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Abstract: Large Language Models (LLMs) excel in fields such as natural language understand-
ing, generation, complex reasoning, and biomedicine. With advancements in materials science,
traditional manual annotation methods for phase diagrams have become inadequate due to their
time-consuming nature and limitations in updating thermodynamic databases. To overcome these
challenges, we propose a framework based on instruction tuning, utilizing LLMs for automated end-
to-end annotation of phase diagrams. High-quality phase diagram images and expert descriptions
are collected from handbooks and then preprocessed to correct errors, remove redundancies, and
enhance information. These preprocessed data form a golden dataset, from which a subset are used
to train LLMs through hierarchical sampling. The fine-tuned LLM is then tested for automated phase
diagram annotation. Results show that the fine-tuned model achieves a cosine similarity of 0.8737,
improving phase diagram comprehension accuracy by 7% compared to untuned LLMs. To the best of
our knowledge, this is the first paper to propose using LLMs for the automated annotation of phase
diagrams, replacing traditional manual annotation methods and significantly enhancing efficiency
and accuracy.

Keywords: large language models; material science; phase diagram; prompt engineering; benchmark
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1. Introduction

Large Language Models (LLMs) are advanced artificial intelligence (AI) technologies
designed to understand and generate natural language [1,2]. Recently, we have witnessed a
surge in the development of LLMs, including OpenAI’s GPT-3 [3] and GPT-4 [4], Google’s
Gemini [5], and Meta’s LLaMA-1 [6] and LLaMA-2 [7]. These models excel in a variety of
downstream tasks, such as natural language understanding (NLU) [8,9], natural language
generation (NLG) [10,11], complex reasoning [12,13], biomedical tasks [14,15] and code
generation [16,17]. Phase diagrams are critical tools in materials science for understanding
the performance of materials under different conditions [18]. Currently, the annotation
of phase diagrams relies mainly on manual effort. Phase diagram images are generated
using thermodynamic calculation software such as Thermo-Calc [19] and Pandat [20],
after which domain experts describe them using text based on their understanding of the
diagrams. Eventually, these phase diagram images and textual descriptions are compiled
into reference books [21] for researchers to consult and use. With the rapid development of
materials science, traditional manual annotation methods can no longer meet the needs of
new material development. According to current studies, no literature or research has yet
been published on the use of LLMs to assist in the annotation of material phase diagrams.
Therefore, the efficient recognition and annotation of material phase diagrams using LLMs
is expected to become a future research trend.
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Common manual phase diagram annotation methods have the following disadvan-
tages. (i) These methods consume significant human and material resources and require
highly skilled experts proficient in computational thermodynamics methods and theory,
as well as rich experimental experience [22]. (ii) Manual annotation cannot achieve batch
annotation of phase diagrams and is limited to focusing on commonly used systems.
(iii) Manual annotation methods cannot ensure timeliness; the content of the annotation
is limited by the current version of the thermodynamic database. After the database is
updated, the phase diagrams change accordingly. If errors in the phase diagrams are not
corrected in time, it can mislead users and impact the guiding role of phase diagrams in
production practices [23–26].

To address these issues, users of phase diagrams often prefer to consult reference
books published by authoritative or well-known research teams in the field of compu-
tational thermodynamics [27]. These publishing institutions regularly collaborate with
researchers to check and revise errors and omissions in the reference books every few
years to ensure their quality. However, frequent updates and annotations of reference
books are very time-consuming and labor-intensive. Thus, developing a new method of
phase diagram annotation that overcomes the shortcomings of manual annotation is of
significant importance.

Models such as OpenAI’s GPT-3 [3], GPT-4 [4], Google’s Gemini [5], and Meta’s
LLaMA-1 [6] and LLaMA-2 [7] demonstrate significant advancements in LLMs. The pre-
training of these LLMs requires extensive computational resources, making the fine-tuning
of pretrained models for specialized tasks, such as phase diagram annotation, a more prac-
tical and cost-effective strategy [28]. Furthermore, multimodal learning is a critical factor
in these applications. Studies indicate that GPT-4 surpasses other LLMs across several
key metrics, including generation quality, semantic comprehension [29], contextual coher-
ence, and reasoning [30]. Its instruction-based fine-tuning exhibits substantial potential for
enhancing phase diagram annotation.

This paper proposes a prompting engineering framework based on instruction fine-
tuning to achieve end-to-end automated annotation of phase diagrams by LLMs, thereby
alleviating the time-consuming and timeliness issues of annotation. First, we obtain high-
quality phase diagram images and their corresponding expert descriptions from phase
diagram reference books [31]. Secondly, we preprocess these expert descriptions, correcting
errors, removing redundant content, and supplementing missing information [32]. Thirdly,
these 13 sets of phase diagram images and expert descriptions are integrated into a golden
dataset for the phase diagram comprehension task. Through a carefully designed instruc-
tion fine-tuning framework, we use hierarchical sampling to sample some phase diagrams
and descriptions, forming a training set for fine-tuning the LLM. Numerous experiments
have demonstrated that our approach achieves the best performance on the phase diagram
comprehension task.

The main contributions of this paper are as follows:

1. Given that manual annotation of phase diagrams is both time-consuming and labor-
intensive, and cannot be updated in real time, we explored an LLM-based automated
annotation method that addresses the problem of real-time updates.

2. To the best of our knowledge, this is the first paper to propose the use of LLMs for the
automated annotation of phase diagrams, replacing traditional manual annotation
methods. In this paper, we employ an instruction fine-tuning framework based
on hierarchical sampling, which efficiently fine-tunes the LLM to achieve higher
precision in end-to-end phase diagram annotation compared to an LLM without
instruction fine-tuning.

3. Through extensive experiments, the proposed instruction fine-tuning framework
achieves the best results in the phase diagram comprehension task, with the average
cosine similarity in the test set reaching 0.8737. Compared to the LLM without tuning,
the performance of the fine-tuned LLM improved by 7%. The contributions described
above are illustrated in Figure 1.
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The rest of the paper is divided into four sections: Section 2 introduces related work on
LLMs, prompt tuning, and material phase diagrams; Section 3 introduces the golden data
for the phase diagram comprehension task and the hierarchical sampling-based prompting
engineering process; Section 4 details the experimental process, including hardware and
software setups, benchmark testing, main experimental results, and ablation studies; and
Section 5 provides the conclusion.

Figure 1. This figure highlights the key stages of processing phase diagrams using LLMs as described
in this paper. The top section of the figure illustrates the workflow, where a phase diagram is input
into two models: an un-tuned LLM and an instruction-tuned LLM. The comparison of outputs shows
that the instruction-tuned LLM provides more accurate and specialized results. The bar chart below
displays the cosine similarity metrics for both models on the phase diagram comprehension task,
demonstrating that the instruction-tuned LLM outperforms the un-tuned LLM in task performance.

2. Related Work and Motivation
2.1. Large Language Models

Large Language Models (LLMs) represent cutting-edge AI technologies aimed at
understanding and generating human language. In recent years, LLMs have undergone
rapid evolution, particularly with OpenAI’s introduction of GPT-3 [3] and GPT-4 [4].
OpenAI has transitioned from GPT-3 to GPT-4, a multimodal model that processes both
image and text inputs, thereby enhancing natural language processing capabilities. GPT-4 is
fine-tuned through pre-trained models and Reinforcement Learning with Human Feedback
(RLHF) [33], achieving human-level performance in various professional and academic
benchmark tests. However, significant effort is still required to adapt GPT-4 for specific
domains such as materials science.

Google’s Gemini multimodal model family [5] addresses the challenges of developing
universal AI models through cross-modal joint pretraining and optimization, achieving
significant benchmarks, including surpassing human experts in the Massive Multitask
Language Understanding (MMLU) test [34]. However, research highlights limitations
in reliability and reasoning, necessitating further investigation to enhance accuracy and
authenticity. Open-source models such as Meta’s LLaMA-1 [6] and LLaMA-2 [7], trained
on public datasets, have set new performance standards. Notably, the 13-billion-parameter
LLaMA model outperforms GPT-3 in most benchmarks. Models from LLaMA series have
shown the effectiveness of public datasets in training high-performance models, advancing
LLM research. LLaMA-2, designed for conversational scenarios, has improved multiple
metrics through Safety Fine-Tuning (SFT) and RLHF, yet it remains limited in special-
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ized domains such as materials science. These models excel in tasks such as NLU [8,9],
NLG [10,11], complex reasoning [12,13], and code generation [16,17], which can be at-
tributed to their extensive and diverse training data.

2.2. Prompt Tuning

Prompt engineering [35] aims at designing effective inputs, known as prompts, steer-
ing LLMs toward generating desired outputs. This method enhances inference efficiency by
tailoring input prompts or queries to match the specific capabilities and nuances of LLMs.
In straightforward tasks like semantic classification, prompt engineering can substitute for
fine-tuning to produce high-precision outputs [36]. Few-shot prompting [28] involves sup-
plying a small number of examples to an LLM to help it understand the task at hand. These
examples, chosen from the training corpus due to their resemblance to the test cases, enable
the LLM to make accurate predictions [37]. This method is a cost-effective strategy allowing
LLMs to undertake various tasks without additional training or fine-tuning. The process of
demonstration selection aims to identify high-quality examples for few-shot prompting.
Typically, only a handful of well-chosen examples are needed to create a concise and clear
prompt, facilitating efficient inference.

Demonstration selection techniques are categorized into unsupervised and supervised
methods. Unsupervised methods use predefined similarity functions, such as L2 distance,
cosine distance, and Minimum Description Length (MDL) [38], to identify relevant ex-
amples from training data. The KATE method (kNN-augmented Example Selection) by
Liu et al. [39] enhances GPT-3’s contextual learning by retrieving semantically similar exam-
ples, reducing performance variability, and improving tasks such as table-to-text generation
and open-domain question answering. KATE boosts performance without fine-tuning
GPT-3, making it effective for long-text generation, although GPT-3 still lags behind the fine-
tuned T5 model [40] in sentiment analysis. Su et al. [41] advanced KATE with a two-step
framework (Vote-K), optimizing contextual learning via selective annotation and prompt
retrieval, enhancing performance and reducing annotation costs compared to random
selection. Supervised methods train a domain-specific retriever for demonstration selection.
Rubin et al. [42] introduces Efficient Prompt Retrieval (EPR), improving contextual learning
by retrieving relevant training examples, although it sometimes underperforms compared
to fine-tuned models. This underscores the need for further enhancements. Li et al. [43]
presents the Unified Demonstration Retriever (UDR), a multi-task retriever trained through
list-wise ranking and iterative mining, significantly improving contextual learning. UDR
demonstrates strong performance and transferability across language models and datasets,
but it lacks transparency. Generally, supervised methods yield better results than unsuper-
vised ones, but they require frequent adjustments to handle out-of-domain data, reducing
inference efficiency.

2.3. Phase Diagrams

Phase diagrams are essential tools in materials science, offering insights into stable
phases and phase transitions across varying temperatures, pressures, and compositions [18].
These diagrams are critical for deciphering the internal structure of materials and forecast-
ing their performance [44]. For example, the Fe-C phase diagram (Figure 2) [45] assists
engineers in selecting optimal alloy compositions and thermal treatments to achieve desired
microstructures and mechanical properties [21]. Under extreme conditions, such as high
temperatures or pressures, materials may experience phase transitions that significantly
impact their mechanical properties and longevity [46]. Phase diagrams elucidate these
transitions, thereby expanding the potential applications of materials. Furthermore, phase
diagrams play a pivotal role in both educational and research contexts. In materials science
education, they not only convey fundamental thermodynamic principles, but also foster
an intuitive understanding among students, preparing them to design experiments and
analyze data.
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Figure 2. Fe-C phase diagram [45]. The horizontal axis represents the mass fraction of carbon
in iron, while the vertical axis corresponds to temperature. By selecting the appropriate alloy
composition and temperature, the microstructure and properties of the alloy can be tailored to meet
specific requirements.

2.4. Motivation

Materials science encompasses a vast range of research areas, and the Materials
Genome Initiative (MGI) provides a strategic framework to streamline these efforts [47].
The MGI aims to reduce both the time and cost of developing new materials by 50%.
A critical tool in this process is phase diagram calculations, which help visualize simulation
outcomes; however, non-experts often require assistance from specialists to interpret these
results. This challenge of communication also extends to other simulation techniques, such
as first-principles calculations [48] and molecular dynamics [49]. AI, particularly LLMs,
offers potential to aid in interpreting these complex outputs, thus bridging the gap between
simulations and practical applications [4]. This paper explores the use of LLMs to automate
phase diagram annotations, thereby enhancing the integration between materials simula-
tions and research development. Due to the resource-intensive nature of retraining models,
we employed a prompt-engineering approach to fine-tune LLMs [28]. A key challenge was
acquiring expert-validated manual annotations, especially given the limited dataset. By ap-
plying hierarchical sampling, we optimized the instruction fine-tuning process, addressing
common interdisciplinary research challenges that require collaboration between materials
scientists and AI specialists.

3. Methods
3.1. Production of Golden Data
3.1.1. Data Acquisition

The original dataset utilized in this study is sourced from the Phase Diagram Hand-
book, which contains numerous binary metal system phase diagrams, accompanied by
expert textual descriptions [31]. These diagrams provide critical information about the
phases present in various binary metal systems. In particular, we have compiled and
digitized 13 commonly used binary metal phase diagrams along with their correspond-
ing expert textual descriptions. Figure 3 provides an example of the Cr-Ni binary phase
diagram and the corresponding textual information from the reference source.
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Figure 3. Cr-Ni phase diagram and its textual description from reference book: “In the system,
an intermediate phase Ni2Cr exists, which forms in the solid state. The eutectic between (Ni) and
(Cr) crystallizes at 1345 °C with a Cr content of 56%. The solubility of Ni in (Cr) is about 32% (at)
at the eutectic temperature, about 10% (at) at 1000 °C, and about 2% (at) at 500 °C. The solubility of
Cr in (Ni) is about 50% (at) at the eutectic temperature and about 36% (at) at 700 °C. The ordering
phenomena in alloys near the composition of Ni2Cr have been studied in references. It has been
determined that the ordering temperature for the stoichiometric composition of Ni2Cr is 590 °C.
The homogeneity range of the compound Ni2Cr is 25% 36% (at) Cr. There is information on two types
of metastable phases. One phase, with a σ-CrFe type structure, occurs near the alloy composition of
70% (at) Cr. The second phase, found in vacuum-sprayed thin films, has a Cr3Si type structure and
occurs in compositions with over 70% (at) Cr”.

3.1.2. Data Preprocessing

After acquiring the phase diagrams and textual descriptions, we conducted an initial
review to ensure completeness and consistency. Certain phase diagrams, such as the Cr-Re
phase diagram (Figure 4), lacked important details. For instance, the σ phase compound is
not explicitly labeled on the diagram, although it should appear within the x-axis range
of 58–70 and below 2356 on the y-axis. To preserve the integrity of the original data, we
refrained from adding any markings that were not present in the source diagrams.

Figure 4. Phase diagram of Cr-Re system. The σ phase, which was not originally marked, has been
identified and highlighted in red.
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For the textual descriptions, we focused on extracting information directly relevant
to the diagrams. This includes phase compositions, stability regions (i.e., phases present
across various compositions and temperatures), and phase transformation reactions. Any
extraneous information, such as descriptions from external references, experimental results,
crystal structures, and lattice constants, was systematically excluded. Occasionally, specific
details such as phase transformation processes were omitted, as in the Cr-Ni phase diagram
(Figure 3), where only the name of the transformation (eutectic reaction) was provided.
In such instances, we manually supplemented the missing information.

3.1.3. Data Normalization

Following the preprocessing step, we revised and normalized the expert textual
descriptions to ensure clarity and uniformity. Each description was structured into two
main sections. For example, the revised textual description of the Cr-Ni phase diagram
(Figure 5) includes:

• Composition and Stability Regions of Phases: This section lists the phase names,
the melting points of the pure components, and the solubility ranges of the solid
solution phases;

• Phase Transformation Reactions: This section provides details of all phase trans-
formations in the diagram, including the transformation temperatures, points of
transformation, and reaction ranges.

By adhering to this standardized approach, we systematically reviewed and adjusted
each phase diagram and its corresponding textual description. Ultimately, we produced 13
high-quality datasets suitable for phase diagram comprehension tasks. All expert textual
descriptions were saved in TXT format to facilitate easy access and use.

Data Acquisition of Cr-Ni Phase Diagram

In the system, an intermediate phase Ni2Cr exists, which forms in 

the solid state. The eutectic between (Ni) and (Cr) crystallizes at 

1345°C with a Cr content of 56%. The solubility of Ni in (Cr) is 

about 32% (at) at the eutectic temperature, about 10% (at) at 

1000°C, and about 2% (at) at 500°C. The solubility of Cr in (Ni) is 

about 50% (at) at the eutectic temperature and about 36% (at) at 

700°C. The ordering phenomena in alloys near the composition of 

Ni2Cr have been studied in references. It has been determined that 

the ordering temperature for the stoichiometric composition of 

Ni2Cr is 590°C. The homogeneity range of the compound Ni2Cr is 

25%~36% (at) Cr.

There is information on two types of metastable phases. One phase, 

with a σ-CrFe type structure, occurs near the alloy composition of 

70% (at) Cr. The second phase, found in vacuum-sprayed thin films, 

has a Cr3Si type structure and occurs in compositions with over 

70% (at) Cr.

Data Normalization of Cr-Ni Phase Diagram

1. Composition and stable existence regions of phases:

In the Cr-Ni system, there is an intermediate phase, Ni2Cr. The 

system also includes a liquid phase, Ni-based solid solution (Ni), 

and Cr-based solid solution (Cr). At the eutectic temperature of 

1345°C, with a Cr content reaching 68%, Ni achieves its maximum 

solubility; at the same eutectic temperature of 1345°C, the 

solubility of Cr in (Ni) is about 50% (atomic percent). The melting 

point of pure Ni is 1455°C, and the melting point of pure Cr is 

1863°C.

2. Transition temperatures and sequences (2 items):

At 1345°C with a chromium content of 56%, the liquid phase (L) 

undergoes a eutectic reaction, solidifying into solid phases of 

nickel (Ni) and chromium (Cr). At a temperature of 590°C, an 

ordered phase, Ni2Cr, forms within the continuous solid solution 

(Ni,Cr).

Figure 5. Normalization of expert textual descriptions in the Cr-Ni system. The left side shows the
original textual description of the Cr-Ni phase diagram, while the right side presents the normalized
textual description.

3.1.4. Postprocessing of LLM’s Generation

Taking the Al-Co binary system as an example, suppose an image of an Al-Co phase
diagram is input into an LLM (ChatGPT-4.0) with appropriate instructions. For example: ‘I
will give you a phase diagram of the Al-Co binary system, give as detailed a description as
possible based on the phase diagram, your description should be professional and accurate’.
The LLM will provide comprehensive, accurate, and professional textual descriptions
based on its knowledge of materials science databases and image recognition capabilities,
as shown in Figure 6. LLM generation mainly consists of three parts. The first part is a
detailed description of the range and units of the axes; the second part is a description of the
content of the phase diagram; the third part is a summary of the phase diagram. We edit the
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original generation, retaining only the second part, removing the redundant descriptions
of the axes from the first part, and the summary descriptions from the last part. Ultimately,
the LLM’s textual descriptions for 13 phase diagrams are saved in TXT file format, ready to
be directly used to evaluate the performance on phase diagram comprehension tasks.

Figure 6. Textual description of the phase diagram of the Al-Co system by LLM. Output of LLM is
dividied into three parts: description of the range and units of the axes, description of the content of
the phase diagram, and summary of the phase diagram.

3.2. Workflow of Prompt Engineering

The ability of LLMs to interpret phase diagrams depends on domain-specific knowl-
edge in materials science and image recognition capabilities. Retraining an LLM for
material science applications is resource-intensive [28]. Therefore, this article adopts a more
cost-effective and efficient few-shot prompt engineering approach to fine-tune an LLM
for phase diagram comprehension tasks within the materials domain [28]. ChatGPT-4.0,
a powerful multimodal LLM, has inherent knowledge of materials science and strong
image recognition abilities [4]. In this study, the ChatGPT-4.0 API, provided by OpenAI, is
used to adapt the model for tasks involving phase diagram comprehension.

Specifically, we employ prompt tuning as a more efficient alternative to traditional
model retraining methods [35]. Unlike conventional retraining, which alters the model’s
underlying architecture, prompt tuning focuses on refining the input prompts given to the
model. This approach efficiently leverages the LLM’s pre-existing knowledge, enabling
faster adaptation for phase diagram interpretation in materials science. A key aspect of
prompt tuning in this study is the use of few-shot learning [36]. In this method, a limited
number of domain-specific examples, or ”shots”, are included in the prompt to guide the
model toward accurate comprehension of phase diagrams. These examples are carefully
chosen to improve the LLM’s ability to handle the complex relationships depicted in
the diagrams.

3.2.1. The Complexity of Phase Diagrams

Typically, outputs from LLMs that have not been fine-tuned on specific domain knowl-
edge bases do not meet the professional requirements of that domain, especially when
LLMs handle phase diagram comprehension tasks in the materials domain. The depth and
breadth of domain knowledge contained in the input phase diagrams vary. For common,
simple phase diagrams, LLMs can directly output high-quality textual descriptions from
their database; however, for rare, complex phase diagrams, LLMs need robust materials
science knowledge and strong reasoning abilities. Additionally, the image recognition
capabilities of LLMs are crucial for accurately recognizing phase diagrams.

The golden data constructed in this paper include 13 phase diagrams and their corre-
sponding expert textual descriptions. Based on the number of phase transition reactions,
these 13 phase diagrams can be divided into simple and complex systems, as shown in
Figure 7. Complex systems like Al-Co (Figure 7a) contain more information compared to
simple systems like Fe-V (Figure 7b). Since it is challenging to provide a specific metric
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to measure the information content of phase diagrams, we set a threshold (three in this
case) based on the number of phase transition reactions to distinguish between simple and
complex systems.

(a)Al-Co (b)Fe-V

Figure 7. Complex system Al-Co and simple system Fe-V: (a) Al-Co, with seven phase transformations.
A peritectic transformation occurs at 945 °C; at 1093 °C, a peritectic reaction takes place; another
peritectic reaction occurs at 1135 °C; at 1170 °C, yet another peritectic reaction occurs; at 655 °C,
an eutectic reaction occurs; at 1400 °C, an additional eutectic reaction takes place; and at 300 °C,
an eutectoid reaction is observed. (b) Fe-V, with one phase transformation. A solid-state phase
transformation occurs at 1219 °C.

To further enhance the LLM’s performance on phase diagram comprehension tasks,
a few-shot prompting engineering process is designed. This process does not require
additional training or fine-tuning of the LLM; it only needs a set of examples to guide
its understanding of the task. These examples are use hierarchical sampling, randomly
selecting from the simple and complex systems in the golden data.

The detailed process is shown in Figure 8. The golden data dataset contains 13 phase
diagram images; however, we do not use all 13 images as the test set. Instead, we perform
hierarchical sampling and select 3 images and their corresponding expert textual descriptions
to pre-train the LLM through instruction tuning. The trained LLM is then be directly used for
the comprehension tasks of the remaining 10 phase diagrams, and the LLM’s generations are
compared with the expert textual descriptions in the golden data to calculate task metrics.

Figure 8. Workflow of prompt tuning. Phase Diagrams: Phase diagram datasets are gathered
(as discussed in the previous Section 3). Hierarchical Sampling: Diagrams are sampled based on
complexity; subsets are used for training and testing the LLM. Instruction Tuning: The fine-tuned
model is then employed for automated phase diagram annotation.
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3.2.2. Hierarchical Sampling

In the process of selecting demonstration cases from the 13 phase diagrams (the “Hi-
erarchical sampling” stage), we do not randomly extract but use a hierarchical sampling
strategy. We first divide the 13 phase diagrams into collections of complex phase diagrams
systems (phase transition reactions > 3) and simple phase diagrams systems (phase tran-
sition reactions ≤ 3), as shown in Table 1. The first row lists the phase diagram names,
the second row lists the number of phase transition reactions contained in the phase dia-
grams, the third row indicates whether the number of phase transition reactions exceeds
the threshold of three, and the fourth row shows whether the phase diagram is classified
as complex or simple systems. For example, the first column shows that the Al-Co phase
diagram contains seven phase transition reactions, which is more than three; thus, it is
classified as a complex system. Then, following a 20% ratio, we randomly select one from
the complex system and two from the simple system. These selected phase diagram images
and expert textual descriptions are input into the LLM as demonstration cases. The trained
LLM is then applied to the phase diagram comprehension tasks on the remaining test set.

Table 1. Classification of complex and simple systems. We categorize the 13 phase diagrams
into simple systems (≤3 phase transitions, highlighted in yellow) and complex systems (>3 phase
transitions, highlighted in green).

System Al-Co Cr-Ru Cr-Ta Cr-Ti Fe-Ti Hf-Re Al-Ru Co-Cr Co-Fe Cr-Fe Cr-Ni Cr-Re Fe-V
Phase transformation numbers 7 5 4 5 4 5 3 3 3 3 2 2 1

thresholds >3 >3 >3 >3 >3 >3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
types complex complex complex complex complex complex simple simple simple simple simple simple simple

3.2.3. Prompt Tuning

In the “prompt tuning” stage, assuming the Co-Cr phase diagram and Cr-Fe phase
diagram are extracted from the simple system, and the Cr-Ti phase diagram from the
complex system, these three sets of data (phase diagrams + expert textual descriptions)
serve as demonstration examples for the tuning of the LLM, as shown in Figure 9.

Figure 9. Examples used in instruction tuning of the LLM. The original LLM undergoes instruction
tuning with three successive sets of golden data, resulting in a fine-tuned model that will be used for
subsequent tasks.

Subsequently, the Al-Co phase diagram (from the test set) is input into the trained
LLM. With the instructions unchanged, the output from the LLM shows significant im-
provement. As shown in Figure 10, the left side displays the textual description of the
Al-Co phase diagram by the LLM before instruction tuning, and the right side shows the
textual description after instruction tuning. The improved description exhibits noticeable
enhancements in organization, standardization, and accuracy.
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Figure 10. LLM’s generations for the Al-Co system before and after instruction tuning. (Left) Textual
description of the Al-Co phase diagram by the LLM before instruction tuning. (Right) Improved
description after instruction tuning, showing enhanced organization, standardization, and accuracy.

4. Experiments
4.1. Experimental Setup

The experimental design of this study was executed on the Windows operating system,
involving hardware configurations that included an Intel(R) Core(TM) i5-12500H 12th
Gen processor, 16.0 GB RAM, and NVIDIA GeForce RTX 3060 GPU, sourced from Intel
Corporation (Santa Clara, CA, USA) and NVIDIA Corporation (Santa Clara, CA, USA).
The software environment comprised Anaconda version 4.12.0, a Python 3.8 environment,
along with libraries such as torch 2.3.0, sentence-transformers 2.7.0, and scipy 1.10.1.
Additionally, all inference results from the LLM were obtained through the ChatGPT-4.0
API provided by OpenAI. The outputs of the LLM before and after instruction tuning were
used to calculate sentence embeddings using the Hugging Face open-source pre-trained
model ‘all-MiniLM-L6-v2’. These embeddings were then utilized to evaluate the LLM’s
performance on the phase diagram comprehension task.

4.2. Benchmark and Dataset

To thoroughly evaluate the effectiveness of the prompt tuning framework for phase
diagram comprehension, a structured benchmark was developed using hierarchical sam-
pling from the golden dataset. This dataset was used as the foundation for both training
and evaluating the LLM.

As described in Section 3.2.2, the dataset comprised both simple and complex phase
diagram systems. Specifically, two simple systems and one complex system were randomly
selected from the golden dataset to serve as domain-specific examples for prompt tuning
during LLM training. After the prompt-tuning, the performance of the fine-tuned LLM was
tested on 10 phase diagram systems not included in the training set. These systems form
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the benchmark for assessing the model’s comprehension of phase diagrams and evaluating
the improvements achieved through instruction tuning.

To measure the semantic similarity between LLM’s textual descriptions of phase
diagrams and the expert textual descriptions in the golden data, we employed three
metrics: cosine similarity, Euclidean distance, and Manhattan distance.

4.2.1. Cosine Similarity

Cosine similarity evaluates the similarity in direction between two non-zero vectors
by calculating the cosine of the angle between them. For two sentence vectors u and v,
the cosine similarity cos (θ) can be expressed as:

CosineSimilarity(u, v) =
u · v

∥ u ∥∥ v ∥ (1)

where u · v is the dot product of vectors u and v, and ∥ u ∥ and ∥ v ∥ are the Euclidean
norms of the vectors. The range of this measure is [−1, 1], with 1 indicating identical
directions, −1 indicating completely opposite directions, and 0 indicating orthogonality,
or no correlation.

4.2.2. Euclidean Distance

Euclidean distance, or the L2 norm, is the most intuitive distance metric, measuring
the straight-line distance between two points in multi-dimensional space. For two sentence
vectors u and v, the Euclidean distance is defined as:

EuclideanDistance(u, v) =

√
n

∑
i=1

(ui − vi)2 (2)

where ui and vi are the components of vectors u and v in the i-th dimension. This distance
metric is the square root of the sum of the squared differences between corresponding
dimensions of the vectors.

4.2.3. Manhattan Distance

Manhattan distance, also known as city block distance or the L1 norm, is a geomet-
ric metric that measures the distance between two points along the axes of a standard
coordinate system. For two sentence vectors u and v, the Manhattan distance is defined as:

ManhattanDistance(u, v) =
n

∑
i=1

|ui − vi| (3)

where ui and vi represents the absolute difference between the components of vectors u
and v in the i-th dimension.

4.3. Main Experimental Results
4.3.1. Performance of the LLM without Instruction Tuning

Keeping the instructions unchanged, each of the 13 phase diagrams is input into
the LLM, and the textual descriptions obtained are saved in TXT file format. The LLM’s
responses for each phase diagram are compared with the expert textual descriptions in
the golden data using cosine similarity, with the final results shown in Table 2. The first
row of the table lists the names of the phase diagrams, the second row classifies the system
complexity, with systems containing ≤3 phase transition reactions marked as simple
systems (highlighted in yellow) and those with >3 reactions marked as complex systems
(highlighted in green). The third row shows the cosine similarity metrics between the
traditional methods and the expert descriptions for each phase diagram, and the fourth row
shows the average metrics for complex and simple systems. The fifth row shows the cosine
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similarity metrics between the LLM’s generation and the expert descriptions for each phase
diagram, and the sixth row shows the average metrics for complex and simple systems.

Table 2. Metrics for phase diagram comprehension task for traditional methods and LLM without
instruction tuning. The table presents cosine similarity metrics for each phase diagram, along with
the average metrics for two sample categories.

System Al-Co Cr-Ru Cr-Ta Cr-Ti Fe-Ti Hf-Re Al-Ru Co-Cr Co-Fe Cr-Fe Cr-Ni Cr-Re Fe-V
types complex complex complex complex complex complex simple simple simple simple simple simple simple

Cosine Similarity (traditional methods) 0.6502 0.8319 0.8626 0.9052 0.8341 0.8263 0.8003 0.7706 0.7868 0.8409 0.8177 0.7524 0.7576
Mean Cosine Similarity (traditional methods) 0.8184 0.7895

Cosine Similarity (LLM’s generation without prompt tuning) 0.8178 0.8255 0.9 0.8511 0.8769 0.9028 0.7644 0.8281 0.7987 0.8382 0.8758 0.8591 0.7521
Mean Cosine Similarity (LLM) 0.8624 0.8166

Taking the Al-Co system as an example, this phase diagram is classified as complex.
When using traditional methods, such as outdated reference books for phase diagram
interpretation [31], the cosine similarity between the results obtained from traditional
methods and the golden data is 0.6502. The average cosine similarity for traditional
methods on complex systems is 0.8617, while for simple systems it is 0.8155. When the
phase diagram image is input into the LLM, the cosine similarity between the LLM’s output
and the golden data is 0.8178. The average cosine similarity for the LLM’s phase diagram
comprehension tasks is 0.8617 for complex systems and 0.8155 for simple systems.

Within the simple system, the LLM performs best with the Cr-Fe phase diagram,
achieving a cosine similarity of 0.8758 with the expert textual description, as shown in
Figure 11. This phase diagram contains only two simple solid phase transitions and is
composed of common elements, enabling the LLM to accurately identify and interpret
the composition of the phase diagram and provide professional descriptions based on its
materials knowledge database and strong image recognition capabilities.

Figure 11. Phase diagram of the Cr-Fe in simple systems. Cr-Fe features two simple solid phase
transitions and common elements, allowing the LLM to accurately interpret and describe it.

Among the complex systems, the LLM performs best with the Cr-Ru, Fe-Ti, and Cr-
Ti systems, achieving cosine similarities with expert textual descriptions of 0.9, 0.9028,
and 0.8769, respectively. As shown in Figure 12, the Cr-Ru and Cr-Ti systems each contain
five phase transition reactions, while the Fe-Ti system contains four reactions, mostly
common eutectic and eutectoid types of phase transitions. Overall, the LLM’s performance



Mathematics 2024, 12, 3141 14 of 19

on complex systems phase diagram comprehension tasks is better than those on simple
systems, indicating that the large model still lacks training for simple systems.

(a) Cr-Ru (b)Fe-Ti (c)Cr-Ti

Figure 12. Three phase diagrams in complex systems. Top-performing phase diagrams in complex
systems: (a) Cr-Ru, (b) Fe-Ti, and (c) Cr-Ti, with transition reactions of 5, 5, and 4, respectively.

4.3.2. Performance of the LLM with Instruction Tuning

To enhance the LLM’s capability in understanding phase diagrams and to avoid the
high costs of retraining, this paper adopts a few-shot prompting engineering framework.
The specific process is detailed in Section 3.2. We perform hierarchical sampling on 13 phase
diagrams, extracting two samples from simple systems and one from a complex system
as examples. Keeping the instructions unchanged, we compare the differences in text
similarity between the LLM’s output and the expert textual description before and after
instruction tuning, as shown in Table 3:

Table 3. LLM performance on the phase diagram comprehension task before and after instruction
tuning, showing cosine similarity metrics for each test set phase diagram.

System Al-Co Cr-Ru Cr-Ta Cr-Ti Fe-Ti Hf-Re Al-Ru Co-Cr Co-Fe Cr-Fe Cr-Ni Cr-Re Fe-V
types complex complex complex complex complex complex simple simple simple simple simple simple simple

Hierarchical sampling ✓ ✓ ✓

Cosine Similarity (LLM’s generation without prompt tuning) 0.8178 0.8255 0.9 0.8511 0.8769 0.9028 0.7644 0.8281 0.7987 0.8382 0.8758 0.8591 0.7521
Cosine Similarity (LLM’s generation after prompt tuning) 0.9051 0.8746 0.884 0.8786 0.9553 0.8837 0.7926 0.8807 0.8572 0.848 0.9497 0.9017 0.8833

The first row of the table lists the phase diagram names, the second row lists the
system complexity, with phase diagram containing ≤3 phase transition reactions marked
as simple systems (highlighted in yellow), and those with >3 reactions marked as complex
systems (highlighted in green). The third row indicates the samples extracted through
hierarchical sampling (marked with a check), with the unmarked ones serving as the test set
to evaluate the phase diagram comprehension ability of the LLM after instruction tuning.
The fourth row shows the cosine similarity metrics between the LLM’s phase diagram
textual descriptions and expert textual descriptions before instruction tuning. Similarly,
the sixth row shows the cosine similarity metrics after instruction tuning.

Taking the Al-Co system as an example, classified as the complex system, the cosine
similarity between the textual description generated by the LLM and the expert textual
description is 0.8178 before tuning. After prompt tuning, it improves to 0.9051.

In the simple systems, the largest improvement in metric is for the Cr-Re phase dia-
gram, about 17.4%. As shown in Figure 4, the Cr-Re phase diagram is relatively simple,
containing two peritectic reactions. The LLM, during instruction tuning, learns from
two simple system examples, thus significantly improving its task performance on sim-
ple phase diagrams. Detailed analysis is presented in the ablation experiment section.
In complex systems, the largest improvement in the metric is observed for the Al-Co phase
diagram, about 10.7%. As shown in Figure 13, the Al-Co phase diagram is rich in informa-
tion, almost marking all phase names (four compounds: Co2Al9, CoAl3, Co2Al5, CoAl
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(β′), and Co4Al13; Co-based solid solutions (α-Co), (ε-Co); and the Al-based solid solution
(Al)), with each phase transition reaction’s temperature, composition, and involved phases
detailed on the diagram. After instruction tuning, the LLM’s ability to follow instructions is
improved. As a result, for the Al-Co phase diagram, the trained model exhibits a significant
improvement in its capacity to distill and summarize information.

Figure 13. Al-Co phase diagram. The Al-Co phase diagram is highly detailed, labeling all phase
names, including four compounds (Co2Al9, CoAl3, Co2Al5, CoAl, Co4Al13), Co-based solid solutions
(α-Co, ε-Co), and Al-based solid solution (Al), along with each phase transition’s temperature,
composition, and involved phases.

To further quantify the contribution of the prompt engineering framework to the
LLM’s performance on phase diagram comprehension tasks, we analyze its contributions
from a collective perspective, by examining the mean metrics for both simple and complex
systems. As shown in Table 4, the first row lists two test sets—complex systems and
simple systems. The second row shows the metrics of the LLM on the two test sets before
instruction tuning. The third row shows the metrics after instruction tuning.

Table 4. Mean cosine similarity metrics of LLMs on phase diagram comprehension tasks before and
after instruction tuning.

Types Complex Systems Simple Systems

Mean Cosine Similarity without prompt tuning 0.8617 0.8155
Mean Cosine Similarity after prompt tuning 0.8972 0.8721

4.4. Ablation Study
4.4.1. Effect of Sample Size Variation in Hierarchical Sampling

To assess the impact of hierarchical sampling quantity on the instruction tuning
framework’s effectiveness, we keep the dataset’s complexity division constant: systems
with over three phase transition reactions are complex; three or fewer are simple. We
vary the number of hierarchical samples to see how sample quantity affects the LLM’s
comprehension of phase diagrams. Table 5 details this: the first row names the phase
diagrams, and the second categorizes them into complex (green) and simple (yellow)
based on phase transitions. The third row shows cosine similarity metrics between the
LLM’s responses and expert descriptions without prompt tuning. The fourth row uses
hierarchical sampling to select one complex and two simple samples for prompt tuning,
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with the remaining samples as the test set. Rows five and six change the sample numbers:
two complex and three simple (five total), and three complex and four simple (seven total),
respectively. The table presents cosine similarity metrics post-prompt tuning.

Table 5. Impact of varying hierarchical sample sizes on LLM performance in the phase diagram
comprehension task.

System Al-Co Cr-Ru Cr-Ta Cr-Ti Fe-Ti Hf-Re Al-Ru Co-Cr Co-Fe Cr-Fe Cr-Ni Cr-Re Fe-V
types complex complex complex complex complex complex simple simple simple simple simple simple simple

Cosine Similarity (LLM’s generation without prompt tuning) 0.8178 0.8255 0.9 0.8511 0.8769 0.9028 0.7644 0.8281 0.7987 0.8382 0.8758 0.8591 0.7521
Cosine Similarity (Number of hierarchical Sampling is 3) 0.9051 0.8746 0.884 0.8786 ✓ 0.8837 0.7926 0.8807 ✓ 0.848 ✓ 0.9017 0.8833
Cosine Similarity (Number of hierarchical Sampling is 5) ✓ 0.9014 0.889 0.8912 0.8743 ✓ ✓ 0.8702 ✓ 0.8274 0.8543 ✓ 0.8328
Cosine Similarity (Number of hierarchical Sampling is 7) ✓ 0.7874 0.8963 0.8851 ✓ ✓ 0.7806 ✓ ✓ 0.8209 ✓ ✓ 0.8755

For example, in the Hf-Re complex system, initial cosine similarity is 0.8255. Af-
ter prompt tuning with three samples, it improves to 0.8746. With five and seven samples,
similarities are 0.9014 and 0.7874, respectively. With three hierarchical samples, metrics
for two of ten phase diagrams decrease, while eight improve, notably the Cr-Re system by
17.4%. The LLM initially struggles with instructions but focuses better on critical phase
diagram parts post-prompt tuning, improving alignment with expert descriptions. With
five samples, four out of eight metrics slightly decrease, but four improve, with Cr-Re up
by 10.7% and Hf-Re by 9.2%. With seven samples, three out of six metrics decrease, while
three improve, with Cr-Re again showing the highest increase at 16.4%. Overall, using
three hierarchical samples (about 20% of the total) yields the best results.

4.4.2. Evaluation Metrics Comparison

Section 3.1 details the creation of golden data using the Al-Co phase diagram, process-
ing and saving LLM outputs, and using cosine similarity to assess the LLM’s performance
on phase diagram comprehension. Euclidean and Manhattan distances were normalized
using L2 and L1 normalization. We evaluate different similarity metrics while keeping the
hierarchical sampling strategy constant, with three samples: one from complex systems
and two from simple systems. These are used for prompt tuning the LLM. Performance is
assessed using cosine similarity, Euclidean distance, and Manhattan distance before and af-
ter prompt tuning. Higher cosine similarity and lower Euclidean and Manhattan distances
indicate better performance. The results are displayed in Table 6. The table lists phase
diagram names, system complexity (complex in green, simple in yellow), and similarity
metrics. Before tuning, the LLM’s cosine similarity for the Al-Co phase diagram is 0.8178,
improving to 0.9051 after prompt tuning. Euclidean and Manhattan distances improve
from 0.6036 and 0.593 to 0.4357 and 0.4297, respectively.

Table 6. Comparison of LLM performance on the phase diagram comprehension task before and
after instruction tuning, using cosine similarity, Euclidean distance, and Manhattan distance metrics.

System Al-Co Cr-Ru Cr-Ta Cr-Ti Fe-Ti Hf-Re Al-Ru Co-Cr Co-Fe Cr-Fe Cr-Ni Cr-Re Fe-V
types complex complex complex complex complex complex simple simple simple simple simple simple simple

Cosine Similarity (LLM’s generation without prompt tuning) 0.8178 0.8255 0.9 0.8511 0.8769 0.9028 0.7644 0.8281 0.7987 0.8382 0.8758 0.8591 0.7521
Cosine Similarity (LLM’s generation after prompt tuning) 0.9051 0.8746 0.884 0.8786 ✓ 0.8837 0.7926 0.8807 ✓ 0.848 ✓ 0.9017 0.8833

Euclidean Distance (LLM’s generation without prompt tuning) 0.6036 0.5908 0.4471 0.5457 0.4961 0.4408 0.6865 0.5863 0.6346 0.5688 0.4985 0.5309 0.7041
Euclidean Distance (LLM’s generation after prompt tuning) 0.4357 0.5007 0.4725 0.5023 ✓ 0.4836 0.6441 0.4885 ✓ 0.5515 ✓ 0.4434 0.483

Manhattan Distance (LLM’s generation without prompt tuning) 0.593 0.595 0.4564 0.5621 0.5051 0.4428 0.6699 0.6008 0.6197 0.5755 0.4999 0.5188 0.7042
Manhattan Distance (LLM’s generation after prompt tuning) 0.4297 0.5064 0.4853 0.4952 ✓ 0.4871 0.6342 0.483 ✓ 0.5518 ✓ 0.4357 0.4753

All three metrics quantitatively measure LLM performance trends. Post-prompt tun-
ing, eight of ten test samples improve across all metrics, though Euclidean and Manhattan
distances can be affected by noise. For instance, in the Co-Fe system, the cosine similarity
increases by 1.16%, while Euclidean and Manhattan distances decrease by 3.04% and 4.12%,
respectively. In the Cr-Re system, the largest improvement, cosine similarity increases by
17.44%, and Euclidean and Manhattan distances decrease by 31.4% and 32.5%. Token counts
in LLM outputs increase from 306 to 377 after tuning. In high-dimensional spaces, Eu-
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clidean and Manhattan distances are prone to the curse of dimensionality. Cosine similarity,
unaffected by vector magnitude, better captures directional similarity in high-dimensional
semantic spaces, making it more effective for comparing textual content in phase diagram
comprehension tasks.

5. Conclusions and Future Works

This paper introduces a hierarchical sampling-based instruction fine-tuning frame-
work that enables pre-trained LLMs to automatically perform phase diagram annotation
tasks. This end-to-end automation process effectively addresses the shortcomings of tra-
ditional manual annotation methods in materials science, particularly in updating and
batch processing. High-quality phase diagram images and their corresponding expert de-
scriptions are collected from reference books and preprocessed, including error correction,
removal of redundant information, and content supplementation. These preprocessed
phase diagrams and textual descriptions are then integrated into a golden dataset. Ac-
cording to our design, a portion of the samples from the golden dataset is selected for
LLM training. The pre-trained LLM is then used for the automated annotation of phase
diagrams in the test set. Our methods significantly improve the LLM’s accuracy in per-
forming phase diagram comprehension tasks on the test set, achieving an average cosine
similarity of 0.8737. Extensive experimental validation demonstrate that the pre-trained
LLM’s performance on phase diagram comprehension tasks improves by 7% on the test set.

Our research identifies three primary areas for future work, encompassing both broad
strategies and specific technical objectives. First, we aim to develop a more versatile
and general-purpose LLM based on the open-source LLaMA2 model [7]. This will be
achieved by leveraging Low-Rank Adaptation (LoRA) technology [50] in conjunction with
distributed training methods, particularly Fully Sharded Data Parallel (FSDP) [51]. This
approach will enable efficient fine-tuning of the LLM from scratch using multiple GPUs.
Initially, our focus will be on instruction fine-tuning, with a long-term goal of advancing
to more sophisticated parameter fine-tuning, thereby achieving deeper model optimiza-
tion. Second, we will expand and optimize the dataset for model training to improve
performance on specific benchmark tasks. By increasing resources and personnel, we will
enhance the golden dataset, allowing for more comprehensive and diverse data coverage.
Refining the criteria for sample division will further improve categorization, making it
more rational and interpretable, particularly for different system types (e.g., simple vs.
complex systems). This refinement is expected to enhance the LLM’s accuracy in tasks
related to phase diagram analysis. Third, we aim to integrate techniques for compressing
the LLM, facilitating efficient deployment across various platforms. Following compression,
the model will be adaptable for use on a wide range of devices, including mobile phones
and edge computing endpoints, thereby broadening accessibility and enabling researchers
across disciplines to utilize the model in practical applications.
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