the statements—(b), (c) or (d)—of the
Theorem applies. Let these be Cases (b), (c) and (d), accordingly. Since

ga(v) = [(d + a)(m − 1) + dj]mod s

and
ga(w) = [d(j + ℓ)]mod s,

in all three cases we have to show that

d ≤ [|(d + a)(m − 1)− dℓ|mod s] ≤ d + 3, (4)

using Corollary 1.
Case (b) Let d = 3t + 2 (then s = 6t + 7). Since ℓ = k′s − (2t + 3)(d + a)m for
some k′ ∈ ZZ, we can obtain

|(d + a)(m − 1)− dℓ|mod s = |(d + a)(m − 1)− d(k′s − (2t + 3)(d + a)m)|mod s =

|(d + a)m(1 + d(2t + 3))− (d + a)− dk′s|mod s =

|(d + a)m(t + 1)s − (d + a)− dk′s|mod s = |s((d + a)m(t + 1)− dk′)− (d + a)|mod s.

Using Corollary 2, this is shown to be equal to (d+ a)mod s, s− ((d+ a)mod s) ∈
{d + 1, d + 2}.
Case (c) Let d = 3t + 1 (then s = 6t + 5). Since ℓ = k′s + (2t + 1)(d + a)m for
some k′ ∈ ZZ, it holds that

|(d + a)(m − 1)− dℓ|mod s = |(d + a)(m − 1)− d(k′s + (2t + 1)(d + a)m)|mod s =

|(d + a)m(1 − d(2t + 1))− (d + a)− dk′s|mod s =

|(d + a)m(−ts)− (d + a)− dk′s|mod s = |s(−mt(d + a)− dk′)− (d + a)|mod s.

As in case (a), this is equal to d + 1 or d + 2.



Mathematics 2024, 12, 3121 10 of 13

Case (d) Let d = 3t (then s = 6t + 3). Since ℓ = k′s + (i + a − 1) s
3 − (−1)at′ for

some k′ ∈ ZZ, it holds that

|(d + a)(m − 1)− dℓ|mod s =

|(d + a)(ps + 3t′ − 1)− d(k′s + (i + a − 1)
s
3
− (−1)at′)|mod s =

|s[p(d + a)− dk′ − t(i + a − 1)] + (d + a)(3t′ − 1) + d(−1)at′|mod s =

|s[p(d + a)− dk′ − t(i + a − 1)] + t′(3(d + a) + d(−1)a)− (d + a)|mod s.

For a = 1, we can obtain

|s[p(d + 1)− dk′ − ti)] + st′ − (d + 1)|mod s

and for a = 2, we can obtain

|s[p(d + 2)− dk′ − t(i + 1)] + 2st′ − (d + 2)|mod s.

The desired result follows, since, in this case, we can also obtain d + 1 or d + 2.
• Finally, observe vertices at a distance of two, where the shortest path between

them contains some edge between the fiber over m − 1 and the fiber over 0. Let
v and z be two such vertices. Then, v and z are from adjacent fibers (from fiber
over m − 1 and over 0) or from non-adjacent fibers (from fiber over m − 2 and
over 0 or from fiber over m − 1 and over 1). Let us first observe the case where v
and z are from non-adjacent fibers.

(a) Let v = (m − 2, j). Then, z is of the form z = (0, (j + ℓ)mod n), where
ℓ = [ks + (−1)a2dm]mod n for some k ∈ ZZ (similarly, v = (m − 1, j) and
z = (1, (j + ℓ)mod n). Let X have the labeling fa. Vertex v be assigned
the integer

fa(v) = [d(m − 2) + (d + a)j]mod s

and vertex z be assigned the integer

fa(z) = [(d + a)(j + ℓ)]mod s.

We claim that | fa(v)− fa(z)| ≥ 1 or, using Corollary 1, that

1 ≤ [|d(m − 2)− (d + a)ℓ|mod s] ≤ 2d + 2.

In the proof of (3), we showed that d(m − 1) − (d + a)ℓ = k′′s − d for
some k′′ ∈ ZZ. Therefore,

|d(m − 2)− (d + a)ℓ|mod s = |d(m − 1)− d − (d + a)ℓ|mod s = |k′′s − 2d|mod s.

Using Corollary 2, this is equal to 2d or to s − 2d = 3, and the desired
results follow.

Let X have labeling ga. We need to show that

1 ≤ [|(d + a)(m − 2)− dℓ|mod s] ≤ 2d + 2.

When we proved (4), in all three cases, we found that (d + a)(m − 1)−
dℓ = k′′s − (d + a) for some k′′ ∈ ZZ. Therefore, we can obtain

|(d + a)(m − 2)− dℓ|mod s = |(d + a)(m − 1)− (d + a)− dℓ|mod s =

|k′′s − 2(d + a)|mod s.
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Since (2(d + a))mod s, s − ((2(d + a))mod s) ∈ {1, 2d + 2}, the desired
result follows.

(b) Let v and z be from adjacent fibers, and let v = (m − 1, j). Let X have
the labeling fa. Then, z is of the form z = (0, (j + j′ + ℓ)mod n), where
|j′| = 1 and ℓ = [ks + (−1)a2dm]mod n for some k ∈ ZZ. In this case,

fa(v) = [d(m − 1) + (d + a)j]mod s

and
fa(z) =

[
(d + a)(j + j′ + ℓ)

]
mod s.

Again, it is sufficient to show that

1 ≤ [|d(m − 1)− (d + a)(j′ + ℓ)|mod s] ≤ 2d + 2.

Recall that d(m − 1)− (d + a)ℓ = k′′s − d for some k′′ ∈ ZZ (see the proof
of (3)). Therefore,

|d(m − 1)− (d + a)(j′ + ℓ)|mod s = |d(m − 1)− (d + a)j′ − (d + a)ℓ|mod s =

|k′′s − (d + (d + a)j′)|mod s.

The reader can verify that (d + (d + a)j′)mod s ∈ {2d + 1, 2d + 2} and
s − ((d + (d + a)j′)mod s) ∈ {1, 2}, so the desired result follows.

Let X have the labeling ga. We need to show that

1 ≤ [|(d + a)(m − 1)− d(j′ + ℓ)|mod s] ≤ 2d + 2.

Recall that (d + a)(m − 1)− dℓ = k′′s − (d + a) for some k′′ ∈ ZZ (see the
proof of (4)). Therefore,

|(d + a)(m − 1)− d(j′ + ℓ)|mod s = |k′′s − ((d + a) + dj′)|mod s.

Since ((d+ a) + dj′)mod s, s− (((d+ a) + dj′)mod s) ∈ {1, 2, 2d+ 1, 2d+
2}, the desired result follows.
Accordingly, two vertices in Cm□σℓCn at a distance of two from each other
receive different labels.

We showed that λd
1(Cm□σℓCn) ≤ 2d + 2. Further, as Cm□σℓCn is a regular graph of

degree 4, the application of Lemma 1 to the preceding statement shows that λd
1(Cm□σℓCn) =

2d + 2, if 1 ≤ d ≤ 4.

Example 2. The presented scheme is illustrated in Figure 2, where an L(2, 1)-labeling of P9□P7
appears similar to that of C9□σℓC7 for ℓ = 1, 3, 4, 6.
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0 3 6 2 5 1 4 0 3

2 5 1 4 0 3 6 2 5

4 0 3 6 2 5 1 4 0

6 2 5 1 4 0 3 6 2

1 4 0 3 6 2 5 1 4

3 6 2 5 1 4 0 3 6

5 1 4 0 3 6 2 5 1

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

(c)

0 4 1 5 2 6 3 0 4

2 6 3 0 4 1 5 2 6

4 1 5 2 6 3 0 4 1

6 3 0 4 1 5 2 6 3

1 5 2 6 3 0 4 1 5

3 0 4 1 5 2 6 3 0

5 2 6 3 0 4 1 5 2

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

(d)

0 2 4 6 1 3 5 0 2

3 5 0 2 4 6 1 3 5

6 1 3 5 0 2 4 6 1

2 4 6 1 3 5 0 2 4

5 0 2 4 6 1 3 5 0

1 3 5 0 2 4 6 1 3

4 6 1 3 5 0 2 4 6

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

(a)

0 2 4 6 1 3 5 0 2

4 6 1 3 5 0 2 4 6

1 3 5 0 2 4 6 1 3

5 0 2 4 6 1 3 5 0

2 4 6 1 3 5 0 2 4

6 1 3 5 0 2 4 6 1

3 5 0 2 4 6 1 3 5

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

(b)

Figure 2. Four L(2, 1)-labelings of P9□P7 that determined L(2, 1)-labelings of Cartesian graph bundle
C9□σℓC7 according to the cyclic ℓ-shift σℓ: (a) ℓ = 6, f1(i, j) = [2i + 3j]mod 7, (b) ℓ = 1, f2(i, j) =

[2i + 4j)]mod 7, (c) ℓ = 3, g1(i, j) = [3i + 2j]mod 7, (d) ℓ = 4, g2(i, j) = [4i + 2j]mod 7.

5. Conclusions

The frequency assignment problem for wireless networks is that networks need to
assign a channel to each radio transmitter so that close transmitters receive these channels
to avoid interference. This situation can be modeled by a graph whose vertices are the
radio transmitters, where the adjacency indicates possible interference. Motivated by this
problem, I studied the λd

1-number of the direct and Cartesian graph bundles cycles over
cycles. I demonstrated that the upper bound of L(d, 1)-labeling of these graph bundles
is 2d + 2 if certain conditions are imposed on the lengths of the cycles and on the cyclic
ℓ-shifts σℓ. Is optimality achievable? I showed that the λd

1-number of these graphs is 2d + 2
if the condition 1 ≤ d ≤ 4 is also satisfied.
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