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Abstract: For a left module R M over a non-commutative ring R, the notion for the class of nilpotent
elements (nilR(M)) was first introduced and studied by Sevviiri and Groenewald in 2014 (Commun.
Algebra, 42, 571–577). Moreover, Armendariz and semicommutative modules are generalizations of
reduced modules and nilR(M) = 0 in the case of reduced modules. Thus, the nilpotent class plays a
vital role in these modules. Motivated by this, we present the concept of nil-Armendariz modules as
a generalization of reduced modules and a refinement of Armendariz modules, focusing on the class
of nilpotent elements. Further, we demonstrate that the quotient module M/N is nil-Armendariz if
and only if N is within the nilpotent class of R M. Additionally, we establish that the matrix module
Mn(M) is nil-Armendariz over Mn(R) and explore conditions under which nilpotent classes form
submodules. Finally, we prove that nil-Armendariz modules remain closed under localization.

Keywords: nilpotent element; Armendariz module; Armendariz ring; nil-Armendariz module

MSC: 16D10; 16S36; 16S50

1. Introduction

In this article, R represents a ring with identity, and R M represents a unital left
R-module. Recall that for some n ∈ N and a ∈ R, if an = 0, then a is said to be a
nilpotent element in R. The notation Nil(R) denotes the set of all nilpotent elements
in R. If Nil(R) = {0}, R is called a reduced ring. For a polynomial ring R[x] over R,
Armendariz [1] proved a very interesting result: if R is reduced, then the coefficients
ulmk = 0 for each l, k whenever p(x) = ∑n

l=0 ul xl and m(x) = ∑
q
k=0 ukxk with coefficients

in R satisfy p(x)m(x) = 0. Inspired by this result, Rege and Chhawchharia [2] introduced
a new class of rings named Armendariz rings as a generalization of reduced rings and
provided a sufficient class of rings that are Armendariz but not reduced. A ring R is
called Armendariz if ulvk = 0, whenever p(x) = ∑n

l=0 ul xl and m(x) = ∑
q
k=0 vkxk in R[x]

satisfy p(x).m(x) = 0. R. Antoine [3] introduced nil-Armendariz rings and extensively
studied a nilpotent class’s structure in non-commutative rings. A ring R is called nil-
Armendariz if ulvk ∈ Nil(R), whenever p(x) = ∑n

l=0 ul xl and m(x) = ∑
q
k=0 vkxk in R[x]

satisfy p(x).m(x) ∈ Nil(R)[x]. The classes of Armendariz and nil-Armendariz rings and
their relation with other classes of rings are briefly studied in [1,3–5]. In [4], Liu and
Zhao introduced weak Armendariz rings to generalize nil-Armendariz rings. A ring R
is weak Armendariz if ulvk ∈ Nil(R), whenever p(x) = ∑n

l=0 ul xl and m(x) = ∑
q
k=0 vkxk

in R[x] satisfy p(x).m(x) = 0. Thus, we have the following chain: reduced ring =⇒
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Armendariz ring =⇒ nil-Armendariz ring =⇒ weak Armendariz, but the converse is not
necessarily true. Moreover, Lee and Zhou expanded the concept of the reduced property
to modules in their work [6]. A module R M is reduced if it satisfies one of the following
equivalent conditions:

(1) If u2v = 0 for some u ∈ R and v ∈ M, then uRv = 0.
(2) If uv = 0 for some u ∈ R and v ∈ M, then the uM ∩ Rv = 0.

Similarly R M is called rigid if uv = 0 holds true whenever u2v = 0 for u ∈ R and
v ∈ M. A module R M is called Armendariz if ulvk = 0 whenever p(x) = ∑n

l=0 ul xl ∈ R[x]
and m(x) = ∑

q
k=0 vkxk ∈ M[x] satisfy p(x).m(x) = 0. Lee and Zhou recorded many

examples of Armendariz modules [6], as well as Rege and Buhphang [7]. They also
conducted a comparative study on Armendariz, reduced, and semicommutative modules.
A module R M is semicommutative if, for any u ∈ R and v ∈ M that satisfy uv = 0, it
follows that uRv = 0. Over the past few decades, many algebraists have generalized
concepts defined for non-commutative rings to modules. In this context, as early as 2014,
Ssevvirri and Groenewald [8] proposed the idea of nilpotent elements for modules. An
element v ∈ R M is called nilpotent if either v = 0 or utv = 0 but uv ̸= 0 for some u ∈ R
and t ∈ N. The set of all nilpotent elements in R M is denoted by nilR(M). In 2019, Ansari
and Singh carried out a comparative study of nilpotent elements and established crucial
relationships between nilpotent elements and other classes of modules. They showed that
if R M is reduced, then R M contains no non-zero nilpotent elements. Since the concepts
of nil-Armendariz and weak Armendariz depend on nilpotency conditions on elements,
extending these concepts to modules becomes straightforward. In this direction, Ansari and
Singh [9] defined a weak Armendariz module. A module R M is called weak Armendariz
if whenever p(x) = ∑n

l=0 ul xl ∈ R[x] and m(x) = ∑
q
k=0 ukxk ∈ M[x] satisfy p(x).m(x) = 0,

then ulvk ∈ nilR(M) for each l, k. This new concept further helped study the structure of
nilpotent elements and their connection with other subclasses of modules. Recall that an
element v ∈ R M is a torsion element if uv = 0 for some non-zero u ∈ R. We denote by
Tor(M) the set containing all torsion elements of R M. In [8], Ssevvirri and Groenewald
raise an important question regarding the conditions under which the set of nilpotent
elements forms a submodule of R M. In this article, we note some conditions on the ring
that help make the set of nilpotent elements a submodule.

Many researchers have conducted extensive research on the generalization of reduced
rings, including Armendariz and semi-commutative rings. However, the absence of various
subclass definitions has prevented advancements in these areas from extending to modules.
Thus, in this article we present a new concept known as nil-Armendariz modules as a
different category within the Armendariz module class. This concept aims to generalize
reduced modules in the context of the nilpotent class. We delve into various properties
of this extension and perform a comparative analysis between the concepts developed in
rings and their module counterparts.

Among the significant results, we demonstrate the existence of a large class of nil-
Armendariz modules but not Armendariz, and vice versa. Additionally, we establish that
for a submodule N of R M, the quotient module M/N is nil-Armendariz if and only if N
is a subset of the nilpotent class of R M. We also prove that for a module R M, the matrix
module Mn(M) is nil-Armendariz over Mn(R). Furthermore, we explore the structure
of the nilpotent class and identify certain conditions under which these classes form a
submodule. Additionally, we demonstrate that nil-Armendariz modules maintain closure
under localizations.

2. Results on Nil-Armendariz Modules

We begin with the following definition.

Definition 1. A left R-module M is called nil-Armendariz if whenever f (x)m(x) ∈ nilR(M)[x]
for f (x) = ∑n

i=0 rixi ∈ R[x] and m(x) = ∑k
j=0 mjxj ∈ M[x], then rimj ∈ nilR(M).
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Based on Definition 1, we conclude that the class of nil-Armendariz modules is closed
under submodules and that every reduced module is nil-Armendariz. Moreover, we find
that all nil-Armendariz modules are weak Armendariz. However, Propositions 1 and 3,
presented later in this article, demonstrate that the converse does not hold in either case.
In the case of ring theory, we easily verify that all Armendariz rings are nil-Armendariz.
When extending these concepts to module theory, one might assume that all Armendariz
modules are nil-Armendariz. However, this assumption is incorrect. To illustrate, consider
a module R M. We recognize Mn(M) as a module over Mn(R). We can express any matrix
K = [mij]n×n ∈ Mn(M) as K = ∑n

i,j=1 Eijmij, where Eij denotes the elementary matrices.

Lemma 1. Let M be a left R-module. Then, nilR(Mn(M)) = Mn(M).

Proof. Consider any non-zero matrix [mij]n×n. This implies at least one mij ̸= 0 for some
1 ≤ i, j ≤ n. Thus, we have two cases as follows:

(a) Suppose mij ̸= 0 for i ̸= j. Then, we can take r = Eji. Thus, we can easily see that
r2K = (Eji)

2K = 0, but rK = ejiK ̸= 0.
(b) Suppose mij ̸= 0 for i = j. Then, we can take r = Eli such that l ̸= i and 1 ≤ l, i ≤ n.

Thus, we can easily see that r2K = (Eli)
2K = 0, but rK = EliK ̸= 0.

Proposition 1. For a module R M, the matrix module Mn(M) is nil-Armendariz over Mn(R) for
n ≥ 2, but it is not Armendariz.

Proof. From Lemma 1, it is clear that Mn(R)Mn(M) is nil-Armendariz for n ≥ 2. Now,

consider p(x) =

(
1R 0
0 0

)
−

(
0 1R
0 0

)
x ∈ R[x] and for any 0 ̸= m ∈ M, m(x) =(

0 0
0 m

)
+

(
0 m
0 0

)
x ∈ M[x]. We observe that

(
1 0
0 0

)(
0 m
0 0

)
=

(
0 m
0 0

)
̸= 0, but

p(x)m(x) = 0. Therefore, M2(M) is not Armendariz over M2(R). Since M2(R)M2(M) is
embedded as a submodule in Mn(R)Mn(M) for n ≥ 2, we can conclude that Mn(R)Mn(M)
is not Armendariz.

Next, we note a significant result concerning the nilpotency of Zp2 as a Z-module.

Proposition 2 ([10], Proposition 2.3). Let m be an element of left R-module M. Then, the following
conditions are equivalent:

(i) There exist r ∈ R and t ≥ 2 such that rtm = 0 but rt−1m ̸= 0.
(ii) There exists k ∈ R such that k2m = 0 but km ̸= 0.

Proof. We note that the implication (ii) ⇒ (i) is trivial. For (i) ⇒ (ii) choose k = rt−1.
Since t ≥ 2, we have 2t − 2 ≥ t. Hence, k2m = r2t−2m = 0 while km ̸= 0.

We note that if m ∈ R M satisfies any of the equivalent conditions of Proposition 2,
then m is a nilpotent element of R M.

Lemma 2. For any prime p, p /∈ nilZ(Zp2).

Proof. Let us suppose that p ∈ nilZ(Zp2). Then, there exists some non-zero r ∈ Z such that
r2 p = 0 but r.p ̸= 0. This implies that p2|r2.p ⇒ r = pl for some l ∈ Z. Thus, p2|r.p, which
implies that r.p = 0. Hence, a contradiction.

Proposition 3. For any prime p, the Z-module Zp2 is Armendariz but not nil-Armendariz.
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Proof. Consider q(x) = 1 + px ∈ Z[x] and m(x) = 1 − px ∈ Zp2 [x]. Then, we have
q(x) · m(x) = 1. Clearly, p2 · 1 = 0 and p · 1 ̸= 0. Thus, 1 ∈ nilZ(Zp2) and, hence,
q(x) · m(x) ∈ nilZ(Zp2)[x]. However, by Lemma 2, p /∈ nilZ(Zp2). Thus, Zp2 is not a
nil-Armendariz module, but it is an Armendariz module (see Lemma 2.6 in [1]).

Next, we record some conditions under which the above newly defined concept is
equivalent to an Armendariz module.

Proposition 4. For a reduced module R M, the statements given below are equivalent:

(1) R M is Armendariz.
(2) R M is nil-Armendariz.
(3) R M is weak Armendariz.

Proof. Since the module R M is reduced, by Corollary 2.11 in [10], we have nilR(M) = 0.
Hence, the proof follows straightforwardly.

Proposition 5. Let R be a reduced ring. If R M is torsion-free, then the statements given below
are equivalent:

(1) R M is Armendariz.
(2) R M is nil-Armendariz.
(3) R M is weak Armendariz.

Proof. The proof follows easily from Proposition 2.7 in [10].

Next, for a module R M, we provide a large class of submodules of the matrix module
Mn(R)Mn(M), which are both Armendariz and nil-Armendariz. For this purpose, we
denote Tn(R) as the ring of n × n upper triangular matrices over R. For a left R-module
R M and K = (aij) ∈ Mn(R), let KM = {(aijm) : m ∈ M}. For elementary matrices Eij,
let U = ∑n

i=0 Ei,i+1 for n ≥ 2. We consider Un(R) = RIn + RU + RU2 + · · ·+ RUn−1 and
Un(M) = In M+UM+U2M+ · · ·+Un−1M. Then, Un(R) forms a ring, and Un(M) forms
a left module over Un(R).

There exists a ring isomorphism ϕ : Un(R) → R[x]
(xn)

defined as ϕ(r0 In + r1U + r2U2 +

· · ·+ rn−1Un−1) = r0 + r1x + · · ·+ rn−1xn−1 + (xn), and an abelian group isomorphism

θ : Un(M) → M[x]
(M[x](xn))

defined as θ(m0 In + m1U + m2U2 + · · ·+ mn−1Un−1) = m0 +

m1x + · · ·+ mn−1xn−1 + M[x](xn), such that θ(AW) = ϕ(A)θ(W) for all A ∈ Un(R) and
W ∈ Un(M).

In [11], Corollary 3.7, Zhang and Chen prove that R M is a reduced module if and only
if Un(M) is Armendariz over Un(R). Thus, for a reduced module R M, we find a larger
class of Armendariz submodules of Tn(M) over Tn(R). We recall the following notations
from [12].

Let k ∈ N, and for n = 2k ≥ 2, consider

Ae
n(M) = ∑k

i=1 ∑n
j=k+i Ei,j M

and for n = 2k + 1 ≥ 3
Ao

n(M) = ∑k+1
i=1 ∑n

j=k+i Ei,j M.

Let
An(M) = In M + UM + · · ·+ Uk−1 + Ae

n(M) for n = 2k ≥ 2

and
An(M) = In M + UM + · · ·+ Uk−1 + Ao

n(M) for n = 2k + 1 ≥ 3.

For example,



Mathematics 2024, 12, 3133 5 of 13

A4(M) =




v1 v2 v w
0 v1 v2 z
0 0 v1 v2
0 0 0 v1

 : v1, v2, v, w, z ∈ M



A5(M) =




a1 a2 a b c
0 a1 a2 d e
0 0 a1 a2 f
0 0 0 a1 a2
0 0 0 0 a1

 : a1, a2, a, b, c, d, e, f ∈ M

.

For A = (aij), B = (bij), we write [A.B]ij = 0 to mean that ailbl j = 0 for l = 0, . . . , n.

Lemma 3 ([12], Lemma 1.2). For r(x) = A0 + A1x + · · ·+ Apxp ∈ Mn(R)[x] and m(x) =
B0 + B1x + · · ·+ Bqxq ∈ Mn(M)[x], let fij = a0

ij + a1
ijx + · · ·+ ap

ijx
p and gij = b0

ij + b1
ijx +

· · ·+ bq
ijx

q, where al
ij are the (i, j)-entries of Al for l = 0, 1, . . . , p and bs

ij are the (i, j)-entries of
Bs for s = 0, 1, . . . , q. Then, r(x) = ( fij(x)) ∈ Mn(R[x]) and m(x) = (gij(x)) ∈ Mn(M[x]). If
R M is Armendariz and [r(x).m(x)]ij = 0 for all i, j, then AiBj = 0 for all i, j.

The first main result of this paper is the following:

Theorem 1. Let R M be a reduced module. For n = 2k + 1 ≥ 3, the following statements are true:

(1) An(R)An(M) is an Armendariz module.
(2) An(R)An(M) is a nil-Armendariz module.

Proof. (1) Let r(x) = A0 + A1x + · · ·+ Apxp ∈ An(R)[x] and m(x) = B0 + B1x + · · ·+
Bqxq ∈ An(M)[x] satisfy r(x).m(x) = 0. Here, we identify An(R)[x] with An(R[x])
and An(M)[x] with An(M[x]) canonically. Then, r(x) = ( fij(x)) ∈ An(R[x]) and

m(x) = (gij(x)) ∈ An(M[x]), where fij = a(0)ij + a(1)ij x + · · ·+ a(p)
ij xp and gij = b(0)ij +

b(1)ij x + · · ·+ b(q)ij xq. We show that [r(x).m(x)]ij = 0 for all i, j. Firstly, notice that r(x)
and m(x) have following properties:

f1 := f11 = f22 = · · · = fnn

f2 := f12 = f23 = · · · = fn−1, n

...

fk := f1k = f2, k+1 = · · · = fn−k+1, n

fi, j := 0, i > j

g1 := g11 = g22 = · · · = gnn

g2 := g12 = g23 = · · · = gn−1, n

...

gk := g1k = g2, k+1 = · · · = gn−k+1, n

gi, j := 0, i > j.
Now, r(x).m(x) = 0 implies

∑
i+j=t

figj = 0 for t = 2, 3, . . . , k + 1. (1)

We know that RM is a reduced module if and only if R[x]M[x] is reduced ([6], Theorem 1.6).
Thus, from f1g1 = 0, we obtain f 2

1 g1 = 0 and, hence, f1R[x]g1 = 0. Multiplying
f1g2 + f2g1 = 0 by f1 from the left side, we obtain f 2

1 g2 = 0, which implies f1g2 = 0,
thus f2g1 = 0. Similarly, multiplying f1g3 + f2g2 + f3g1 = 0 by f1 from the left,
we obtain f 2

1 g3 + f1 f2g2 + f1 f3g1 = 0, hence f 2
1 g3, which implies f1g3 = 0. Again,

multiplying f2 with the same equation, we obtain f 2
2 g2 + f2 f3g1 = 0, which implies

f 2
2 g2 = 0 and, hence, f3g1 = 0. Similarly continuing this process, we obtain

figj = 0 ∀ i + j ≤ k + 1. (2)
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This implies that [r(x).m(x)]ij = 0 for all i, j with (i, j) /∈ Γ, where Γ = {(u, k + u) :
u = 1, . . . , k + 1} ∪ {(u, k + u + 1) : u = 1, . . . , k} ∪ · · · ∪ {(u, u + n − 2) : u =
1, 2} ∪ {(u, n − 1 + u) : u = 1}.
Again from r(x).m(x) = 0, we have

f1g1, k+1 + f2gk + f3gk−1 + · · ·+ fkg2 + f1, k+1g1 = 0

f1g2, k+2 + f2gk + f3gk−1 + · · ·+ fkg2 + f2, k+2g1 = 0
...

f1gk+1, 2k+1 + f2gk + · · ·+ fk−1g3 + fkg2 + fk+1, 2k+1g1 = 0.

By applying the same process of left multiplication and using the earlier results
obtained in Equation (2), we conclude that for u = 1, 2, . . . , k + 1,

f1gu, k+u = fu, k+ug1 = 0 (3)

and with i + j = k + 2 for i, j,
figj = 0. (4)

Thus, from Equations (3) and (4), we obtain [r(x).m(x)]u, u+k = 0 for 1 ≤ u ≤ k + 1.
Now, for some 1 ≤ l ≤ k, assume the condition [r(x).m(x)]u, k+u+t = 0 holds true
for 0 ≤ t ≤ l − 1 and 1 ≤ u ≤ k − t + 1. Thus, it is sufficient to show that for
each u = 1, . . . , k − t + 1, the equation [r(x).m(x)]u, k+u+l = 0 holds true. Again,
r(x).m(x) = 0 gives

∑n
j=1 fu, jgj, k+u+l = 0 for u = 1, . . . , k − l + 1.

Thus,

f1gu, k+u+l + · · ·+ fl+1gu+l, k+u+l + fl+2gk + · · ·+ fkgl+2 + fu, k+ugl+1

+ · · ·+ fu, k+u+l−1g2 + fu, k+u+l g1 = 0. (5)

Again, by induction hypothesis and using results obtained in (2)–(4), we obtain
the following:

(i) (a) f1gu, k+u+t = fu, k+u+tg1 = 0, for 1 ≤ u ≤ k − t + 1; 0 ≤ t ≤ l − 1.

(b) f2gu+1, k+u+t = fu, k+u+t−1g2 = 0, for 1 ≤ u ≤ k − t + 1; 1 ≤ t ≤ l − 1.
...

(c) ft+1gu+t, k+u+t = fu, k+ugl+1 = 0, for 1 ≤ u ≤ k − t + 1; t = l − 1.

(ii) figj = 0, for i + j = u + k , i, j ≥ u and 1 ≤ u ≤ l + 1.

Thus, (i), (ii), and the left multiplication process imply each left-side component of
Equation (5) is equal to zero. Hence, [r(x).m(x)]u, k+u+t = 0 for 1 ≤ u ≤ k − l + 1.
Hence, mathematical induction gives [r(x).m(x)] = 0 ∀ (i, j) ∈ Γ. Thus, An(R)An(M)
is an Armendariz module.

(2) By using the calculations in Lemma 1, it is easy to verify that An(M) is a nil module
over An(R). Thus, it is nil-Armendariz.

Theorem 2. Let R M be a reduced module. For n = 2k ≥ 2, the following statements are true:

(1) An(M) + E1,k M is an Armendariz module over An(R) + E1,kR.
(2) An(M) + E1,k M is a nil-Armendariz module over An(R) + E1,kR.
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Proof. The proof of this theorem is almost similar to that of Theorem 1(1) above. However,
for further illustration, we demonstrate it as follows:

(1) Consider r(x).m(x) = 0 for some r(x) = ( fij) ∈ An(R) and m(x) = (gij) ∈ An(M).
Firstly, we notice that r(x) and m(x) have the following properties:

f1 := f11 = f22 = · · · = fnn

f2 := f12 = f23 = · · · = fn−1, n

...

fk := f1k = f2, k+1 = · · · = fk+1, n

f0 = f1, k

fi, j := 0, i > j

g1 := g11 = g22 = · · · = gnn

g2 := g12 = g23 = · · · = gn−1, n

...

gk := g1k = g2, k+1 = · · · = gk+1, n

g0 = g1, k

gi, j := 0, i > j.
Now, we have

∑
i+j=t

figj = 0 f or t = 2, 3, . . . , k + 1 (6)

f1g0 + f2gk−1 + · · ·+ fk−1g2 + f0g1 = 0. (7)

By applying a similar left multiplication to Equations (6) and (7), we obtain

figj = 0 ∀ i + j ≤ k + 1. (8)

and
f1g0 = f0g1 = 0. (9)

This implies that [r(x).m(x)]ij = 0 for all i, j with (i, j) /∈ Γ, where Γ = {(u, k + u) :
u = 1, . . . , k + 1} ∪ {(u, k + u + 1) : u = 1, . . . , k} ∪ · · · ∪ {(u, u + n − 2) : u =
1, 2} ∪ {(u, n − 1 + u) : u = 1}.
Again, from r(x).m(x) = 0, we have

f1g1, k+1 + f2gk + f3gk−1 + · · ·+ fk−1g3 + f0g2 + f1, k+1g1 = 0 (10)

and

f1g2, k+2 + f2gk + · · ·+ fkg2 + f2, k+2g1 = 0
...

f1gk, 2k + f2gk + · · ·+ fk−1g3 + fkg2 + fk, 2kg1 = 0.

By applying the same process of left multiplications and using the earlier results
obtained in Equations (6)–(9), we conclude that for u = 1, 2, · · · , k + 1

f1gu, k+u = fu, k+ug1 = 0 (11)

and with i + j = k + 2 for i, j
figj = 0 (12)

and
f0g2 = f2g0 = 0.

Thus, from Equations (11) and (12), we obtain [r(x).m(x)]u, u+k = 0 for u = 1, 2, · · · , k.
Now, for some 1 ≤ l ≤ k, assume the condition [r(x).m(x)]u, k+u+t = 0 holds true for
0 ≤ t ≤ l and 1 ≤ u ≤ k − t. Thus, it is sufficient to show that for each u = 1, . . . , k − l,
the equation [r(x).m(x)]u, k+u+l = 0 holds true. For these, consider r(x).m(x) = 0.
This implies that{

f1gu, k+u+l + · · ·+ fl+1gu+l, k+u+l + fl+2gk + · · ·+ fkgl+2 + fu, k+ugl+1+

· · ·+ fu, k+u+l−1g2 + fu, k+ugl+1 + · · ·+ fu, k+u+l−1g2 + fu, k+u+l g1 = 0
(13)
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and{
f1g1, k+l+1 + · · ·+ fl+1gl+1, k+1 + fl+2gk + · · ·+ fk−1gl+3 + f0gl+2 + f1, k+1gl+1+

· · ·+ f1, k+1g2 + f1, k+l+1g1 = 0.
(14)

Again, by an induction hypothesis and using the results obtained in (8)–(12), we obtain
the following:

(i) (a) f1gu, k+u+t = fu, k+u+tg1 = 0, for 1 ≤ u ≤ k − t; 0 ≤ t ≤ l − 1.

(b) f2gu+1, k+u+t = fu, k+u+t−1g2 = 0, for 1 ≤ u ≤ k − t; 1 ≤ t ≤ l − 1.
...

(c) ft+1gu+t, k+u+t = fu, k+ugt+1 = 0, for 1 ≤ u ≤ k − t; t = l − 1.
(ii) figj = 0 for i + j = u + k, i, j ≥ u for 1 ≤ u ≤ l + 1.
(iii) f0gu = 0 and 1 ≤ u ≤ l + 1.

Thus, from (i), (ii), (iii), and the left multiplication process, we find that each component
of Equations (13) and (14) is equal to zero. Hence, [r(x).m(x)]u, k+u+t = 0 for u =
1, . . . , k − l. Hence, mathematical induction gives [r(x).m(x)] = 0 ∀ (i, j) ∈ Γ.

(2) By using the calculations in Lemma 1, it is easy to verify that An(M) + E1,k M is a nil
module over An(R) + E1,kR. Thus, it is nil-Armendariz.

Proposition 6. Let R be a commutative ring. If nilR(M) ⊆ R M, then the quotient module
M/nilR(M) is rigid.

Proof. Let u2m = 0 in M/nilR(M). This implies that u2m ∈ nilR(M). Thus, there exists
some r ∈ R such that r2u2m = 0 and ru2m ̸= 0. Since R is commutative, r2u2m = 0 implies
that (ru)2m = 0, but ru2m ̸= 0. This implies that um ∈ nilR(M). Therefore, um = 0 in
M/nilR(M). Hence, M/nilR(M) is a rigid module.

Proposition 7. Let R be a commutative ring and R M be a torsion-free module. If nilR(M) ⊆ R M,
then M/nilR(M) is torsion-free.

Proof. Suppose that 0 ̸= m ∈ Tor(M/nilR(M)). Thus, there exists a non-zero t ∈ R such
that tm = 0. This means that tm ∈ nilR(M). Therefore, there exists some l ∈ R such that
l2tm = 0 and ltm ̸= 0. This implies that (lt)2m = 0 but ltm ̸= 0. Hence, m ∈ nilR(M).
Therefore, m = 0 in M/nilR(M).

Proposition 8. Let R be a commutative ring. If nilR(M) ⊆ R M, then R M is nil-Armendariz.

Proof. Recall from [5] that if a module R M is both rigid and semi-commutative, then
it is Armendariz. We observe, as per Proposition 6, that M/nilR(M) constitutes a rigid
module. Since R is commutative, this implies that M/nilR(M) is semi-commutative. Thus,
M/nilR(M) is an Armendariz module. Let us consider p(x)m(x) ∈ nilR M[x]. Clearly,
p(x)m(x) = 0, where m(x) signifies the corresponding polynomial in M/nilR(M)[x].
Consequently, rm = 0 for all r ∈ coef(p(x)) and m ∈ coef(m(x)). This suggests that rm is a
nilpotent element for all r ∈ coef(p(x)) and m ∈ coef(m(x)).

Proposition 9. Let N be a submodule of R M. If N is a subset of nilR(M), then R M is nil-
Armendariz if and only if M/N is nil-Armendariz over R.

Proof. Let f (x) = ∑n
i=0 rixi ∈ R[x] and m(x) = ∑k

j=0 mjxj ∈ M[x]. We denote M = M/N.

Since N is a nil submodule, nil(M) = nil(M). Hence, f (x)m(x) ∈ nilR(M)[x] if and only
if f (x) · m(x) ∈ nilR(M)[x]. Therefore, we conclude that am ∈ nilR(M) if and only if
am ∈ nil(M). Thus, M is nil-Armendariz if and only if M is nil-Armendariz.
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For a module R M, recall that if R is a commutative domain, then Tor(M) is a sub-
module and M/Tor(M) is torsion-free. However, the same is not true if R contains
a non-zero zero divisor, as illustrated by M = R = Z2 × Z2. Here, Tor(Z2 × Z2) =
{(0, 0), (1, 0), (0, 1)}, which is not a submodule. Next, we identify some conditions for the
nil-Armendariz property in the context of the torsion class.

Proposition 10. Let R be a commutative domain. Then, R M is nil-Armendariz if and only if its
torsion submodule Tor(M) is nil-Armendariz.

Proof. Let p(x) = ∑n
l=0 ul xl ∈ R[x] and m(x) = ∑

q
k=0 vkxk ∈ M[x] satisfy p(x)m(x) ∈

nilR(M)[x]. Then, we have

u0v0 ∈ nilR(M)

u1v0 + u0v1 ∈ nilR(M)

u2v0 + u1v1 + u0v2 ∈ nilR(M)

...

unvq ∈ nilR(M).

R being a commutative domain implies that nilR(M) ⊆ Tor(M). We can assume that
u0 ̸= 0. Hence, from the first equation, we obtain u0v0 ∈ nilR(M) ⇒ l2u0v0 = 0 for some
l ∈ R. Thus, v0 ∈ Tor(M). Tor(M) is a submodule of R M, implying that u1v0 ∈ Tor(M).
Thus, from the second equation, it is clear that u0v1 ∈ Tor(M), which, again, implies that
v1 ∈ Tor(M). Thus, by repeating the same process finitely many times, we conclude that
m(x) ∈ Tor(M)[x]. Therefore, M is a nil-Armendariz module.

Proposition 11. Let R be a commutative domain. If R M is a nil-Armendariz module, then
M/Tor(M) is a nil-Armendariz module.

Proof. We denote the quotient M/Tor(M) by M. Since M is torsion-free, it is sufficient to
show that M is Armendariz. Let m(x) = ∑

q
k=0 vixi ∈ M[x] and p(x) = ∑n

l=0 ujxj ∈ R[x]
satisfy p(x)m(x) = 0 in M[x]. Then, we have

u0v0 = 0

u0v1 + u1v0 = 0
...

unvq = 0.

Now, from first equation, we have u0v0 ∈ Tor(M), which further implies v0 ∈ Tor(M).
Since Tor(M) is a submodule of M, u1v0 ∈ Tor(M). Thus, from the second equation, we
obtain u0v1 ∈ Tor(M). Thus, repeating the same process finitely many times, we conclude
that ulvk ∈ Tor(M) for 0 ≤ l ≤ n and 0 ≤ k ≤ q. Thus, M/Tor(M) is an Armendariz
module.

Here, we record a “change of rings” result.

Proposition 12. Let A M be a module over a ring A and ϕ : R → A be a ring homomorphism. By
defining uv = ϕ(u)v, M can be made an R-module. If ϕ is onto, then the following are equivalent.

(1) R M is nil-Armendariz.
(2) A M is nil-Armendariz.

Proof. Firstly, we show that if rm ∈ nilR(M), then θ(r)m ∈ nilA(M). So, let rm ∈ nilR(M).
Thus, there exists some k ∈ R such that k2rm = 0 and krm ̸= 0. Now, 0 = k2rm =
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θ(k2r)m = (θ(k))2θ(r)m and 0 ̸= krm = θ(k)θ(r)m. Thus, θ(r)m ∈ nilA(M) and vice verse.
Thus, the remaining part of the proof easily follows.

Recall that for a multiplicative closed subset S of the center C of the ring R, the
set S−1M has a left module structure over S−1R. In the next proposition, we study the
localization.

Lemma 4. For a module R M, an element v ∈ nilR(M) if and only if d−1v ∈ nilS−1R(S
−1M) for

some d ∈ S.

Proof. Suppose d−1m ∈ nilS−1R(S
−1M), where d ∈ S and v ∈ M. Thus, ∃ s−1r ∈ S−1R

such that (s−1r)2d−1m = 0 but s−1rd−1v ̸= 0. This implies that r2v = 0 but rv ̸= 0. Hence
v ∈ nilR(M). For the converse part, suppose v ∈ nilR(M). Thus, t2v = 0 but tv ̸= 0 for
some t ∈ R. Hence, (r2/1).v/d = 0, but (r/1).v/d ̸= 0.

Theorem 3. For a module R M, the following conditions are equivalent.

(1) R M is nil-Armendariz.
(2) S−1M is a nil-Armendariz S−1R-module for each multiplicatively closed subset S of C.

Proof. (1)⇒(2) Let f (x) = ∑m
i=0 ξixi ∈ S−1R[x] and m(x) = ∑n

j=0 ηjxj ∈ S−1M[x] such that

f (x) · m(x) ∈ nilS−1RS−1M[x]. Here, ξi = s−1
i xi ∈ S−1R and ηj = t−1

j mj ∈ S−1M. Thus,
we have 

ξ0η0 ∈ nilS−1RS−1M
ξ0η1 + ξ1η0 ∈ nilS−1RS−1M
...
ξmηn ∈ nilS−1RS−1M.

(15)

Let us take s = (s0s1 · · · sm) and t = (t0t1 · · · tn) and consider
︷︸︸︷
f (x) = s. f (x) =

∑m
i=0 sξixi,

︷ ︸︸ ︷
m(x) = tm(x) = ∑n

j=0 tηjxj. Clearly,
︷︸︸︷
f (x) ∈ R[x] and

︷ ︸︸ ︷
m(x) ∈ M[x], and︷︸︸︷

f (x) .
︷ ︸︸ ︷
m(x) = sξ0tη0 +(sξ0tη1 + sξ1tη0)x+(sξ2tη0 + sξ1tη1 + sξ0tη2)x2 + · · ·+(sξmtηn)xm+n. From

the first equation, we have ξ0η0 ∈ nilS−1RS−1M ⇒ (s−1
0 a0)(t−1

0 m0) ∈ nilS−1R(S
−1M) ⇒

∃q−1r ∈ S−1R such that (q−1r)2(s−1
0 a0)(t−1

0 m0) = 0 but (q−1r)(s−1
0 a0)(t−1

0 m0) ̸= 0. Thus,
r2a0m0 = 0 but ra0m0 ̸= 0, which implies that r2(s1 · · · sm)a0(t1 · · · tn)m0 = 0 and
r(s1 · · · sm)a0(t1 · · · tn)m0 ̸= 0. Otherwise, suppose r(s1 · · · sm)a0(t1 · · · tn)m0 = 0, then

(s1 · · · sm)
−1(t1 · · · tn)

−1r(s1 · · · sm)a0(t1 · · · tn)m0 = 0 ⇒ ra0m0 = 0,

which is not possible. Thus, sξ0tη0 ∈ nilR(M). Similarly, we can show that sξmtηn ∈
nilR(M). Proceeding in a similar way, again from the first equation, ξ0η1 + ξ1η0 ∈
nilS−1RS−1M; we have s−1

0 a0t−1
1 m1 + s−1

1 a1t−1
0 m0 ∈ nilS−1R(S

−1M), which implies that
s1t0a0m1 + s0t1a1m0 ∈ nilR(M). Also, we can see that sξ0tη1 + sξ1tη0 = (s1 · · · sm)(t1 · · · tn)

(s1a0t0m1 + s0a1t1m0) ∈ nilR(M). Thus, similarly, we can show that all the coefficients of

xi in
︷︸︸︷
f (x) .

︷ ︸︸ ︷
m(x) are in nilR(M). Since R M is nil-Armendariz, this implies that stξiηj ∈

nilR(M)∀ i, j. Thus, by Lemma 4, ξiηj ∈ nilS1R(S
−1M). (2)⇒(1) Let f (x).m(x) ∈ nilR(M)[x],

where f (x) = ∑m
i=0 aixi ∈ R[x] and m(x) = ∑n

j=0 mjxj ∈ M[x]. Since f (x) ∈ S−1R[x] and
m(x) ∈ S−1M[x], aimj ∈ nilS−1 M(S−1M), by Lemma 4, aimj ∈ nilR(M).

Theorem 4. Let R be a commutative domain. Then, for a module R M, the following are equivalent:

(1) R M is nil-Armendariz.
(2) Q M is nil-Armendariz, where Q is the field of fraction of R.
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Proof. The proof of this theorem follows similarly to that of Theorem 3.

3. Results on Nilpotent Class of Modules

In ring theory, the class of nilpotent elements forms an ideal, provided the ring is
commutative, semi-commutative, or even nil-Armendariz. However, the same is not
true for the class of nilpotent elements in modules. A finite sum of nilpotent elements
of a module R M is not necessarily nilpotent in R M, even when R M is defined over a
commutative ring R. For example, 1 and 3 are nilpotent elements in ZZ8 since 23.1 = 0
but 2.1 = 2 ̸= 0 and 23.3 = 0 but 2.3 = 6 ̸= 0. However, their sum 4 is not nilpotent.
Additionally, the class of nilpotent elements is not closed under left multiplication by
R, even if R is commutative. For instance, 2 ∈ nilZZ8, but 2.2 = 4 /∈ nilZ(Z8). In [8],
SSevviiri and Groenewald posed the question of the conditions under which nilR(M)
forms a submodule. Here, we find some conditions under which nilR(M) may form
a submodule.

Lemma 5. Let R M be nil-Armendariz. Then, the following are true.

(1) If u ∈ Nil(R) and v ∈ nilR(M), then uv ∈ nilR(M).
(2) If v, w ∈ nilR(M), then v + w ∈ nilR(M).
(3) If u, y ∈ Nil(R) and v ∈ nilR(M), then (u + y)v ∈ nilR(M).

Proof. (1) Suppose u ∈ nil(R) and ut = 0. Then,

(1 + ux + ux2 + · · ·+ ut−1xt−1).(v − uvx) = v ∈ nilR(M)[x].

which further implies that uv ∈ nilR(M).
(2) Suppose v, w ∈ nilR(M).

(1 − x).(w + (u + w)x + vx2) = w + ux − wx2 − ux3 ∈ nilR(M)[x].

Now, since R M is nil-Armendariz, from each polynomial, we can select the suitable
coefficients to obtain 1.(v + w) ∈ nilR(M).

(3) Suppose u, y ∈ Nil(R), then uk = yl = 0. Then,

(1 + ux + · · ·+ uk−1xk−1)(1 − ux)(1 − yx)(1 + yx + · · ·+ yl−1xl−1)v = v.

Multiplying the intermediate polynomials yields

(1 + ux + · · ·+ uk−1xk−1)(1 − (u + y)x + uyx2)(1 + yx + · · ·+ yl−1xl−1)v = v.

Now, since R M is nil-Armendariz, and m ∈ nilR(M)[x], from each polynomial, we can
select the suitable coefficients to obtain (u + y)v ∈ nilR(M).

Proposition 13. Let R M be a nil-Armendariz module. If R is a nil ring, then nilR(M) is a
submodule of R M.

Proof. Since R is a nil ring, it follows directly from (5) that nilR(M) is a submodule
of R M.

Proposition 14. Let R M be a nil-Armendariz module over a finitely generated
commutative ring R. Then, nilR(M) is a submodule of R M if every proper ideal of R is nil ideal.

Proof. Since every proper ideal is nil ideal, by Theorem 2.1 in [13], it follows that R is a nil
ring. Hence, by Lemma 5, nilR(M) is a submodule of R M.
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For a left R-module M, we generally have Tor(M) ⊈ nilR(M) as 2 ∈ Tor(Z4)
while 2 /∈ nilZ4(Z4). Considering the definitions of Tor(M) and nilR(M), one could
suspect nilR(M) to be a subset of Tor(M). However, the example given below refutes
this possibility.

Example 1. Consider the module ZZ. Then, by Lemma 1, the matrix module M3(Z) is a nil module

over M3(Z). On the other hand, consider A =

1 −1 1
0 2 1
0 0 2

. If possible, let us suppose that A is

a torsion element in M3(Z). Then, by definition, there exits a non-zero L =

a11 a12 a13
0 a22 a23
0 0 a33

 in

M3(Z), satisfying LA = 0. However, solving LA = 0 implies that aij = 0 ∀ i, j ⇒ L = 0. Thus,
A /∈ Tor(M3(Z)).

Theorem 5. If a module R M is torsion-free, then nilR(M) is a submodule of R M.

Proof. If the ring R is reduced, then it is obvious that nilR(M) ⊆ Tor(M) = {0}, so nilR(M)
is a submodule. On the other hand, consider that R is non-reduced; then, there exits some
non-zero a ∈ R such that a2 = 0. Thus, by hypothesis that R M is torsion-free, we have
a2m = 0 for every m ∈ R M and am ̸= 0 in R M. Hence, nilR(M) is a submodule.

4. Conclusions and Future Scope

In this paper, we delve into the structure and properties of nil-Armendariz modules,
providing a new perspective on how nilpotent elements influence module theory. Exam-
ining quotient and matrix modules within this framework reveals intricate relationships
between nilpotency and module operations, enriching our understanding of module be-
havior over non-commutative rings. Our findings on the formation of submodules from
nilpotent classes uncover additional layers of structure that have been unexplored, under-
scoring the significance of these classes in the broader algebraic context. The preservation of
nil-Armendariz properties under localization further reinforces the utility of these modules
in various algebraic settings.

Looking ahead, there are several promising avenues for future research. One potential
direction is to explore the interaction of nil-Armendariz modules with other module-
theoretic properties, such as injectivity or projectivity, and to investigate how these inter-
actions can inform the classification of modules over different types of rings. Another
area worth exploring is the extension of nil-Armendariz concepts to modules over more
complex algebraic structures, such as graded rings or rings with additional topological
properties. Additionally, the potential applications of nil-Armendariz modules in compu-
tational algebra and their role in solving problems related to ring extensions or module
homomorphisms present exciting challenges. Finally, a further study into the connections
between nil-Armendariz modules and homological dimensions could lead to new insights
in both algebra and homological algebra.
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