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Abstract: In this work, we aim to investigate the characteristics of the Bach and Cotton tensors on
Lorentzian manifolds, particularly those admitting a semi-symmetric metric ω-connection. First, we
prove that a Lorentzian manifold admitting a semi-symmetric metric ω-connection with a parallel
Cotton tensor is quasi-Einstein and Bach flat. Next, we show that any quasi-Einstein Lorentzian
manifold admitting a semi-symmetric metric ω-connection is Bach flat.
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1. Introduction

Consider an n-dimensional pseudo-Riemannian manifold denoted as M. When
the torsion tensor T̃ associated with a linear connection ∇̃ vanishes, i.e., T̃ (ζ1, ζ2) =
∇̃ζ1 ζ2 − ∇̃ζ2 ζ1 − [ζ1, ζ2] = 0, then ∇̃ is referred to as a symmetric connection. Conversely,
if the torsion tensor does not vanish, the connection is termed non-symmetric. Many
geometers classify linear connection ∇̃ into different categories based on distinct forms.
For example, a connection is referred to as semi-symmetric (abbreviated as SS) if it satisfies
the following relation:

T̃ (ζ1, ζ2) = ω♯(ζ2)ζ1 − ω♯(ζ1)ζ2, ∀ζ1, ζ2 ∈ Γ(TM) (1)

where the one-form ω♯ and the associated vector field ω are linked through a pseudo-
Riemannian metric g by g(·, ω) = ω♯(·). If ∇̃g = 0, the connection ∇̃ is referred to as a
metric connection. Otherwise, it is categorized as a non-metric connection [1]. A connection
is symmetric and metric if and only if it is a Levi–Civita connection. Hayden [2] inves-
tigated a metric connection ∇̃ with a non-vanishing torsion on a Riemannian manifold,
which later became known as the Hayden connection. Following Pak’s work [3], which
showed that it is a semi-symmetric metric connection (abbreviated as SSM-connection),
numerous questions emerged about this type of connection. Yano [4] subsequently ini-
tiated an investigation into Riemannian manifolds equipped with an SSM-connection,
finding that such manifolds become conformally flat when the curvature tensor vanishes.
Recently, Chaubey et al. [5] commenced the investigation of the concept of semi-symmetric
metric ω-connection (briefly, SSMω-connection) on a Riemannian manifold and explored
its geometric properties. This concept was later extended to Lorentzian manifolds by
Chaubey et al. [6], where they studied its geometric and physical properties within specific
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classifications. Duggal studied a class of almost Ricci solitons (ARSs), he showed three
mathematical models of conformally flat almost-Ricci-soliton manifolds, leading to several
significant findings [7]. In recent years, Kumar and Colney et al. considered the tangent
bundles with NSNMC and QSNMC [8–10]. The properties, theorems, and results of the
curvature tensor and Ricci tensor relevant to the connection on the tangent bundles were
obtained in [11–13]. Moreover, Li and Mihai et al. conducted research relevant to inequali-
ties [14,15], solitons [16,17], submanifolds [18–20], classical differential geometry [21–23],
non-Euclidean geomgery [24–27], etc., under the viewpoint of soliton theory, singularity
theory, submanifold theory, and other theories [28–30]. The results and methods of those
papers motivated us to write this paper and helped us in future research.

In Bach’s work [31], a novel type of conformally invariant tensor was introduced as
a tool for investigating conformal relativity. The analysis involves considering a specific
function based on the squared norm of the Weyl conformal curvature denoted by W(g),
which is evaluated over a Riemannian compact manifold of dimension 4. In the context
of critical points of functionals, the Bach tensor (briefly, Bg-tensor) plays a crucial role in
the study of Einstein metrics, which are Riemannian metrics that satisfy the Einstein field
equations. The Bg-tensor is used to characterize the critical points of functionals that arise
from the Einstein–Hilbert action, a functional that defines the action of a physical system.
For any pseudo-Riemannian manifold (M, g) of dimension n, the Bg-tensor is defined as

Bg(ζ1, ζ2) = 1
n−3 ∑n

i,j=1(∇ei∇ejW)(ζ1, ei, ej, ζ2)

+ 1
n−2 ∑n

i,j=1 Ricg(ei, ej)W(ζ1, ei, ej, ζ2), (2)

where ei, i = 1, 2, · · · , n represents a local orthonormal frame on (M, g), Ricg is the Ricci
tensor of type (0, 2), and W is the Weyl tensor of type (0, 4). The Weyl conformal tensor of
type (1, 3) is defined by

W(ζ1, ζ2)ζ3 = R(ζ1, ζ2)ζ3 −
1

n − 2
{Ricg(ζ2, ζ3)ζ1 − Ricg(ζ1, ζ3)ζ2 + g(ζ2, ζ3)Qζ1

−g(ζ1, ζ3)Qζ2}+
r

(n − 1)(n − 2)
{g(ζ2, ζ3)ζ1 − g(ζ1, ζ3)ζ2}, (3)

where R is the Riemannian curvature tensor, Q is the Ricci operator defined by
Ricg = g(Q·, ·), and r is the scalar curvature of g. Utilizing the properties of the Weyl
conformal tensor W and the contraction of the Bianchi second identity, it can be inferred
that divW =

( n−3
n−2

)
C, where C is the Cotton tensor (briefly, Cg-tensor) of type (0, 3) defined

by (see [32])

C(ζ1, ζ2)ζ3 = (∇ζ1Ricg)(ζ2, ζ3)− (∇ζ2Ricg)(ζ1, ζ3)

− 1
2(n − 1)

[(ζ1r)g(ζ2, ζ3)− (ζ2r)g(ζ1, ζ3)]. (4)

A pseudo-Riemannian manifold (M, g) is called conformally flat if its conformally trans-
formed pseudo-Riemannian metric is locally Euclidean. For n > 3, this implies W = 0,
and for n = 3, that C = 0. Furthermore, the vanishing of the Weyl tensor also implies
that the divergence of W is zero, which is equivalent to C = 0. Thus, the condition C = 0
generalizes both Einstein metrics and conformally flat pseudo-Riemannian metrics, encom-
passing a broader class of geometric structures. For instance, a Riemannian manifold that
satisfies the condition C = 0 is characterized by a harmonic curvature tensor, denoted as
divR = 0. Interestingly, this condition implies that the scalar curvature r is constant. As a
result, such a manifold generalizes Einstein manifolds and locally symmetric manifolds.
Furthermore, the converse holds: the system of equations divR = 0 implies that the Levi–
Civita connection ∇ of the metric g constitutes a Yang–Mills connection while the metric is
fixed [33].
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Utilizing Equations (3) and (4), the expression for the Bg-tensor (2) can be expressed
as shown in Chen and He [34]:

Bg(ζ1, ζ2) =
1

(n − 2)

[
n

∑
i=1

(∇eiC)(ei, ζ1)ζ2 +
n

∑
i,j=1

Ricg(ei, ej)W(ζ1, ei, ej, ζ2)

]
. (5)

A closer examination of the Bg-tensor in (5) has led us to realize that its final term can
be expressed as

g(Qei, ej)g(W(ζ1, ei)ej, ζ2) = −g(W(ζ1, ei)ζ2, Qei) = −g(QW(ζ1, ei)ζ2, ei).

As a consequence, expression (5) takes the following form:

Bg(ζ1, ζ2) =
1

(n − 2)

[
∑

i
(∇eiC)(ei, ζ1)ζ2 − ∑

i,j
g(QW(ζ1, ei)ζ2, ei)

]
. (6)

As the Weyl tensor W becomes zero in three dimensions, the Bach tensor can be formu-
lated as

Bg(ζ1, ζ2) =
3

∑
i=1

(∇eiC)(ei, ζ1)ζ2. (7)

A Riemannian metric g is called Bach flat when its associated Bg-tensor becomes zero.
Notably, a Bach-flat metric encompasses Einstein metrics and conformally flat metrics.
Consequently, a Riemannian manifold endowed with a vanishing Bg-tensor is intrigu-
ing, as it accommodates both Einstein metrics and conformally flat metrics. Given that
4-dimensional Bach-flat metrics are conformally invariant, and this property is obtained
by conformally related Einstein metrics, we know that these metrics are also Bach flat.
Additionally, in 4-dimensional space, the Bg-tensor plays a special role as a symmetric,
divergence-free tensor of type (0, 2) that is both quadratic in Riemann curvature (represent-
ing a linear combination of the products of two Riemann curvature tensors) and exhibits
desirable conformal properties (for detailed insights, refer to [35]). It is well known that
Einstein metrics are Bach flat, which naturally leads to the question of whether there exist
Bach-flat metrics that are not Einstein metrics. Initially, this question was addressed by
the authors Leistner and Nurwoski [36]. In their work, they presented 4-dimensional
pp-waves that demonstrate Bach flatness. Furthermore, they provided numerous exam-
ples exhibiting Bach flatness without being Einstein metrics. Later, Ghosh [37] validated
this concept within the context of an almost contact Riemannian manifold and obtained
many fruitful results. Recently, Naik et al. [38] studied the Bg-tensor and Cg-tensor on a
cosymplectic manifold and obtained many fruitful results. These works on the Bach and
Cg-tensors motivate us to investigate the validity of the converse statement in the context
of Lorentzian manifolds.

The paper is structured as follows. In Section 2, we revisit the foundational definitions
and formulas pertinent to Lorentzian manifolds with SSMω-connections. Section 3
encompasses the derivation of auxiliary results, and subsequently, establishes the theorem
that asserts the quasi-Einstein and Bach-flat nature of a Lorentzian manifold admitting
SSMω-connection with a parallel Cg-tensor. Continuing, we explore the scenario of a
Lorentzian manifold admitting SSMω-connection with a purely transversal Bg-tensor.
Concretely, we prove that it is a quasi-Einstein manifold. Furthermore, we consider specific
conditions on the Bg-tensor, which are addressed in Section 4.

2. Notes on Lorentzian Manifolds

Lorentzian manifolds are one of the most important subclasses of pseudo-Riemannian
manifolds, playing a vital role in mathematical physics (especially in the development
of the theory of general relativity and cosmology). Let M be a connected paracompact
Hausdorff smooth manifold of dimension n. Then, M is said to be a Lorentzian manifold
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if it admits a (0, 2)-type non-degenerate smooth symmetric tensor gp : Tp M × Tp M → R
that is ∀p ∈ M of signature (−,+,+, · · · ,+), where Tp M represents the tangent vector
space on M at point p. A non-zero vector field ω ∈ Tp M is said to be time-like (resp.
non-space-like, null, and space-like) if gp(ω, ω) < 0 (resp. ≤, =, > 0 ) [39].

A one-form ω♯ and an associated vector field ω are connected through a pseudo-
Riemannian metric g by g(ζ1, ω) = ω♯(ζ1). A linear connection ∇̃ on M is defined by

∇̃ζ1 ζ2 = ∇ζ1 ζ2 + ω♯(ζ2)ζ1 − g(ζ1, ζ2)ω, ∀ζ1, ζ2 ∈ ℵ(M). (8)

Mishra et al. [40] and Chaubey et al. [41] comprehensively studied an almost contact metric
manifold admitting SSMω-connection, characterizing situations where ω is a Reeb vector
field ζ and ∇̃ω = 0, and this characterization led to several significant geometric findings.
Inspired by this study, Chaubey et al. [5,6] extended this concept to both Riemannian and
Lorentzian manifolds. A linear connection ∇̃ defined on a Lorentzian manifold M is called
a semi-symmetric metric ω-connection if it satisfies Equations (1) and (8), ∇̃g = 0, and ∇̃ω.
Consider ∇̃ω = 0, then from Equation (8) we have

∇ζ1 ω = ζ1 + ω♯(ζ1)ω, (9)

where ω is a unit-time-like vector field, that is, g(ω, ω) = −1. Now, we state the following
restricted curvature with respect to the Levi–Civita connection ∇ as follows.

Lemma 1 ([6]). Let M be an n-dimensional Lorentzian manifold with SSMω-connection ∇̃, then

R(ζ1, ζ2)ω = ω♯(ζ2)ζ1 − ω♯(ζ1)ζ2, (10)

R(ω, ζ1)ζ2 = g(ζ1, ζ2)ω − ω♯(ζ2)ζ1, (11)

ω♯(R(ζ1, ζ2)ζ3) = ω♯(ζ1)g(ζ2, ζ3)− ω♯(ζ2)g(ζ1, ζ3), (12)

for ζ1, ζ2, ζ3 ∈ χ(M).

Taking the g-trace of Equation (10) yields

Ricg(ζ1, ω) = (n − 1)ω♯(ζ1), (13)

which is equivalent to
Qω = (n − 1)ω, (14)

Taking the differentiation of ω♯(ζ1) = g(ζ1, ω) along V, together with Equation (9), we infer

(∇Vω♯)ζ1 = g(ζ1, V) + ω♯(ζ1)ω
♯(V). (15)

Now, we recall the following results which are used to prove our main outcomes.

Lemma 2. A Lorentzian manifold of dimension n equipped with SSMω-connection satisfies

(∇ζ1 Q)ω = (n − 1)ζ1 − Qζ1, (16)

(∇ωQ)ζ1 = −2Qζ1 + 2(n − 1)ζ1. (17)

If a Lorentzian manifold M of dimension n with non-vanishing Ricci tensor Ricg
satisfies

Ricg = αg + βω♯ ⊗ ω♯, (18)

for smooth functions α and β, where ω♯ is a non-zero one-form, and the vector field
corresponding to the one-form ω♯ is a unit-time-like vector field, then it is referred to
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as a perfect fluid spacetime. However, some geometers also call M quasi-Einstein [42].
Particularly, if β = 0 and α = constant, then M is called Einstein.

3. Characterization of Lorentzian Manifolds Admitting SSMω-Connection with
Parallel Cg-Tensor

Before proceeding to explore our main results, we first establish the following key
outcome.

Lemma 3. On a Lorentzian manifold with SSMω-connection the following relations are valid:

n

∑
i
(∇eiC)(ei, ζ2)ω =

1
2

ζ2(r)−
1

2(n − 1)
[(divDr)ω♯(ζ2)− g(∇ωDr, ζ2)], (19)

n

∑
i

g(QW(ζ1, ei)ω, ei) =
(r − (n − 1))2

(n − 1)(n − 2)
ω♯(ζ1) +

[
|Q|2 − (n − 1)2

(n − 2)

]
ω♯(ζ1), (20)

where Dr denotes the gradient of r and div denotes divergence.

Proof. Substituting ζ3 with ω in Equation (4), we obtain

C(ζ1, ζ2)ω = g((∇ζ1 Q)ζ2, ω)− g((∇ζ2 Q)ζ1, ω)− 1
2(n − 1)

{ω♯(ζ2)(ζ1r)− ω♯(ζ1)(ζ2r)}. (21)

Utilizing Lemma 2 in Equation (21), one can easily obtain

C(ζ1, ζ2)ω = − 1
2(n − 1)

[ω♯(ζ2)(ζ1r)− ω♯(ζ1)(ζ2r)]. (22)

Differentiating Equation (22) covariantly along ζ3 and employing Equation (9), we deduce

(∇ζ3C)(ζ1, ζ2)ω + C(ζ1, ζ2)ζ3 + ω♯(ζ3)C(ζ1, ζ2)ω = − 1
2(n − 1)

{g(ζ2, ζ3)g(Dr, ζ1)

−g(ζ1, ζ3)g(Dr, ζ2) + ω♯(ζ3)ω
♯(ζ2)g(Dr, ζ1)− ω♯(ζ1)ω

♯(ζ3)g(Dr, ζ2)

+ω♯(ζ2)g(ζ1,∇ζ3 Dr)− ω♯(ζ1)g(ζ1,∇ζ3 Dr)}. (23)

Consider an orthonormal frame ei : i = 1, 2, · · · , n for the tangent space of M. Setting
ζ1 = ζ3 = ei in Equation (23), and subsequently, summing over i, we obtain

n

∑
i
[(∇eiC)(ei, ζ2)ω + C(ei, ζ2)ei] + C(ω, ζ2)ω = − 1

2(n − 1)
{(2 − n)(ζ2r)

+ω♯(ζ2)(ωr) + (divDr)ω♯(ζ2)− g(∇ωDr, ζ2)}. (24)

Switching ζ1 with ω in Equation (23), a straightforward computation gives

C(ω, ζ2)ω = − 1
2(n − 1)

{ω♯(ζ2)(ωr) + ζ2r}. (25)

As we know, Cg-tensor is trace-free, so employing Equation (25) in Equation (24) leads to
the proof of (i).

Replacing ζ3 with ω in Equation (3) and calling back Equations (10) and (14), we
arrive at

QW(ζ1, ζ2)ω =
r − (n − 1)

(n − 1)(n − 2)
[ω♯(ζ2)Qζ1 − ω♯(ζ1)Qζ2]

− 1
(n − 2)

[ω♯(ζ2)Q2ζ1 − ω♯(ζ1)Q2ζ2]. (26)
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Substituting ζ2 with ei in the above equation, taking the inner product with ei, summing
over i, and utilizing Equation (14), we derive (ii).

We know that the parallelism of the Cg-tensor encompasses both conformal flatness and
Cotton flatness. So, we were intrigued to study Lorentzian manifolds admitting SSMω-
connection M with a parallel Cg-tensor and proceed to prove the following outcome.

Theorem 1. Let M be a Lorentzian manifold admitting SSMω-connection. If M has a parallel
Cg-tensor, then M is quasi-Einstein and Bach flat.

Proof. The assumption of parallelism of the Cg-tensor ensures its divergence-free nature.
So that, from Equation (19), one can obtain

1
2
(ζ2r)− 1

2(n − 1)
[(divDr)ω♯(ζ2)− g(∇ωDr, ζ2)] = 0. (27)

On the other hand,

Dr = −(ωr)ω, and (ωr) = 2(r − n(n − 1)). (28)

Employing the foregoing equation in Equation (22) leads to C(ζ1, ζ2)ω = 0. Then, by taking
the covariant derivative of this equation and utilizing Equation (9), we obtain

(∇ζ3C)(ζ1, ζ2)ω + C(ζ1, ζ2)ζ3 + ω♯(ζ3)C(ζ1, ζ2)ω = 0.

Because of the parallelism of the Cg-tensor and the fact that C(ζ1, ζ2)ω = 0, the preced-
ing equation indicates that the manifold possesses a vanishing Cg-tensor. Consequently,
referring to Equation (4), we have

(∇ζ1Ricg)(ζ2, ζ3)− (∇ζ2Ricg)(ζ1, ζ3)−
1

2(n − 1)
[(ζ1r)g(ζ2, ζ3)− (ζ2r)g(ζ1, ζ3)] = 0.

Replacing ζ1 with ω in the previous equation and utilizing Lemma 2 and Equation (17),
we conclude that

(n − 1)g(ζ2, ζ3)− g(Qζ2, ζ3) =
1

2(n − 1)
[(ωr)g(ζ2, ζ3)− (ζ2r)ω♯(ζ3)]. (29)

Utilizing Equation (28) in Equation (29), followed by simplification, reveals that the Ricci
operator Q can be represented as

Qζ2 =

[
r

(n − 1)
− 1

]
ζ2 +

[
r

(n − 1)
− n

]
ω♯(ζ2)ω. (30)

Therefore, M is quasi-Einstein. Continuing, we employ Equations(10), (14) and (30), in
Equation (3), resulting in W(ζ1, ζ2)ω = 0. Given the parallelism of the Cg-tensor, the first
term of the Bg-tensor (6) becomes zero. Consequently, utilizing Equation (30), the Bg-tensor
is simplified to

Bg(ζ1, ζ2) = − 1
(n − 2) ∑{

(
r

(n − 1)
− 1

)
g(W(ζ1, ei)ζ2, ei)

+

(
r

(n − 1)
− n

)
g(W(ζ1, ω)ζ2, ω)}. (31)

As the Weyl tensor is trace-free and W(ζ1, ζ2)ω = 0, the aforementioned equation demon-
strates the vanishing of Bg on M. This completes the proof.
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Remark 1. It is well known that the Weyl tensor vanishes in three dimensions; however, this
assertion does not hold true for higher dimensions [43]. Consequently, substituting ζ2 = ζ3 = ω,
n = 3, and W = 0 into Equation (3) yields

R(ζ1, ω)ω = −[2ζ1 + 4ω♯(ζ1)ω + Qζ1] +
r
2
[ζ1 + ω♯(ζ1)ω].

Utilizing of (10) in the preceding equation, we obtain

Qζ1 =
( r

2
− 1

)
ζ1 +

( r
2
− 3

)
ω♯(ζ1)ω.

Under the same assumptions as stated in the preceding theorem and guided by Equation (7),
the conclusion trivially holds in three dimensions.

If the unit-time-like vector field ω leaves the scalar curvature r invariant, then from
the second term of Equation (28) we obtain r = n(n − 1). Applying this result to Equation
(30), we observe that Qζ2 = (n − 1)ζ2. As a result of Theorem 1, the following conclusion
can be drawn.

Corollary 1. Let M be a Lorentzian manifold admitting SSMω-connection with parallel Cotton
tensor. If a unit-vector field ω leaves the scalar curvature invariant, then M is Einstein.

4. Bg-Tensor on Lorentzian Manifolds with SSMω-Connection

In this section, we consider a purely transversal Bg-tensor on a class of Lorentzian
manifolds and obtain the following outcome.

Theorem 2. A Lorentzian manifold admitting SSMω–connection has a purely transversal Bg-
tensor if and only if it is quasi-Einstein.

Proof. Firstly, we derive the expression for the transversal Bg-tensor. To achieve this, we
substitute ω into Equation (6) and with the help of Equations (19) and (20), we obtain

Bg(ζ1, ω) =
1

(n − 2)

{
(ζ1r)

2
− 1

2(n − 1)
[div(Dr)ω♯(ζ1)− g(∇ωDr, ζ1)]

+
[r − (n − 1)]2

(n − 1)(n − 2)
ω♯(ζ1)−

[
|Q|2 − (n − 1)2

(n − 2)

]
ω♯(ζ1)

}
. (32)

Suppose the Bg-tensor is purely transversal, then the foregoing equation transforms into

(ζ1r)
2

− 1
2(n − 1)

[div(Dr)ω♯(ζ1)− g(∇ωDr, ζ1)]

+
[r − (n − 1)]2

(n − 1)(n − 2)
ω♯(ζ1)−

[
|Q|2 − (n − 1)2

(n − 2)

]
ω♯(ζ1) = 0. (33)

Covariant differentiate the first term of Equation (28) along ζ1, and consider Equation
(9) to obtain ∇ζ1 Dr = −[ζ1(ωr)ω + (ωr)(ζ1 + ω♯(ζ1)ω)]. Contracting this and recalling
Equation (28) gives us div(Dr) = −(n − 3)(ωr). Putting this together with Equation (33),
we arrive at

(ζ1r)
2

+
1

2(n − 1)
[(n − 3)(ωr)ω♯(ζ1) + 2(ωr)ω]

+
[r − (n − 1)]2

(n − 1)(n − 2)
ω♯(ζ1)−

[
|Q|2 − (n − 1)2

(n − 2)

]
ω♯(ζ1) = 0.

Plugging ζ1 = ω into the previous equation yields

(n − 1)[|Q|2 − (n − 1)2]− [r − (n − 1)]2 = 0. (34)



Mathematics 2024, 12, 3130 8 of 11

Utilizing Equations (14), calculating the magnitude of the tensor T becomes

|T|2 =
1

(n − 1)
{(n − 1)(|Q|2 − (n − 1)2)− [r − (n − 1)]2}. (35)

Employing Equation (34) in Equation (35) demonstrates that T = 0, consequently establish-
ing that M is quasi-Einstein. On the other hand, if we assume M is quasi-Einstein, then
consequently, W(ζ1, ζ2)ω = 0 (as proved in Theorem 1). Differentiating this along ζ3 and
recalling Equation (10) gives

(∇ζ3W)(ζ1, ζ2)ω = −W(ζ1, ζ2)ζ3 + ω♯(ζ3)W(ζ1, ζ2)ω = −W(ζ1, ζ2)ζ3.

By contracting this equation over ζ3 and taking into account that the Weyl tensor is trace-
free, we deduce (divW)(ζ1, ζ2)ω = C(ζ1, ζ2)ω = 0. Considering the quasi-Einstein,
Equation (35) implies (n − 1)[|Q|2 − (n − 1)2] − [r − (n − 1)]2 = 0. By incorporating
all of these results into Equation (32), we can deduce that Bg(ζ1, ω) = 0.

As a consequence of Theorem 2, we demonstrate the following.

Corollary 2. A quasi-Einstein Lorentzian manifold admitting SSMω-connection is Bach flat.

Proof. As a result of Theorem 2, we know that a quasi-Einstein Lorentzian manifold
admitting SSMω-connection possesses a purely transversal Bg-tensor. Now, covariant
differentiate Equation (30) along ζ1 and invoke Equation (8) to obtain

(∇ζ1 Q)ζ2 =
ζ1r

(n − 1)
[ζ2 + ω♯(ζ2)ω] +

(
r

(n − 1)
− n

)
{g(ζ1, ζ2)ω + ω♯(ζ2)ζ1 + 2ω♯(ζ1)ω

♯(ζ2)ω}. (36)

By virtue of Equation (36), the Cg-tensor Equation (4) can be expressed as

C(ζ1, ζ2)ζ3 =
ζ1r

2(n − 1)
g(ζ2, ζ3)−

ζ2r
2(n − 1)

g(ζ1, ζ3) +
ζ1r

(n − 1)
ω♯(ζ2)ω

♯(ζ3)

− ζ2r
(n − 1)

ω♯(ζ1)ω
♯(ζ3) +

(
r

(n − 1)
− n

)
{ω♯(ζ2)g(ζ1, ζ3)− ω♯(ζ1)g(ζ2, ζ3)}.

Applying Equation (28) to the previous equation, we can deduce that C(ζ1, ζ2)ζ3 = 0. As a
result, the first term of the Bach tensor Equation (6) becomes zero. Conversely, considering
M to be a quasi-Einstein manifold, we have W(ζ1, ζ2)ω = 0 for all vector fields ζ1 and
ζ2 in M (a consequence of Theorem 1). The subsequent steps of the proof align with the
implications arising from Equation (31).

Combining the results of Corollary 2 with Theorem 1, we conclude the following.

Corollary 3. In a Lorentzian manifold admitting SSMω-connection, the following conditions
are equivalent:

• M is quasi-Einstein;
• M has a vanishing Cg-tensor;
• M has a vanishing Bg-tensor.

Finally, by extending the implications of Theorem 2, we establish the following.

Theorem 3. Let M be a Lorentzian manifold admitting SSMω-connection. If a unit-vector field
ω leaves the scalar curvature invariant, then M is Einstein if one of the following conditions holds:

• The Bg-tensor containing the unit-vector field ω is parallel along ω;
• The curvature transformation annihilates the Bg-tensor.
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Proof. Suppose the vector field ω leaves the scalar curvature invariant, that is, ω(r) = 0.
Consequently, referring to Equation (28), it becomes evident that r = n(n − 1). As a
consequence of Equation (32), it can be deduced that

Bg(ζ1, ω) = f ω♯(ζ1), (37)

where f = 1
(n−2) [(n − 1)3 + (n − 1)2 − |Q|2]. Covariant differentiating Equation (37) along

ω and applying the hypothesis (∇ωBg)(ζ1, ω) = 0, we can deduce ∇ω |Q|2 = 0. Utilizing
Equation (17), this inference leads to

0 =
n

∑
i=1

g((∇ωQ)ei, Qei) = −2
n

∑
i=1

g(Qei − (n − 1)ei, Qei).

Therefore, we have |Q|2 = (n − 1)r = n(n − 1)2. Considering this outcome, we can now
proceed with the computation:

|Q − (n − 1)I|2 = |Q|2 − 2(n − 1)r + n(n − 1)2

= n(n − 1)2 − 2n(n − 1)2 + n(n − 1)2 = 0. (38)

Hence, we conclude M is an Einstein manifold. This finishes the verification of (i).
Now, we assume that R(ζ1, ζ2) · Bg = 0. This equivalence can be expressed as follows:

Bg(R(ζ1, ζ2)ζ3, U) + Bg(R(ζ1, ζ2)U, ζ3) = 0. By setting ζ2 = ζ3 = ω, we obtain

Bg(R(ζ1, ω)ω, U) + Bg(R(ζ1, ω)U, ω) = 0. (39)

Utilizing Equation (10), we deduce that R(ζ1, ω)ω = −ζ1 − ω♯(ζ1)ω and R(ζ1, ω)U =
ω♯(U)ζ1 − g(ζ1, U)ω. Putting these results into Equation (39) and recalling Bg(ζ1, ω) =

f ω♯(ζ1), we derive Bg(ζ1, U) = f g(ζ1, U). Since the Bg-tensor is trace-free, we immediately
arrive at f = 0. This implies that

(n − 1)3 + (n − 1)2 − |Q|2 = 0.

Consequently, by following Equation (38), we can deduce that M is an Einstein manifold.
This concludes the proof of (ii).

5. Conclusions

Rudolf Bach’s introduction of the Bach tensor was a major milestone in the develop-
ment of differential geometry and general relativity, and it has had far-reaching implications
for the understanding of spacetime geometry and gravitational phenomena. Conformally,
Einstein spaces and the Bach tensor are fundamental aspects of differential geometry and
general relativity. The Bach tensor provides a powerful tool for studying the curvature
properties of spacetime and has important implications for our understanding of gravi-
tational phenomena. In the context of geometry and relativity, both the Bach and Cotton
tensors play an important role in understanding spacetime geometry and its relation to
matter and energy. The Bach tensor helps us to understand how matter and energy affect
the curvature of spacetime, while the Cotton tensor describes how spacetime curvature
responds to matter distribution. The Bach and Cotton tensors have been used in vari-
ous modified gravity theories, such as Brans–Dicke theory, Jordan–Brans–Dicke theory,
and f (R)-gravity, to describe deviations from general relativity. Our main results reveal
that a Lorentzian manifold admitting SSMω-connection with a parallel Cotton tensor is
quasi-Einstein and Bach flat, which provides understanding in many aspects of black holes,
dark energy, cosmology, and so on.
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