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Abstract: We establish lower norm bounds for multivariate functions within weighted Lebesgue
spaces, characterised by a summation of functions whose components solve a system of nonlinear
integral equations. This problem originates in portfolio selection theory, where these equations allow
one to identify mean-variance optimal portfolios, composed of standard European options on several
underlying assets. We elaborate on the Smirnov property—an integrability condition for the weights
that guarantees the uniqueness of solutions to the system. Sufficient conditions on weights to satisfy
this property are provided, and counterexamples are constructed, where either the Smirnov property
does not hold or the uniqueness of solutions fails.
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1. Introduction

This paper determines sharp lower norm bounds for functions in Lebesgue spaces
Lp(w) (functions of n variables, weighted by a density w), based on their one-dimensional
marginals. This problem can be framed as minimizing the p-norm of functions with fixed
marginals. With the method of Lagrange multipliers, we may reformulate this optimisation
problem in terms of a system of (non-)linear integral equations subject to n marginal
constraints, whose solution identifies the minimiser. The problem has ties with different
fields of research:

Convexity in Banach spaces: The spaces considered in the present paper are weighted
Lp spaces for p > 1 and thus are strictly convex and reflexive Banach spaces, which implies
that not only do closed subsets have elements of minimal norm ([1], Corollary 5.1.19) as
in Hilbert spaces ([2], Theorem 4.10), but this minimality can also be characterised by
extending the familiar notion of orthogonality in Hilbert spaces, where the smallest element
of a non-empty closed and convex set is the projection of 0 onto the set. (As marginal
constraints do indeed define closed subspaces, we may employ the results of [3] in this
direction). In the context of the present paper (simplified to a bivariate setting n = 2), we
minimise the p-norm ∫

R2
| f (x, y)|pw(x, y)dxdy (1)

over all functions f with marginals gX and gY, that is∫
f (x, y)w(x, y)dy = gX(x),

∫
f (x, y)w(x, y)dx = gY(y), x, y ∈ R. (2)

Method of Lagrange multipliers: Since the underlying Lp space is generally not
finite-dimensional (only for discrete weights is the space countable, or it may even be
isomorphic to finite-dimensional Euclidean space), and since marginal constraints typically
introduce a continuum of constraints, the method of Lagrange multipliers used in this
paper pertains to an infinite-dimensional variant, such as those discussed in [4] (Chapter 5)
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and [5] (Chapter 3). Although the method of Lagrange multipliers is applied heuristi-
cally in this paper to derive the specific form of integral equations with constraints, it is
demonstrated that these equations allow one to solve the original optimisation problem. (In
other words, we rigorously verify the sufficiency of the first-order conditions for optimality
within the context of a specific application, which is more crucial than proving the absolute
rigour of the heuristic arguments that led to these conditions).

Dependence Modelling: Assuming that weights integrate to one and marginal
constraints are probability densities, the problem can be interpreted as selecting the op-
timal dependence structure, that is a multi-variate density, from a variety of available
choices. This problem is prevalent in numerous applied research fields. In finance, for
instance, selecting an appropriate dependence structure is crucial for risk management and
portfolio optimisation. Different approaches have been used to model such dependences,
e.g., Copulas (cf. [6–9]). While almost any dependence structure is given by copulas (Sklar’s
theorem ([8], Chapter 3)), the solution of this paper is strikingly different from any standard
copula choice. For example, for bivariate problems in L2 (that is, p = 2 and n = 2), this
paper establishes that the minimum density with marginals gX(x), gY(y) is of the form

F(x) + G(y)
2

, (3)

where the functions F, G satisfy the equations

F(x)wX(x) +
∫

G(y)w(x, y)dy = 2gX(x), (4)

G(y)wY(y) +
∫

F(x)w(x, y)dx = 2gY(y), (5)∫
G(y)wY(y)dy = 0. (6)

The closest construction to the functional form (3) is Archimedean copulas (cf. [8],
Chapter 4), where f = g belongs to the parameterised family of functions, but the
inverse of f is applied to the sum f (x) + f (y).

The difference between our weights and copulas is threefold: they address a global
optimisation problem (in contrast to the popular M- or W-copulas that realise the well-
known Fréchet–Hoeffding bounds: the lower and upper Fréchet–Hoeffding bounds are
themselves copulas (cf. [8], 2.2.5), known as the W copula max(0, u + v − 1) and M-copula
min(u, v), respectively, which are, of course, pointwise optimisations, unlike the ones
considered in the paper); their structure depends on marginals—which goes against the core
concept of copulas—and they can become negative under certain marginal assumptions.
(The implications of the potential lack of positivity for the case p = 2 are discussed in [10],
Section EC 5.2).

Optimal Transport Global optimisation problems involving marginal constraints, like
ours, are well known. For example, in [11], instead of optimizing (1), the goal is to minimise∫

R2
|x − y|p f (x, y) dx dy (7)

over all functions f that satisfy the marginal constraints (2) for a unit weight w. While this
problem is discussed in the copula literature ([8], Exercise 6.5), it is more reminiscent of
the classical transport problem [12], where the objective is to find the optimal transport
plan f (x, y) that minims the transport cost while respecting the given marginals. The
key difference between our objective (1) and those in the transport literature suggests
that a direct application of optimal transport theory is not straightforward. Moreover,
although the theory of optimal transport is an active area of research in mathematical
finance, especially with its extension to Martingale transport (cf. [13–15]), the financial
interpretation of a transport plan in our context remains unclear.
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Theory of Integral Equations The two linear integral Equations (4) and (5) exhibit
similarities with (vector-valued) Fredholm integral equations of the first kind (it is im-
portant to note that linearity in our paper applies only for p = 2, and to formally align
our problem with Fredholm equations, we assume that the weight w is supported on the
interval [a, b]), where one seeks to solve for a 2-vector:

ϕ(u) = (F(u), G(u))⊤

in the context of the equation:

g(u) =
∫ b

a
K(u, t)ϕ(t) dt.

Here, we define g(u) = (2gX(x), 2gY(u))⊤, and K represents the matrix kernel (the Kro-
necker delta δu indicates the point mass at u ∈ R).

K(u, t) :=
(

δu(t)wX(u) w(u, t)
w(t, u) δu(t)wY(u)

)
.

While it may seem somewhat artificial to express the function F(x) + G(y) as a two-variable
function ϕ(t) with a scalar variable t, this formulation is ill posed, which is characteristic of
Fredholm integral equations of the first kind (cf. [16,17]). (We add constraint (6) to allow
for unique solutions).

Options Trading. This study is the third in a series of papers addressing similar con-
strained optimisation problems. Specifically, ref. [10] addresses the Hilbertian case (p = 2),
which corresponds to a dual problem in finance: maximizing the Sharpe ratio of portfolios
in markets where European options on multiple, potentially correlated, underlying assets
are traded. In this context, the weight w represents the joint density of n risky assets, with
option contracts written on various strikes. The result shows that the solution is linear,
meaning optimal payoffs are achieved by trading individual option contracts on each
underlying asset rather than using basket-type options. The second paper [18] provides
a solution of the minimisation problem on the hypercube for any 1 < p < ∞, where the
weight is the Lebesgue measure (i.e., w is the uniform density). In the special case where
p = 2, explicit expressions for the minimrs are available. These expressions imply that any
square-integrable function g : Rn → R, which integrates to one, satisfies the bound

∫
g2(ξ) dξ ≥

(
n

∑
i=1

gi(ξi)
2 dξi

)
− (n − 1),

where ξ = (ξ1, . . . , ξi, . . . , ξn), and the marginal gi represents the integral of g with respect
to all arguments except the i-th one, 1 ≤ i ≤ n.

This paper extends the work by providing a comprehensive analysis of the uniqueness
of the involved integral equations. Specifically, Theorem 1 in [10] neither states nor proves
that the equations have a unique solution, whereas uniqueness is only established in
hypercubes ([18], Theorem 2.5). Here, we demonstrate that uniqueness is closely related to
the weight satisfying the so-called Smirnov property, for which the following question has
a positive answer (formulated here, for simplicity, in n = 2 dimensions):

If f (x), g(y) ∈ L1(w), such that f (x) + g(y) ∈ Lq(w), then is f , g ∈ Lq(w)?

The integral equations addressed in this paper have not been extensively studied in
the literature, because they pertain to a notoriously difficult, high-dimensional problem
of trading optimally many options of several underlying assets. The preprint [19] might
be the most closely related work, but it pursues different objectives and, as of now, lacks
the necessary mathematical foundations. On the other hand, the uni-variate case, where
a continuum of options is traded but on a single underlying, is well understood (cf. [20]
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and the references cited therein), and from a mathematical perspective less demanding, as
identifying a minimal discount factor is trivial in complete markets [21], which support
only a single stochastic discount factor. (Nevertheless, the research on portfolio selection
involving options with a single underlying asset has a long and rich history, most papers
only selecting from very few strikes, so that they are mathematically not related to the
present paper. For an overview of the literature, see [18], Table 1.1).

Program of Paper

In Section 2, we provide a heuristic derivation of the integral equations with constraints
and develop the mathematical tools essential to the paper. This includes an exploration of
“orthogonality” in weighted Lp spaces (p > 1), which, despite not being Hilbert spaces,
are strictly convex and thereby support a form of "orthogonality" analogous to classical
orthogonality in inner product spaces.

Section 2.4 is focused on the Smirnov property, detailing sufficient conditions for
weights to satisfy this property and offering a counterexample where these conditions are
not met, leading to the property’s failure.

Section 3 presents the main theorem, which identifies the element in Lp with the
minimal norm that satisfies the given constraints, establishing it as the unique solution
to the integral equations. A counterexample, discussed in Section 3.2, emphasises the
importance of the integrability of certain likelihood ratios, a condition consistently applied
throughout the paper.

The Section 4 concludes the paper and suggests avenues for future research.

2. Mathematical Framework
2.1. Notation

Let w(ξ) be a strictly positive density (that is, w is a Lebesgue-measurable func-
tion integrating to one). On a set U ⊂ Rn, where U is a Cartesian product of the form
U = I1 × I2 × . . . In, with each interval Ii (1 ≤ i ≤ n) being a closed interval of the form
(−∞, b], [a, ∞), where a, b ∈ R, or [a, b] with a < b.

For p > 1, Lp(w) denotes the weighted space consisting of equivalence classes [ f ] of
Lebesgue measurable functions f : U → R that satisfy

∥ f ∥p :=
(∫

U
| f (ξ)|pw(ξ) dξ

)1/p
< ∞.

L∞ represents the space of equivalence classes of real-valued essentially bounded functions
on U.

Additionally, we use ξc
i to denote the (n − 1)-dimensional vector obtained by omitting

the i-th coordinate from ξ = (ξ1, . . . , ξn). The marginal weight wc
i is defined as the weight

w integrated over the i-th coordinate, i.e., wc
i (ξ

c
i ) =

∫
R w(ξ) dξi. Similarly, wi is the i-th

one-dimensional marginal density, defined as wi(ξi) =
∫
Rn−1 w(ξ) dξc

i .

2.2. Heuristic Derivation of Integral Equations

To minimise the Lp(w)-norm ∥h∥p subject to the marginal constraints∫
h(ξ)w(ξ) dξc

i = gi(ξi), 1 ≤ i ≤ n, (8)

we adapt the heuristic approach used in [18], which addresses the problem on the hypercube
without weights. Consider the Lagrangian

L =
1
p

∫
|h(ξ)|pw(ξ) dξ − 1

n

n

∑
i=1

∫
Φ(ξi)

(∫
h(ξ)w(ξ) dξc

i − gi(ξi)

)
dξi.
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Setting the directional derivatives equal to zero yields the first-order conditions

sign(h(ξ))|h(ξ)|p−1 =
1
n

n

∑
i=1

Φi(ξi), (9)

from which it follows that

h(ξ) = sign

(
n

∑
i=1

Φi(ξi)

)∣∣∣∣∣ 1n n

∑
i=1

Φi(ξi)

∣∣∣∣∣
1

p−1

. (10)

The marginal constraints imply

∫
sign

(
n

∑
j=1

Φj(ξ j)

)∣∣∣∣∣ 1n n

∑
j=1

Φj(ξ j)

∣∣∣∣∣
1

p−1

w(ξ) dξc
i = gi(ξi), 1 ≤ i ≤ n. (11)

To uniquely determine the Lagrange multipliers Φi—which are otherwise determined up
to an additive constant—it is sufficient to impose the conditions∫

Φi(ξi)wi(ξi) dξi = 0, 2 ≤ i ≤ n. (12)

Note that these conditions are required only for i ≥ 2. (For the proof of uniqueness, see the
end of the proof of Theorem 1).

2.3. Orthogonality in Weighted Lp-Spaces

Minimality in Lp-spaces ([3], Theorem 4.21) is characterised as follows:

Lemma 1. Let 1 < p < ∞, g ∈ Lp(w), and Y be a closed subspace of Lp(w). The following are
equivalent:

(i) ∥g∥p ≤ ∥g + k∥p for all k ∈ Y.
(ii)

∫
sign(g(ξ))|g(ξ)|p−1k(ξ)w(ξ)dξ = 0 for all k ∈ Y.

A function g is said to be orthogonal to a subspace Y if it satisfies any of the equivalent
statements of Lemma 1. For p = 2, Lp(w) is a Hilbert space, and the notion agrees with the
usual orthogonality, as (ii) of Lemma 1 simplifies to the property of vanishing inner product,∫

g(ξ)k(ξ)w(ξ)dξ = 0, k ∈ Y.

In addition, sign(g)|g|p−1 ∈ Lq(w), where q = p/(p − 1) is the conjugate exponent to p,
for which the pairing in (ii) is well defined.

Lemma 2. Let 1 < p < ∞, f ∈ Lq(w), where q = p/(p − 1), and denote by

N :=
{

ϕ ∈ Lp(w)
∣∣∣ ∫ ϕ(ξ)w(ξ)dξc

i ≡ 0, for 1 ≤ i ≤ n
}

. (13)

Suppose
wiwc

i
w

∈ Lp(w), 1 ≤ i ≤ n. (14)

Then, the following hold:

1.
∫

f (ξ)wc
i (ξ

c
i )dξc

i ∈ L1(w) for any 1 ≤ i ≤ n.
2. N is a closed subspace of Lq.
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3. For any ψ ∈ L∞, the function

ψ̃(ξ) := ψ(ξ)−
n

∑
i=1

wc
i (ξ

c
i )

w(ξ)

∫
ψ(ξ)w(ξ)dξc

i + (n − 1)
∫

ψ(η)w(η)dη (15)

is an element of N .
4. If

∫
f (x)w(x)ψ̃(x)dx = 0 for all ψ ∈ L∞, then f (x) = 1

n ∑n
i=1 Ψi(xi), for some functions

Ψi ∈ L1(w), 1 ≤ i ≤ n.
5. If f (ξ) = 1

n ∑n
i=1 Ψi(xi), where for any 1 ≤ i ≤ n, Ψi ∈ Lq(w), then

∫
f (x)ϕ(x)w(x)dx = 0

for all ϕ ∈ N .

Proof. The proof of (1) is an application of Jensen’s and Hölder’s inequality, using (14):

∥
∫

f (ξ)wc
i (ξ

c
i )dξc

i ∥w,1 =
∫ ∣∣∣∣∫ f (ξ)wc

i (ξ
c
i )dξc

i

∣∣∣∣wi(ξi)dξi

≤
∫

| f (ξ)|wc
i (ξ

c
i )dξc

i wi(ξi)dξi =
∫

| f (ξ)|
(

wc
i (ξ

c
i )wi(ξi)

w(ξ)

)
w(ξ)dξ

≤ ∥ f ∥q

∥∥∥∥wiwc
i

w

∥∥∥∥
p
.

The proof of (2) is similar to the proof that M is closed in the proof of Theorem 1. Proof of
(3): Inspecting the sum on the right side of (15), the first summand is, by assumption, in
L∞ ⊂ Lp(w), and also the last summand is in Lp(w), as it is constant. Furthermore, for

any 1 ≤ i ≤ n, wc
i (ξ

c
i )

w(ξ)

∫
ψ(ξ)w(ξ)dξc

i ∈ Lp(w), due to Jensen’s inequality and (14):

∫ ∣∣∣∣wc
i (ξ

c
i )

w(ξ)

∫
ψ(ξ)w(ξ)dξc

i

∣∣∣∣pw(ξ)dξ ≤ ∥ψ∥∞

∥∥∥∥wiwc
i

w

∥∥∥∥p

p
< ∞.

Combining all these observations, we may conclude that ψ̃ ∈ Lp. As the marginal con-
straints in the definition of N are fulfilled, by construction, we conclude that ψ̃ ∈ N .

To show (4), let ψ ∈ L∞ such that, as proved above, ψ̃ ∈ N . Fubini’s theorem yields

∫ (
f (x)−

n

∑
i=1

∫
f (ξ)wc

i (ξ
c
i )dξc

i + (n − 1)
∫

f (ξ)dξ

)
ψ(ξ)w(ξ)dx = 0

and since L1(w) is dual to L∞, we have

f (ξ) =
n

∑
i=1

∫
f (ξ)wc

i (ξ
c
i )dξc

i − (n − 1)
∫

f (ξ)dξ w(ξ)− a.e..

By (1), the functions Ψi(ξi) := n
∫

f (ξ)wc
i (ξ

c
i )dξc

i − (n − 1)
∫

f (ξ)dξ and 1 ≤ i ≤ n are in
L1, and their average equals f , as claimed.

The proof of (5) is straightforward once one has recognised that, due to Hölder’s
inequality, the pairing of Ψi and ϕ is well defined, for 1 ≤ i ≤ n.

Since N is closed, the previous two lemmas combine to the following:

Corollary 1. Let f ∈ Lq(w), and N ⊂ Lp(w) as defined in (13). The following are equivalent:

(i) ∥sign( f )| f |1/(p−1) + ϕ∥p ≥ ∥ f ∥q for all ϕ ∈ N .
(ii)

∫
f (x)ϕ(x)w(x)dx = 0 for all ϕ ∈ N .

Suppose, in addition, w satisfies (14). Then either of the two statements (i) or (ii) imply that

(iii) f (x) = 1
n ∑n

i=1 Ψi(xi), where Ψi (each depending only on a single argument xi) lie in L1(w),
1 ≤ i ≤ n.
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Conversely, if (iii) holds with Ψi ∈ Lq(w) for 1 ≤ i ≤ n, then either of the equivalent statements
(i) or (ii) also hold.

2.4. The Smirnov Property

One may wonder, whether subject to mild modifications, (i), (ii), and (iii) can be
combined into a full equivalence (such that (i) or (ii) imply (iii) with Lq summands Ψi,
1 ≤ i ≤ n). We elaborate on this non-trivial issue in the present section. To this end, we
introduce the following property:

Definition 1. Let q > 1. A density w is said to satisfy the Smirnov property (named after Alexander
G. Smirnov (Lebedev Physical Institute, Moscow), who pointed out that for q = 2, any mixture
density w satisfies it (see also Section 2.5 and Remark 1)), if for any f (x) = 1

n ∑n
i=1 Ψi(xi) ∈

Lq(w), where Ψi lie in L1 for 1 ≤ i ≤ n, we have that Ψi ∈ Lq(w) for 1 ≤ i ≤ n.

By Corollary 1, we have:

Corollary 2. Let q > 1, and f ∈ Lq. If w satisfies the Smirnov property, the following are
equivalent:

(i) f (x) = 1
n ∑n

i=1 Ψi(xi), where Ψi ∈ Lq, 1 ≤ i ≤ n.
(ii)

∫
f (x)ϕ(x)w(x)dx = 0 for all ϕ ∈ N .

2.5. Sufficient Conditions

The Smirnov property holds if the density w is the finite sum of product densities,
each depending on a single variable only.

Proposition 1. A density of the form w = ∑d
j=1 ∏n

i=1 w(j)
i (ξi), where w(j)

i ≥ 0 for any 1 ≤ i ≤ n
and 1 ≤ j ≤ d, satisfies the Smirnov property.

Proof. Let f (x) = 1
n ∑n

i=1 Ψi(xi) ∈ Lq(w), where Ψi ∈ L1(w), 1 ≤ i ≤ n.
Due to linearity, it suffices to show that Ψi ∈ Lq(w) relative to a product weight, that

is d = 1, and therefore w = w1(ξ1) · · · · · wn(ξn). Furthermore, without loss of generality,
we may assume that each wi integrates to one, 1 ≤ i ≤ n. These assumptions imply that
w(ξ) = wi(ξi)wc

i (ξ
c
i ) for any 1 ≤ i ≤ n.

As for any 1 ≤ i, j ≤ n, where i ≠ j, Ψj ∈ L1(wc
i ), it follows that Ψi = n

∫
f (ξ)wc

i (ξ
c
i )dξc

i −
∑j̸=i

∫
Ψj(ξj)wj(ξj)dξj. Therefore, to establish the claim, it suffices to show that

∫
f (ξ)wc

i (ξ
c
i )dξc

i ∈
Lq(w).

By Jensen’s inequality,∣∣∣∣∫ f (ξ)wc
i (ξ

c
i )dξc

i

∣∣∣∣q ≤
∫

| f (ξ)|qwc
i (ξ

c
i )dξc

i .

Multiplying by w and integrating all variables out, we get∥∥∥∥∫ f (ξ)wc
i (ξ

c
i )dξc

i

∥∥∥∥q

q
≤
∫

| f (ξ)|qwi(ξi)wc
i (ξ

c
i )dξ

=
∫

| f (ξ)|qw(ξ)dξ = ∥ f ∥q
q < ∞,

where the last inequality is by assumption, and the last identity is due to w being a product
of one-dimensional marginals, that is, wc

i = ∏j ̸=i wj.



Mathematics 2024, 12, 3135 8 of 17

Remark 1. For q = 2, Proposition 1 allows a more instructive proof (I thank Alexander G Smirnov
for pointing out this alternative proof). Assume, for simplicity, n = 2 and w(x, y) = wX(x)wY(y)
(the general case is proved similarly). If f (x), g(y) ∈ L1(w), and f (x) + g(y) ∈ L2(w), then∫

( f (x) + g(y))2w(x, y)dxdy −
∫

f (x)wX(x)dx ·
∫

g(y)wY(y)dy

=
∫

| f (x)|2wX(x)dx +
∫

| f (x)|2wX(x)dx,

and since the left side is finite, each non-negative summand on the right one is as well.

Remark 2. An example of practical nature involves discrete densities. Indeed, if one aims to
solve Equations (11) and (12), one typically discretises the weight, e.g., by setting the weights
piecewise constant on a rectangular grid. (For simplicity, we use n = 2, U = [0, 1)× [0, 1), and an
equidistant grid of mesh-size h = 1/N). As the discretised w can be written as

w(x, y) =
N

∑
i=1

N

∑
j=1

1[(i−1)h,ih)(x)1[(j−1)h,jh)(y),

it also is of the form of Proposition 1. For discrete densities, the Equations (11) and (12) constitute a
finite-dimensional system of non-linear equations.

Another situation where the Smirnov property holds is characterised by essentially
bounded likelihood ratios:

Proposition 2. If
wiwc

i /w ∈ L∞, 1 ≤ i ≤ n, (16)

then w satisfies the Smirnov property.

Proof. Let f (x) = 1
n ∑n

i=1 Ψi(xi) ∈ Lq(w), where Ψi ∈ L1(w), 1 ≤ i ≤ n. As for the proof
of the previous proposition, we only need to establish that

∫
f (ξ)wc

i (ξ
c
i )dξc

i ∈ Lq(w) for
1 ≤ i ≤ n. By Jensen’s inequality,∣∣∣∣∫ f (ξ)wc

i (ξ
c
i )dξc

i

∣∣∣∣q ≤
∫

| f (ξ)|qwc
i (ξ

c
i )dξc

i .

By assumption, there exists a positive constant C such that wiwc
i ≤ Cw, almost everywhere.

Multiplying by w and integrating all variables out, we obtain∥∥∥∥∫ f (ξ)wc
i (ξ

c
i )dξc

i

∥∥∥∥q

q
≤
∫

| f (ξ)|qwi(ξi)wc
i (ξ

c
i )dξ

≤ C
∫

| f (ξ)|qw(ξ)dξ = ∥ f ∥q
q < ∞.

Remark 3. A bivariate standard normal density w(x, y) with non-zero correlation has an un-
bounded likelihood ratio wXwY/w(x, y); thus, it does not satisfy condition (16). Furthermore, this
w is also not of the form of Proposition 1, as it is not clear whether w satisfies the Smirnov property.

2.6. A Counterexample

There are densities w that do not satisfy the Smirnov property. It suffices to demon-
strate this in dimension n = 2, using the domain U = R2. The following example is
constructed in such a way that it violates any of the sufficient conditions formulated
in the previous section to guarantee the Smirnov property (cf. Remark 4 below). First,
w1w2/w ̸∈ L∞; thus, Proposition 2 does not apply. Second, w is not the finite sum of
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product densities (cf. Proposition 1, which demonstrates that the Smirnov robust is not
robust under taking limits).

Let q > 1 and w0 : R2 → R be a strictly positive “background" density, and two
functions f (x), g(y) that are piecewise constant on the sets [i, i + 1), where i ≥ 1, satisfying
further f , g ∈ Lq(w0), for which f , g ∈ L1(w0). For the functions’ values, we use the
notation fi := f (i) and gi := g(i).

Let (θi)
∞
i=1 be a sequence of positive numbers summing to one such that

∞

∑
i=1

| fi|qθi =
∞

∑
i=1

|gi|qθi = ∞. (17)

In addition, assume
∞

∑
i=1

| fi|θi < ∞,
∞

∑
i=1

|gi|θi < ∞. (18)

We further assume that
n

∑
i=1

| fi + gi|qθi < ∞. (19)

(This can, e.g., be achieved by setting fi = −gi for any i ≥ 1). Then, for some α ∈ (0, 1), the
function w, defined by

w(x, y) := αw0(x, y) + (1 − α)
∞

∑
i=1

θi1[i,i+1)(x)1[i,i+1)(y) (20)

is a strictly positive density on U. By Equation (18), f , g ∈ L1(w), and due to (19),∫
| f (x) + g(y)|qw(x, y)dxdy

=
∫

| f (x) + g(y)|qw0(x, y)dxdy +
∞

∑
i=1

θi| fi + gi|q < ∞,

but due to (17), f , g /∈ Lq(w).

Remark 4.

• This counterexample is constructed such that most of the mass of w is concentrated around the
diagonal, thereby mimicking strong dependence. The addition of the background density w0
makes the example density strictly positive–which is a standing assumption of the paper. The
latter, in turn, is imposed to keep likelihood ratios, such as (14) or (16), well defined.

• The density w violates any of the sufficient conditions formulated in the previous section
to guarantee the Smirnov property. First, w is not the finite sum of product densities (cf.
Proposition 1), which demonstrates that the Smirnov robust is not robust under taking limits.
In addition, the likelihood ratio w1w2/w ̸∈ L∞; thus, Proposition 2 does not apply.

• The counterexample suggests the choice of f = −g, which implies that f (x) + g(y) cannot
be non-negative. In financial applications, where the sum is related to the stochastic discount
factor (cf. Equation (10) above, as well as [10], Figure EC.2 and Section EC.5.2), negative
signs lead to negative prices of certain, typically not traded, basket options. On the other hand,
if f , g ≥ 0, then such a counterexample does not exist. In fact, since for any q > 1, we have by
Jensen’s inequality,

f q(x) + gq(y) ≤ ( f (x) + g(y))q

and thus f (x) + g(y) ∈ Lq(w) implies f , g ∈ Lq(w), which conflicts with assumption (17),
or (19) cannot be satisfied.
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3. Main Results
3.1. Theorem and Proof

Theorem 1. Let p > 1 and assume that w satisfies (14). If g ∈ Lp(w) is such that gi ∈ Lp(w)
for 1 ≤ i ≤ n, then it satisfies the bound∫

|g(ξ)|pw(ξ)dξ ≥
∫

|Φ(ξ)|
p

p−1 w(ξ)dξ, (21)

where

Φ(ξ) :=
1
n

n

∑
i=1

Φi(ξi)

and Φi are the solutions of the system of integral Equations (11) and (12).
If w satisfies the Smirnov property, then the solutions are unique and equality holds in (21) if

and only if

g(ξ) = sign
(
Φ(ξ)

)∣∣Φ(ξ)
∣∣ 1

p−1 . (22)

Proof. Note that it is not obvious (but can be proved, under extra assumptions on g) that
gi :=

∫
g(ξ)w(ξ)dξc

i ∈ Lp(w) for 1 ≤ i ≤ n; hence, we have assumed it. For the proof, we
follow the lines of the corresponding proof of ([18], Theorem 2.5), making the appropriate
adaptions, especially concerning the inclusion of weights and references to the relevant
adaption made in the present paper for dealing with the non-Hilbertian cases.

By assumption, the set

M :=
{

h ∈ Lp
∣∣∣ ∫ h(ξ)w(ξ)dξc

i = gi(ξi), 1 ≤ i ≤ n
}

is well defined, and it is non-empty because g ∈ M. The set is convex, by construction. To
show that it is closed, let hn ∈ M and limn→∞ hn = h in Lp. Then, the sequence (hn)n≥1 is
uniformly integrable; hence, by Vitali’s convergence theorem, ξi- almost everywhere,∫

h(ξ)w(ξ)dξc
i =

∫
lim

n→∞
hn(ξ)w(ξ)dξc

i = lim
n→∞

∫
hn(ξ)w(ξ)dξc = gi(ξi),

which proves that h ∈ M, as M is a closed, convex, and non-empty set. Denote by h∗ the
unique element in M of smallest norm. (In a strictly convex and reflexive Banach space,
any non-empty, closed convex set has an element of smallest norm, see [1], Corollary 5.1.19).
We claim that h∗ = g, where g is defined in (22). To this end, introduce the function space

N :=
{

ϕ ∈ Lp
∣∣∣ ∫ ϕ(ξ)w(ξ)dξc

i ≡ 0, 1 ≤ i ≤ n
}

, (23)

which is closed also (set g = 0 in the definition of M, in which case M = N , and use the
fact that M is closed, as is proved above). By the minimality of h∗, it follows that for any
ε > 0 and any ϕ ∈ N

∥h∗ ± εϕ∥p
p − ∥h∗∥p

p ≥ 0, (24)

and therefore, by Lemma 1,∫
sign(h∗(ξ))|h∗(ξ)|p−1ϕ(ξ)w(ξ)dξ = 0, ϕ ∈ N . (25)

(Note that
|h∗|p−1 ∈ Lq(w), (26)

where q = p
p−1 ; hence, the above pairing is finite, by Hölder’s inequality). Corollary 1 yields

sign(h∗(ξ))|h∗(ξ)|p−1 = Φ(ξ), where Φ(ξ) :=
1
n

n

∑
i=1

Φi(ξi),
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with measurable functions

Φi(ξi) ∈ L1(w), 1 ≤ i ≤ n, (27)

each depending on one variable ξi only. Because sign(h∗) = sign(Φ(ξ)), it follows that

h∗(ξ1, . . . , ξn) = sign(Φ(ξ))
∣∣Φ(ξ)

∣∣ 1
p−1 (28)

and Φ solves the nonlinear integral Equation (11) for 1 ≤ i ≤ n. As these equations
involve the sum Φ only, we can satisfy the extra constraints (12), by replacing Φi by
Φi −

∫
Φi(ξi)wi(ξi)dξi (2 ≤ i ≤ n), if necessary.

It remains to show the uniqueness. Assume, in addition, that w satisfies the Smirnov
property, as defined in Definition 1. Then, due to (26) (which implies that Φ ∈ Lq(w))
and (27), we infer from the Smirnov property that Φi ∈ Lq(w) for 1 ≤ i ≤ n. As-
sume that, in addition to Φ, the function Ψ(ξ) := 1

n ∑n
i=1 Ψi(ξi) also solves (11)–(12).

By Corollary 1, the function h := sign(Ψ) · |Ψ|
1

p−1 is orthogonal to N as defined in (23).
Furthermore, by (11), h − h∗ ∈ N ; hence, by the definition of orthogonality, we find
that ∥h∥p ≤ ∥h∗∥p. In view of (24), it follows that h = h∗, and Ψ = Φ. As Φ(ξ) =
1
n ∑n

i=1 Φi(ξi) =
1
n ∑n

i=1 Ψi(ξi) =: Ψ(ξ) almost everywhere, the extra constraints given by
(12) yield, upon integrating nΦ = nΨ with respect to wi(ξ1)dξ1, that Φ1(ξ1) = Ψ1(ξ1) w1
almost everywhere (as the rest of the integrals vanish). Applying the constraint for i = 2, it
follows that∫

Φ1(ξ1)w1(ξ1)dξ1 + Φ2(ξ2) + 0 =
∫

Ψ1(ξ1)w1(ξ1)dξ1 + Ψ2(ξ2) + 0

=
∫

Φ1(ξ1)w1(ξ1)dξ1 + Ψ2(ξ2),

from which it follows that Φ2(ξ2) = Ψ2(ξ2) w2 almost everywhere. Continuing similarly
for 3 ≤ i ≤ n, it follows that Φi = Ψi wi almost everywhere for 3 ≤ i ≤ n.

3.2. A Counterexample Concerning Uniqueness

Using the density w in Equation (20), we can see that, if the conditions in Theorem 1
are violated, uniqueness for the integral equations fails. To keep the example simple, we
consider only the Hilbertian case, that is, p = 2.

The weight w in Section 2.6 does not satisfy the Smirnov property. Let us use fi = −gi,
for all i ≥ 1. Then, f (x) = ∑∞

i=1 fi1[i,i+1)(x) = −g(x), and thus f (x) + g(y) ∈ L2(w). Then,
for appropriate choices of fi, i ≥ 1, f , g ∈ L1(w), but f , g /∈ L2(w).

Let us take the extreme case α = 0 in (20), which is excluded in Section 2.6. In this case,
w is supported around the diagonal and vanishes away from it. Studying uniqueness, we
assume that the marginals g1 = g2 = 0. Then, the integral Equations (11) and (12) are linear

f (x)wX(x) +
∫

g(y)w(x, y)dy = 0, (29)

g(y)wY(y) +
∫

f (x)w(x, y)dx = 0, (30)∫
g(y)wY(y)dy = 0. (31)

Note that f = g = 0 satisfies these equations. However, non-trivial solutions can also
be constructed, as (31) is easy to satisfy, for instance, if one sets f1 := −∑∞

i=2 fiθi
θ1

; then,

∫
g(y)wY(y)dy = −

∞

∑
i=1

fiθi = 0.
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Due to symmetry of w and f = −g, Equations (29) and (30) are collinear. Furthermore, for
any k ≥ 1 and x ∈ [k, k + 1), we have f (x) = fk, and w(x, y) = θk1[k,k+1)(y). Therefore,
(29) becomes

fkθk −
∫ ( ∞

∑
j=1

f j1[j,j+1](y)

)
θk1[k,k+1)(y)dy = fkθk −

∫ k+1

k
fkθkdy = 0.

In this counterexample, the condition (14) is violated, as the integral
∫

w2
Xw2

Y/w is
infinite, because the denominator w vanishes away from the “diagonal”

∞⋃
k=1

[k, k + 1)× [k, k + 1) ⊂ R2,

while the product wX × wY is strictly positive on [1, ∞)× [1, ∞).

3.3. Mixture Models

Mixture densities, as discussed in [22], serve as a powerful tool in various applications
for modeling complex dependencies by combining simpler, well-understood components.
By Proposition 1, certain mixture densities also satisfy the Smirnov property, namely those
that are mixtures (that is, sums) of product densities, where each factor depends on one
variable only (in the following, we abbreviate these as “one-mixtures”). Even though each
summand in such a mixture represents the density of n, independent random variables,
mixing does not imply the same. In particular, such mixing allows one to model non-zero
correlation. This special feature of one-mixtures in the L2 context of this paper turns the
(linear) integral equations into a system of linear equations, which are particularly easy to
treat. (The general case of mixture distributions, without reference to the Smirnov property,
was introduced by [10], but was not explored in depth. Since their constraints and mixture
models differ slightly from ours, the linear equations also exhibit some differences. Most
notably, [10] does not demonstrate that the system of 2n equations in 2n unknowns has
maximal rank, and thus they do not establish the unique solvability of the system).

As an example, we mix k bivariate densities wi
X(x)wi

Y(y). Note that while it is un-
known whether the Smirnov property holds for the any bivariate density, not even for
normal ones (cf. Remark 4), we have this property for one-mixtures due to Proposition 1.
With weights αi ∈ (0, 1), the mixture density takes the form

w(x, y) =
k

∑
i=1

αiwi
X(x)wi

Y(y),

where ∑k
i=1 αi = 1, which normalises the weight w to having unit mass. Thus, the marginals

of w are given by

wX(x) =
k

∑
i=1

αiwi
X(x), wY(y) =

k

∑
i=1

αiwi
Y(y).

An inspection of the integral Equations (4) and (5) reveals that the element of minimal
norm is of the form F(x)+G(y)

2 , where

F(x) =
2gX(x)− ∑k

i=1 αici
Ywi

X(x)
wX(x)

, ci
Y :=

∫ ∞

−∞
G(y)wi

Y(y)dy (32)

and, quite similarly,

G(y) =
2gY(y)− ∑k

i=1 αici
Xwi

Y(y)
wY(y)

, ci
X :=

∫ ∞

−∞
F(x)wi

X(y)dx. (33)
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This appears to be a recursive problem, but we actually have reduced the problem to
finding the 2k constants ci

X and ci
Y (1 ≤ i ≤ k). Plugging the ansatzes for F, G from the left

sides of (32) and (33) back into the integral Equations (4)–(6) yields the linear equations
(note that all the integrals are finite, because

∫ ∞

−∞

wi
Y(y)w

j
Y(y)

wY(y)
dy ≤

∫ ∞

−∞

1
2
(wi

Y(y))
2 + (wj

Y(y))
2

wY(y)
dt

≤
∫ ∞

−∞

1
2αi wi

Y(y)dy +
1

2αj wj
Y(y)dy =

1
2αi +

1
2αj

and ∫ ∞

−∞

gY(y)wi
Y(y)

wY(y)
dy ≤ 1

αi

∫ ∞

−∞
gY(y)dy =

1
αi .

(the rest of the integrals are estimated similarly)):

ci
Y +

k

∑
j=1

αjcj
X

∫ ∞

−∞

wi
Y(y)w

j
Y(y)

wY(y)
dy =

∫ ∞

−∞

2gY(y)wi
Y(y)

wY(y)
dy, 1 ≤ i ≤ k, (34)

ci
X +

k

∑
j=1

αjcj
Y

∫ ∞

−∞

wi
X(x)wj

X(x)
wX(x)

dx =
∫ ∞

−∞

2gX(x)wi
X(x)

wX(x)
dx, 1 ≤ i ≤ k, (35)

k

∑
i=1

αici
X = 2. (36)

These are 2k + 1 equations in 2k unknowns, but the first 2k equations are not linearly
independent, because the sum of equations 1 to k is equal to the sum of equations k + 1 to
2k. In view of the second part of Theorem 1, which guarantees uniquees of the equations,
we may strike one of the first 2k equations to obtain a system of maximal rank.

For a concrete example, let us sample from a bivariate normal distribution with zero
mean, unit variances, and correlation parameter ρ > 0, that is a normal distribution on R2

with parameters µ = (0, 0)⊤, and variance-covariance matrix

Σ =

(
1 ρ
ρ 1

)
.

We obtain parameter estimates for a normal mixture model with two components (k = 2),
each with means (µi

X, µi
Y) and diagonal covariances Σi = diag(σi

X, σi
Y), for 1 ≤ i ≤ k

(cf. Figure 1). The fact that we only know that normal mixture distributions with diagonal
covariances satisfy the Smirnov property (but not of correlated ones, cf. Remark 4) works
to our advantage here, because assuming diagonal covariance avoids overfitting. We have
also experimented with the number of components, only realizing that overfitting occurred
for three or more mixing densities, which suggested keeping k = 2.

The estimation of Figure 1 suggests that α = 1/2, µ1
X = µ1

Y = −a < 0, and
µ2

X = µ2
Y = a, and Σ1 = Σ2 = diag(a2, a2). This implies that

wY(y) =
1

2b
√

2π
e−

(a+y)2

2a2

(
1 + e

2y
a2

)
, x ∈ R

and, by symmetry,
wX(x) = wY(x), x ∈ R.
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We thus get the analytic expressions

κ1 :=
∫ ∞

−∞

w1
Y(y)w

2
Y(y)

wY(y)
dy =

∫ ∞

−∞

w1
X(x)w2

X(x)
wX(x)

dx =
∫ ∞

−∞

√
2
π

e−
(a−x)2

2a2 dx

a(1 + e
2x
a )

and

κ2 :=
∫ ∞

−∞

(w1
Y(y))

2

wY(y)
dy =

∫ ∞

−∞

(w1
X(x))2

wX(x)
dx =

∫ ∞

−∞

√
2
π

e−
(a+x)2

2a2 dx

a(1 + e
2x
a )

.

(For example, if a = 0.65, we get κ1 ≈ 0.4496 and κ2 ≈ 1.5504). Assuming standard normal
marginals gX, gY, we further obtain (The result is actually exact, because the integrand,
which is of the form

1√
π

e(a−x)x
1 + eax ,

where a > 0, is a density itself).

∫ ∞

−∞

gX(x)wi
X(x)

wX(x)
dx =

∫ ∞

−∞

gY(y)wi
Y(y)

wY(y)
dy = 1.

Thus, the five Equations (34)–(36) take the form

c1
Y +

κ2

2
c1

X +
κ1

2
c2

X = 2,

c2
Y +

κ1

2
c1

X +
κ2

2
c2

X = 2,

c1
X +

κ2

2
c1

Y +
κ1

2
c2

Y = 2,

c2
X +

κ1

2
c1

Y +
κ2

2
c2

Y = 2,

c1
X + c2

X = 4.

Since κ1 + κ2 = 2, one of the first four equations is redundant, and thus can be stricken out.
The unique solution of this system (which is of maximal rank, as the determinant of the
coefficient matrix is given by 1 − (κ1 − κ2)

2/4, which must be non-zero because κ1,2 ̸= 0
and κ1 + κ2 = 2) is given by

c1
X = c2

X = 2,

and
c1

Y = c2
Y = 0.

Thus, the solution is

F(x) + G(y)
2

=
gX(x)
wX(x)

+
gY(y)−

w1
Y(y)+w2

Y(y)
2

wY(y)
=

gX(x)
wX(x)

+
gY(y)
wY(y)

− 1.

Note that, despite the weight being a non-trivial mixture distribution, the solution is of
the same functional form as if w were a product density (that is, of the form w(x, y) =
wX(x)wY(y), where the Equations (4)–(6) immediately provide that solution).
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Figure 1. This 2D contour plot depicts the fit of a Gaussian mixture model to a sample of size 1000
from a correlated bivariate normal distribution with zero means, unit variances, and correlation
ρ = 0.5. The fitted normal mixture is comprised of two normal densities, each with zero correla-
tion. Their estimated weights αi are essentially the same, with the first one α1 = 0.498582. The
other parameter estimates are µ1 = (−0.64,−0.62)⊤, µ2 = (0.62, 0.62), Σ1 = diag(0.62, 0.62), and
Σ1 = diag(0.61, 0.64).

4. Conclusions

In this paper, we have examined a key characteristic of multivariate weights—the
Smirnov property—which plays a crucial role in identifying sharp lower p-norm estimates
for Lebesgue-measurable functions subject to specific marginal constraints (11). These con-
straints imply that minimal solutions take a specific functional form: powers of arithmetic
averages of functions, each depending on a single univariate argument (see Equation (10)
and Theorem 1). This formulation enables us to rewrite the problem as a system of (non-
)linear integral equations, subject to constraints (11)–(12). The unique solvability of these
equations is ensured by the Smirnov property. Several important questions for future
research emerge from this work:

As a consequence of Proposition 1, any weight w can be approximated either by
discrete distributions with compact support (see Remark 2) or by mixture models (Section 2),
in such a way that the approximating weight satisfies the Smirnov property. However,
some well-known weights, such as the bivariate normal density (cf. Remark 4), which
are frequently used in modeling, do not satisfy the conditions of Proposition 1 or the
bound in (16). Consequently, it is currently unknown whether these weights satisfy the
Smirnov property or allow for the unique solvability of the integral equations. To deepen
the understanding of this issue, we provide a counterexample in Section 2.6 that violates
the Smirnov property, as well as another counterexample in Section 3.2 showing that
uniqueness may fail if the integrability condition of Theorem 1 is not met.

For the Hilbertian case, where p = 2, this paper addresses issues related to identifying
the minimal stochastic discount factor (SDF), a topic that has been extensively studied
by [10] in the context of options portfolio selection using a mean-variance criterion. We
establish that this SDF is the unique solution of the associated integral equations, provided
the Smirnov property holds (thus extending the results of ([10], Theorem 1 (iii), with
Theorem 1)). In this framework, the marginal constraints are determined by observed
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option prices on a single underlying asset. Since only a finite number of options are
traded in practice, one could directly model the problem using discrete distributions, which
inherently satisfy the Smirnov property (see Remark 2). Consequently, a minimal SDF
can be uniquely identified in this discrete case. However, when continuous distributions
are employed to model dependence structures, identifying the correct solution becomes
more challenging, as it is unclear whether the Smirnov property holds. Typically, these
equations are solved numerically, with each discretisation yielding a unique solution. An
open problem remains as to whether successive refinements of the discretisation meshes
could lead to a well-defined and correct solution in the limit as the mesh size tends to zero.

A comparable duality theory for investors aiming to maximise the power utility of
terminal wealth leads to problems in weighted Lp spaces, where 0 < p < 1, and thus in
non-convex Banach spaces. Consequently, the “orthogonality” Lemma 1 does not apply in
this context, leaving the analysis of this important problem entirely open. The ramifications
of this will be addressed in future research.

Another area for future research involves the optimal selection of options with not only
many strikes, but different maturities. Such a problem results in more complicated systems
of integral equations, because not only does one density need to be fitted to marginals, but
entire finite-dimensional distributions. A related problem, though with less conventional
objectives, was addressed by [19], who aimed to identify multivariate transition densities
of a Markov chain.
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