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Peruš, I. Mathematical Modeling of

the Floating Sleeper Phenomenon

Supported by Field Measurements.

Mathematics 2024, 12, 3142. https://

doi.org/10.3390/math12193142

Academic Editor: Carlo Bianca

Received: 11 September 2024

Revised: 2 October 2024

Accepted: 5 October 2024

Published: 8 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Mathematical Modeling of the Floating Sleeper Phenomenon
Supported by Field Measurements
Mojmir Uranjek 1,2, Denis Imamović 2 and Iztok Peruš 2,*
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Abstract: This article aims to provide an accurate mathematical model with the minimum number of
degrees of freedom for describing the floating sleeper phenomenon. This was accomplished using
mathematical modeling supported by extensive field measurements of the railway track. Although the
observed phenomenon is very complex, the simplified single degree of freedom (SDOF) mathematical
model proved accurate enough for its characterization. The progression of the deterioration of the
railway track was successfully correlated to changes in the maximal dynamic factor for different
types of pulse loading. The results of the presented study might enable the enhanced construction
and maintenance of railroads, particularly in karst areas.

Keywords: floating sleepers; dynamic factor; pulse loading; field measurements; SDOF mathematical
model
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1. Introduction

For a detailed analysis of the stress state in ballast railway tracks for different extreme
cases such as geometrical irregularities of the rail, ballast fouling, or abrupt changes in
stiffness along the railway track, realistic but also complex 2D [1] or 3D [2] numerical
models are used. Simpler models, on the other hand, enable quicker characterization of
the problem; however, they do not allow all factors to be considered. The simplest track
model is the one introduced by Winkler in 1867, where the track was modeled as a beam on
a continuous elastic foundation [3,4]. In this approach, a beam (rail) rests on a continuous
elastic foundation modeled by evenly distributed linear spring stiffness. This model is
suitable for assessing the static loading of a track on a soft support (i.e., wooden sleepers);
however, it does not allow dynamic effects to be considered. In a more advanced approach,
the track is modeled as a beam on discrete supports (e.g., Ref. [5]). Here, the rail is modeled
as a Euler–Bernoulli or Rayleigh–Timoshenko beam, and rail pads by spring-damper
systems. Sleepers are represented as rigid masses and ballast is modeled by spring-damper
systems. To be able to consider the influence of resonance at lower frequencies, this model
can be upgraded by incorporating the ballast mass [6]. The viability and applicability of this
model are considered in Ref. [7] by using calibration with a 3D modeling approach. At this
point, we should mention other problems that are directly related to the issues of railway
infrastructure, e.g., the hunting phenomenon related to the lateral oscillation of the rail
wheels [8], mathematical modeling of the deformable characteristics of railway ballast [9],
and various complex mathematical analyses of the rail beam, e.g., numerical analyses
of the non-uniform layered ground vibration caused by a moving railway load [10]. In
the modern sustainable development of railway infrastructure, we must not forget about
innovation (e.g., Cai et al. [11] identified key influencing factors in railway engineering
technological innovation in complex and difficult areas) and maintenance [12–15]. Effective
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planning, first, and maintenance of railway infrastructure, second, could largely prevent
the phenomenon of floating sleepers discussed in this article. A step toward a better
understanding of this phenomenon is, therefore, presented in this article.

The main objective of this work was to develop a simplified mathematical model with
the minimum number of degrees of freedom possible, which would be accurate enough
and allow simple characterization of the floating sleeper phenomenon. Such an approach
would enable an easy graphical presentation of the results. Therefore, this paper could
improve engineering understanding of the phenomenon and the effective development
of various technical solutions to deal with the problem efficiently. Within the framework
of the performed analysis, a simplified mathematical model for loading and dynamic
response has been used. The results in the presented study indicate that the dynamic factor
for short-term pulse loading, which corresponds to a one- or two-axle passage of train
composition, has relatively low values for typical track stiffness. The factor reaches very
high values with decreasing track stiffness and then decreases with a small value of track
stiffness. The observed phenomenon can be described as highly non-linear.

2. Methods and Field Measurements
2.1. Basic Idea and Methods Used

Solving the problem of floating sleepers can be approached in several ways—with
an experimental approach, with a theoretical approach, or with a combination of both.
For example, in Ref. [16], it was established with an experimental approach that the
phenomenon of floating sleepers is affected by a local change in the stiffness of the rail
beam, which is generally the result of several factors. These were identified based on
extensive experimental work and an analysis of the obtained results, with the help of
artificial neural networks. Of the factors identified in the research, welds between two
adjacent rails had by far the greatest impact (40%), while 13%, 10%, 10%, 9%, 9%, and 9%
were attributed to gravel, maximum rail displacement, gauge, twist, heterogeneity, and
residue, respectively. However, mathematical modeling of the phenomenon of floating
sleepers according to the theoretical approach is very demanding, as is also shown by
the research so far, since the existing models (e.g., Refs. [2,17]) do not yet explain the
phenomenon satisfactorily. The presented research proposes a combined approach that
includes the results of observations obtained through field measurements and simplified
mathematical models. In this proposal, first, instead of complex discretization with MDOF
models (e.g., Refs. [2,17]), which also include the half-space of the rail beam, we use simple
(equivalent) SDOF models, which have all the properties and loadings of the considered rail
beam structure. In this way, the individual influences and states of the considered system
can be identified more easily. Furthermore, the obtained results of SDOF models in the form
of simpler mathematical expressions can be more effectively interpreted and understood in
engineering terms. Based on the obtained results measured in the field, such a model can
be calibrated relatively easily. In this way, SDOF models will not accurately summarize all
the characteristics of the phenomenon, but they will enable simpler calculations and help
in understanding and solving the problems of floating sleepers.

Figure 1 shows the progression of the floating sleeper phenomenon on a short stretch
of track. An indicator of the beginning of the phenomenon is a slight local dusting in the
vicinity of the affected sleeper (Figure 1, left). As the phenomenon progresses, dusting
intensifies and can also spread to adjacent sleepers (Figure 1, top right). The final stage of
the phenomenon, when the sleepers lose contact with the ground and individual sleepers
practically hang from the rails, is shown in Figure 1, bottom right.

Ballast fouling reveals a change in some of the material characteristics of the track,
e.g., the reduction in stiffness over time within the observed period, which, in principle,
signifies the non-linear behavior of the observed phenomenon.
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Figure 1. Progression of the floating sleeper phenomenon in various states on a short stretch of track.

2.2. Assumptions, Equations, and Simplified SDOF Dynamic Model
2.2.1. Basic Assumptions

Using the simplified SDOF mathematical model, in comparison with more accurate
MDOF models (e.g., Ref. [17]), we considered the following assumptions, considering the
facts found in the field:

• The passage of the axle of the train composition over the observed location in the
idealized simplified mathematical model represents a special case of short-term
pulse loading.

• In the model, a single spring is considered between the axle of the train composition,
which causes the load, and the track, which carries this load.

• In the case of short-term pulse loadings, due to their relatively short-term action, the
damping in the basic equation of motion can be neglected, because it has little effect
on the response. Such an approach at the same time greatly simplifies the solution of
the problem.

• Since we are interested in the change of influence and the effects at the location of short-
term pulse loading, we neglect the influence of adjacent structural elements in the
SDOF model. In this way, the absolute values of the response are somewhat imprecisely
determined. However, the qualitatively calculated response still realistically describes
the actual situation, especially in the case when the stiffness characteristics of the
SDOF model are calibrated with actual measurements and findings from the literature.

• Since observations in the field (Figures 1 and 2) unequivocally show that the floating
sleeper is a non-linear phenomenon, it should also be modeled mathematically. This
would not be a problem to analyze on a simple SDOF system; a bigger problem is to
predict in advance the material characteristics of the track at the considered location.
For the sake of simplification and easier physical interpretation of the results, the
various most probable loadings for the entire range of real values of the oscillation
times of the considered structure and duration of pulse loadings were analyzed.

• The observed phenomenon is non-linear; regardless, it was treated as a linear system
in discrete time windows with known (i.e., assumed) values of stiffness and mass. In
most cases, stiffness and mass values change between individual discrete time points.
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Figure 2. Damage of ballast in a location prone to the phenomenon of floating sleepers: (a) initial
state after identification, (b) damaged state after 21 days, and (c) damaged state after an additional
21 days.

Figure 2 shows the different states of ballast at the location of the floating sleeper over
time and the high cycle “fatigue” of the ballast track material. There is a flow of material
(i.e., ballast) whereby the individual stones of the ballast behave similarly to molecules
in a liquid, except that, here, the stones are of very different shapes and dimensions;
unlike a normal liquid, individual stones also wear out during translational and rotational
movement. This wearing down of the ballast changes its contribution to the stiffness of the
system under consideration; in this specific case, the stiffness of the track decreases—the
greater the wear, the lower the stiffness of the track. The last finding confirms again that
the observed phenomenon is (highly) non-linear. For the needs of our simplified SDOF
mathematical model, it is crucial that the considered phenomenon can be described in
various short time windows with the corresponding values of the (constant) terms of the
differential equation (e.g., Ref. [18]), as will be described below.

2.2.2. Equations of Motion

The behavior of the observed structure under the action of an external time-varying
loading can be described by the equation of motion for discrete models with multiple
degrees of freedom (MDOF) (e.g., Refs. [17,18]):

[M]
{ ..

U
}
+ [C]

{ .
U
}
+ [K]{U} = { f (t)}, (1)

where [M], [C], and [K] represent mass, damping, and the stiffness matrix, respectively;{ ..
U
}

,
{ .

U
}

and {U} represent acceleration, velocity, and displacement vectors, respectively,
and { f (t)} represents the loading vector.

For simple systems, i.e., single degree of freedom (SDOF) models, an algebraic form of
Equation (1) can be written as:

m
..
u + c

.
u + k u = f (t), (2)

where m, c, and k represent mass, damping, and stiffness, respectively;
..
u,

.
u and u represent

acceleration, velocity, and displacement, respectively, and f (t) represents dynamic loading.
Solving the homogeneous part of the differential Equation (2) defines the basic dy-

namic parameter of the structure under consideration, which is called the period of the
structure and can be expressed as:

T = 2π

√
m
k

. (3)
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2.2.3. Dynamic Factor of the SDOF System

Generally, we are interested in the maximum values of individual observed quantities.
Since the displacements of the structure are directly proportional to the forces of the struc-
ture, we usually define the maximal dynamic factor, D f ,max (known also as the maximal
deformation response factor, i.e., Ref. [18]), with the equation:

D f ,max =
umax

u0
, (4)

where D f ,max represents the ratio between the maximum absolute value of the displace-
ments (umax) during the time-history response, described by Equation (2), and the absolute
value of the displacement at static loading (u0), which is usually determined as the am-
plitude of the dynamic loading. With the known value of D f ,max, the maximum dynamic
influences on the structure can be treated as static, which significantly simplifies solving
and understanding the problem.

2.2.4. Different Pulse Loadings of the SDOF System

Short-duration pulse loadings are generally described by various functions, with the
key characteristic of such a loading being that its relative duration is short. Here, the
parameter λ = t/T refers to the ratio between the duration of the short-term pulse loading
(t) and the period of the structure (T). Equation (2) is simplified in this case—since the
influence of damping is negligible for pulse loading, the term c

.
u can be neglected. Moreover,

since the influence of damping is neglected, the transmissibility (which represents the factor
that tells how much loading is transmitted to the ballast; see, e.g., Ref. [10]) can be described
by the dynamic factor (Equation (4)).

Completed solutions for D f ,max in the case of rectangular pulse loading (Figure 3a) are
given in Ref. [18]. The solution is relatively simple and can be written in its closed form as:

D f ,max =
umax

u0
=

{
1 − cos(2π λ) λ ≤ 1

2

2 λ ≥ 1
2

. (5)
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Symmetric triangular pulse loading (Figure 3b) is more complicated as it includes the
calculation of the response in three areas (the rising part of the pulse on the left, the falling
part of the pulse on the right, and no pulse on the right). To make it easier to understand the
results of later derivations which type of pulse loadingis more suitable for the simulation of
the actual load when the axle of the train composition passes over the observed track, a full
derivation is given here. In the derivation, we proceed from Equation (2), noting that the
displacement u(t) = u0·D f (t) is the product of static displacement and the dynamic factor,
and the loading function f (t) = f0·DL(t) is the product of static loading and the dynamic
loading factor of the symmetric triangular pulse loading. Equation (2) is further written as:

m·u0·
..
D f (t) + k·u0·D f (t) = f0·DL(t). (6)
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Dividing Equation (6) by m·u0 and considering f0
u0

= k and k
m = ω2, the following

is obtained: ..
D f (t) + ω2·D f (t) = ω2·DL(t), (7)

where the dynamic factor of the symmetric triangular load DL(t) is defined as:

DL(t) =


2·t
t f or 0 ≤ t ≤ t

2
2 − 2·t

t f or t
2 ≤ t ≤ t

0 f or t > t
. (8)

Next, the time-history response of the dynamic factor in three phases is determined.
The dynamic factor for the first phase (I), considering the initial conditions DI

f (t = 0) = 0

and
.

D
I
f (t = 0) = 0, is given by:

DI
f (t) =

2·(t·ω − sin(t·ω))

t·ω
0 ≤ t ≤ t

2
, (9)

and
.

D
I
f (t) =

2 − 2· cos(t·ω)

t
0 ≤ t ≤ t

2
. (10)

The solution for the dynamic factor in the second phase (II), considering the initial

conditions DI I
f (t =

t
2 ) = DI

f (t =
t
2 ) and

.
D

I I
f (t =

t
2 ) =

.
D

I
f (t =

t
2 ), is:

DI I
f (t) =

2·
(

2· sin
(

t·ω − t·ω
2

)
− ω·(t − t)− sin(t·ω)

)
t·ω

t
2
≤ t ≤ t, (11)

and
.

D
I I
f (t) =

2·
(

2· cos
(

t·ω − t·ω
2

)
− cos(t·ω)− 1

)
t

t
2
≤ t ≤ t. (12)

The solution for the dynamic factor in the third phase (III), considering the initial

conditions DI I I
f (t = t) = DI I

f (t = t) and
.

D
I I I
f (t = t) =

.
D

I I I
f (t = t), is:

DI I I
f (t) =

8· sin2
(

t·ω
4

)
sin
(

t·ω − t·ω
2

)
t·ω

t > t, (13)

and
.

D
I I I
f (t) =

cos
(

t·ω − t·ω
2

)
·8 sin2

(
t·ω
4

)
t

t > t. (14)

The time at which the maximal dynamic factor occurred for the first phase is then
determined. From Equation (6), it follows:

.
D

I
f (t) =

2 − 2· cos(ω·t)
t

= 0 → cos(ω·t) = 1 → ω·t = 2·π·n. (15)

Considering T = 2·π
ω , the time is thus:

tI
n = T·n; n = 1, 2, 3 . . . . (16)

Only solutions within the interval 0 ≤ t ≤ t
2 are considered; given that t = λ·T, the

condition is:
λ ≥ 2·n. (17)
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Substituting Equation (16) into Equation (9), the extreme value of the dynamic factor
is obtained:

DI
f ,max = DI

f (t
I
n = T) =

2·n
λ

λ ≥ 2·n; n = 1, 2, 3 . . . . (18)

Next, the time at which the maximal dynamic factor occurred for the second phase

is determined, derived from Equation (12) under the condition
.

D
I I
f (t) = 0. The expres-

sion follows:

2· cos
(

t·ω − t·ω
2

)
− cos(t·ω)− 1 = 0. (19)

Considering T = 2·π
ω , the general four solutions of time obtained from Equation (19) are:

tI I
1,n = T·(n − α1)

tI I
2,n = T·(n + α2)

tI I
3,n = T·(n − α2)

tI I
4,n = T·(n + α1)

n = 1, 2, 3 . . . , (20)

where αi (i = 1, 2), in Equation (20), is defined as:

αi =
1

2π
· cos−1

1
2
·

3 + (−1)i
(

4
√

2 cos
(

π·t
2T

)
− 4

√
2 cos

(
3π·t
2T

))
5 − 4 cos

(
π·t
T

) − 1

. (21)

Only solutions within the interval t
2 ≤ t = tI I

i,n ≤ t are considered; given that t = λ·T,
the condition is:

λ

2
≤

tI I
i,n

T
≤ λ. (22)

From Equation (22), the lower and upper bounds of parameter λ for time tI I
i,n are deter-

mined. Substituting time tI I
i,n from Equation (20) into Equation (11), DI I

f ,max = DI I
f (t = tI I

i,n)

is obtained. Among all possible solutions, only the envelope of maximal dynamic factor
values up to a parameter of λ = 10 is listed here.

DI I
f ,max =



DI I
f (t = tI I

4,0) 0.0 ≤ λ ≤ 0.5
DI I

f (t = tI I
1,1) 0.5 ≤ λ ≤ 2.0

DI I
f (t = tI I

2,1) 2.0 ≤ λ ≤ 2.5
DI I

f (t = tI I
3,2) 2.5 ≤ λ ≤ 4.0

DI I
f (t = tI I

4,2) 4.0 ≤ λ ≤ 4.5
DI I

f (t = tI I
1,3) 4.5 ≤ λ ≤ 6.0

DI I
f (t = tI I

2,3) 6.0 ≤ λ ≤ 6.5
DI I

f (t = tI I
3,4) 6.5 ≤ λ ≤ 8.0

DI I
f (t = tI I

4,4) 8.0 ≤ λ ≤ 8.5
DI I

f (t = tI I
1,5) 8.5 ≤ λ ≤ 10.

. (23)

Next, the time at which the maximal dynamic factor occurs for the third phase is

determined, derived from Equation (14) under the condition
.

D
I I I
f (t) = 0. The expres-

sion follows:

cos
(

t·ω − t·ω
2

)
· sin2

(
t·ω
4

)
= 0. (24)

Considering T = 2·π
ω , the general time solution tI I I

i,n is:

tI I I
i,n =

t1

2
+ T·

(
n − (−1)i

4

)
i = 1, 2 and n = 1, 2, 3 . . . . (25)
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Furthermore, only solutions within the interval t = tI I I
i,n > t are considered; given that

t = λ·T, the condition is:

0 ≤ λ < 2n − (−1)i

2
i = 1, 2 and n = 1, 2, 3 . . . . (26)

Considering time tI I I
i,n from Equation (25) in Equation (13), it follows:

DI I I
f ,max = DI I I

f (t = tI I I
i,n ) =

2· cos(π·λ)− 2

(−1)i·π·λ
. (27)

From Equation (27), it can be observed that the magnitude of the dynamic factor
DI I I

f ,max is independent of n. Additionally, it is evident that the dynamic factor for i = 2 is
negative; thus, only the dynamic factor values for i = 1 are of interest. The dynamic factor
for phase (III) is, therefore:

DI I I
f ,max = DI I I

f (t = tI I I
1,n = tI I I

1 ) =
2 − 2· cos(π·λ)

π·λ for λ ≥ 0. (28)

It can be observed from Figure 4 that for phase III of the load application, the maximal
dynamic factor occurs only within the interval 0 ≤ λ ≤ 0.5. For the remaining interval
0.5 ≤ λ ≤ 10, the maximal dynamic factor occurs during phase II of the load application.
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Thus, based on the dynamic factors for all three phases of load application, the final
envelope D f ,max for the interval 0 ≤ λ ≤ 10 is constructed in Equation (29), which is also
graphically shown in Figure 5.

D f ,max =



DI I I
f (t = tI I I

1 ) 0.0 ≤ λ ≤ 0.5
DI I

f (t = tI I
1,1) 0.5 ≤ λ ≤ 2.0

DI I
f (t = tI I

2,1) 2.0 ≤ λ ≤ 2.5
DI I

f (t = tI I
3,2) 2.5 ≤ λ ≤ 4.0

DI I
f (t = tI I

4,2) 4.0 ≤ λ ≤ 4.5
DI I

f (t = tI I
1,3) 4.5 ≤ λ ≤ 6.0

DI I
f (t = tI I

2,3) 6.0 ≤ λ ≤ 6.5
DI I

f (t = tI I
3,4) 6.5 ≤ λ ≤ 8.0

DI I
f (t = tI I

4,4) 8.0 ≤ λ ≤ 8.5
DI I

f (t = tI I
1,5) 8.5 ≤ λ ≤ 10.

. (29)



Mathematics 2024, 12, 3142 9 of 17
Mathematics 2024, 12, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 5. Envelope of the maximal dynamic factor of all three phases of symmetric triangular and 
rectangular pulse loading, respectively. 

2.3. Performed Measurements 
2.3.1. Measurement of Vertical Loads by Train Crossings 

The vertical load transmitted by every single axle of the train in transit over the track 
was measured by the Marini SMCV measurement system. The layout of the Marini meas-
uring system is shown in Figure 6. The system enables the measurement of: 
• Dynamic or quasi-static vertical loads transmitted by each wheel/axle of the train. 
• Each axle speed of the train in transit. 
• The distance between two consecutive axles of the train in transit. 
• Evaluation of an eventual excessive load on an axle compared to a set threshold 

value. 
• Evaluation of an unbalanced load between the two wheels of the same axle, relative 

to a set threshold. 

 
Figure 6. Layout of the Marini SMCV measuring system on the railway track. 

2.3.2. Measurements of the Displacement of Sleepers 
For displacement measurements (Figure 7), inductive displacement sensors were 

used, which made it necessary to provide a stationary reference structure. Because of this, 
a cantilevered scaffolding was made at each measuring point, placed about 3 m from the 
tracks in an area where the ground vibration amplitude due to the passing of trains was 
negligible in comparison to the vertical displacement amplitudes of the observed railway 
sleepers. 

Figure 5. Envelope of the maximal dynamic factor of all three phases of symmetric triangular and
rectangular pulse loading, respectively.

2.3. Performed Measurements
2.3.1. Measurement of Vertical Loads by Train Crossings

The vertical load transmitted by every single axle of the train in transit over the
track was measured by the Marini SMCV measurement system. The layout of the Marini
measuring system is shown in Figure 6. The system enables the measurement of:

• Dynamic or quasi-static vertical loads transmitted by each wheel/axle of the train.
• Each axle speed of the train in transit.
• The distance between two consecutive axles of the train in transit.
• Evaluation of an eventual excessive load on an axle compared to a set threshold value.
• Evaluation of an unbalanced load between the two wheels of the same axle, relative to

a set threshold.
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2.3.2. Measurements of the Displacement of Sleepers

For displacement measurements (Figure 7), inductive displacement sensors were
used, which made it necessary to provide a stationary reference structure. Because of
this, a cantilevered scaffolding was made at each measuring point, placed about 3 m from
the tracks in an area where the ground vibration amplitude due to the passing of trains
was negligible in comparison to the vertical displacement amplitudes of the observed
railway sleepers.
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Figure 7. Measurements of the displacement of sleepers using inductive displacement sensors.

2.3.3. Measurements of Strain in the Rails

For measurements of strain on the rail (Figure 8), strain gauges were used. Before
applying strain gauges to the rail surface using a special glue, the surface was smoothed
and deoiled. When the surface of the structure that is the subject of measurements is
deformed, the foil is also deformed, causing its electrical resistance related to strain by
gauge factor to change. Consequently, strains and stresses can be calculated from the
measured electrical resistance.
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3. Results
3.1. Measured Loadings—Results of Load Analysis and Responses of the Rail Track

As part of the field measurements, stresses in the middle of the rail above the consid-
ered sleeper were evaluated. Based on the measured vertical normal stresses, a relatively
accurate form of loading acting on the sleeper has been obtained, especially compared to
previous authors who determined the final shape and length of the loading using a genetic
algorithm [18].

3.1.1. Stresses in the Rail Due to the Passage of Locomotives

As the locomotive passed the measurement location, measurements were taken for all
four axles. Figure 9 shows stresses σx, σy, and τxy during the locomotive′s first and fourth
axles passing over the measuring point. In both measurements, a time interval of 0.25 s
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is considered, from 16.15 to 16.40 s for axle 1 transition measurements, and from 16.86 to
17.11 s for axle 4 transition measurements. As expected, stresses are at their maximum
when the locomotive axle is above the measurement point. At the passage of axle 1, i.e., at
16.30 s, stresses σx amount to 8.516 N/mm2, while at the transition of axle 4 (at 17.00 s),
they reach a value of 14.82 N/mm2. In the case of vertical normal stresses σy, the highest
value of 34.64 N/mm2 was measured directly after the transition of axle 1 at a time of
16.3033 s. At the transition of axle 4 at a time of 17.00 s, a smaller value of 18.25 N/mm2

was measured. In Figure 9, shear stresses τxy are equal to zero during the passage of axle 1
at the time of 16.30 s, when the axle is exactly above the measuring point, and reach their
extremes immediately before and right after axle 1 passes over the measuring point; at
16.295 s, the measured value is 20.18 N/ mm2 and, in 16.3067 s, the value of −23.77 N/mm2

is reached. Also, in the transition of axle 4, the sign of the shear stresses immediately before
and after the transition is inverted, and the shear stress order of magnitude approximately
coincides with the values measured in the transition of axle 1.
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locomotive (right) passed over the measuring point.

As can be seen, the shape of measured vertical stress σy coincides well with the
triangular pulse loading considered in the numerical models used by other researchers. If
the values measured in the passing of axle 1 and axle 4 are compared, one can acknowledge
the effect of the first axle in the pair influencing the results of a neighboring axle passing
through the measuring point. Vertical force at the rail–wheel contact point tends to lift the
rail and sleeper at some distance from the contact point. Consequently, the passage of axle
3 influences the reduction in stresses measured by the passage of axle 4.

3.1.2. Stresses in the Rail Due to Passage of Carriages

Stresses in the rail were also measured and analyzed during the passage of train
carriages. Figure 10 shows the stress curves σx, σy, and τxy during the passage of the first
axle of the first carriage and the rear (140th) axle of the last carriage in the train composition
over the measuring point. Like the measurements at the passage of the first axle of the
locomotive, here, also, the normal stresses σx and σy and the shear stress τxy coincide well.
The change in shear stresses τxy can serve as an indicator of the passage of the axle over the
measuring point. During the passage of axle 1 of the first carriage in the train composition
(Figure 10, left), the maximum value of the measured vertical displacement occurs slightly
before (at approximately 0.03 s) the onset of extreme stress. This can be attributed to the
influence of the displacements of those sleepers adjacent to the sleepers directly at the
measuring point or to the time-dependent relaxation of the elements and materials of the
rail track. As expected, the measured values are smaller compared to the passage of the
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locomotive. Horizontal stresses reach an extreme at the time of 17.257 s, i.e., 3.445 N/mm2,
and the vertical normal stresses σy reach an extreme at the time of 17.287 s at a value of
16.673 N/mm2, which is approximately half the value measured during the passage of the
first axle of the locomotive.
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3.2. Simulated Loadings and Corresponding Deformation Response Factors

The experimental measurements from Section 3.1 confirmed the theories other re-
searchers have already considered (i.e., Ref. [19]). Namely, the actual load caused by
the individual axle of the train composition when passing the observed place has an
approximately symmetrical shape, which, in the first rough approximation, resembles a
symmetrical, triangular shape (Figure 3b). Most of the actual loading, however, corre-
sponds to the double triangular form, as freight wagons generally have two axles at the
beginning and end of each wagon. Generally, the shape of the pulse loading must be
described with a more complex function than a linear one.

Based on the displayed results of the field measurements and axle loading proposed
in Ref. [19], the values of the maximal dynamic factors for different pulse loading following
the procedure in Section 2.2 were calculated. Thus, all the applied loads are symmetric
pulse loadings. They differ in whether it is a single or double pulse and in the shape of
the function that describes the rising and falling part. Definitions and designations of
pulse loadings were summarized and expanded according to Ref. [19]. Thus, all four pulse
loadings can be defined and denoted as:

• SPL-L: single-pulse loading of linearly distributed load that decreases symmetrically
concerning the geometric center of the wheel.

• DPL-L: double-pulse loading of linearly distributed load that decreases symmetrically
for the geometric center of the wheel.

• SPL-Q: single-pulse loading of quadratically distributed load that decreases symmet-
rically concerning the geometric center of the wheel.

• DPL-Q: double-pulse loading of quadratically distributed load that decreases sym-
metrically to the geometric center of the wheel.

It should be noted that the proposed shape of pulse loading in Ref. [19] was inspired
by the single wheel-induced displacement field. In Figure 11, the distribution of vertical
normal stresses is shown and compared to the proposed simulated pulse loadings in this
paper. Observed differences can be attributed to the influence of the multiple axle passages
of a train composition. The basic data for the three supplementary impulse loads (SPL-Q,
DPL-L, and SPL-Q) and the corresponding dynamic factors (Df,max) were obtained using
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the same methodology as that employed for the SPL-L case in Section 2.2. The results for
the dynamic factors in all four cases are shown in Figure 12.
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3.3. Results for the Maximal Dynamic Factor (Df,max) Obtained by a Simplified SDOF System

The results for the dynamic factor and Figure 13 show that the maximum value (peak)
of the maximum dynamic factor increases significantly with double-pulse loading. Even
on average, double-pulse loadings give higher values than single ones. One of the key
results of the analysis is the identification of the highest peak in the initial part of the graph,
where the position of the peak is highly dependent on the type of pulse loading. We can
conclude that in the initial (ideal) state, the construction of the track is relatively rigid, as is
determined (and required) by the existing regulations.
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A relatively small change (reduction) in stiffness can result in a higher dynamic factor
due to various influences (which have been described in the Introduction, e.g., Ref. [16]).
These increase markedly with a greater reduction (large gradients of the envelope of the
maximum dynamic factor) and can reach values of up to 2.5 for various pulse loadings.
Such high dynamic factors in high-cycle fatigue mean high loads on the track, especially
on the sleepers. The first indicator of this influence (with an increase in the dynamic factor)
is mild dusting in the vicinity of the sleeper, then the dusting locally intensifies and (may)
also spread to the neighboring sleepers, until the sleepers lose contact with the base and the
individual sleepers practically hang from the rails (see Figure 1). With ballast fouling and
the occurrence of the floating sleeper phenomenon, the stiffness is reduced significantly,
which increases parameter λ. Consequently, the dynamic factor reduces to the values that
are closest to the static case. Deterioration, which is a consequence of dynamic behavior,
practically stops. However, the railway track is significantly damaged, due to the ballast
fouling and the induced large displacements, and it urgently needs reconstruction.

The gray area indicates the λ range for the final state of the floating sleeper phe-
nomenon, while the red area indicates the λ range of Df,max peaks for all four pulse
loadings. It is evident that the phenomenon is highly non-linear and, as such, is hard to
understand in classical engineering terms, which are related to the track’s elastic charac-
teristics. The smoothed spectrum S(λ) is also proposed for the maximal dynamic factor
of pulse loadings, which were considered in the presented study. For small λ values, the
smoothed spectrum is bounded by Df,max, calculated for DPL-Q pulse loading. It can also
be observed that the proposed smoothed spectrum, which is defined by Equation (30), will,
in most instances, bound the Df,max of DPL-Q pulse loading. Note that the dashed curve
represents an alternative for a smoothed spectrum for λ values smaller than 1.58.

S(λ) =


6.187·λ for 0 ≤ λ ≤ 0.38
2.352 for 0.38 ≤ λ ≤ 1.58

1.037 + 1.356
λ−0.549 for 1.58 ≤ λ ≤ 10

(30)

4. Discussion
4.1. Discussion of the Results Obtained by Field Measurement

In the case of the generally “clean” passage of a single axle of the train composition
across the measurement site, a direct correlation between the maximum loading transmitted
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to the rail and the stresses (and displacements) may be seen. Such is, for example, the
situation in the transition of the first axle of the locomotive and the axles of heavier wagons
following lighter carriages. In the case of other axles, the influence of the load transfer
via the adjacent sleepers becomes more important, and the correlation between maximum
loading and stress flow is less obvious. This corresponds to the general laws of structural
dynamics in discrete systems with several degrees of freedom, where the extremes of
individual quantities do not occur at the same time.

4.2. Discussion of the Results Obtained with the Simplified SDOF Model

The proposed simplified SDOF mathematical model includes some assumptions and
observations from field measurements, which allowed relatively simple modeling of the
otherwise extremely complex phenomenon of floating sleepers. The results for the maximal
dynamic factor show that the maximum values are possible with double loading, regardless
of its shape or type. Non-linear forms of pulse loading generally result in higher values of
the maximal dynamic factor. In the initial state, which corresponds to the ideal state of a
newly built track (or the existing state, which is determined by modern regulations), the
stiffness of the track is relatively high. The corresponding parameter λ is relatively high (the
right-hand side of the graph in Figure 13) and the related maximal dynamic factor is small.
Any change in the properties of the track that causes a decrease in its stiffness generally
increases the value of the maximal dynamic factor. An increased maximal dynamic factor
causes adverse effects on the track, manifesting themselves first as local dusting (which
additionally reduces stiffness). Local dusting extends to the area of a larger number of
sleepers, further reducing stiffness and increasing the value of the maximal dynamic
factor. Due to the high values of the dynamic factor, the effects on the railway track are
increasingly pronounced (red area in Figure 13), which finally manifests itself in the fouling
of the ballast, which is the last stage of the floating sleeper phenomenon. In the last stage,
the stiffness of the track continues to decrease, which results in a decrease in the value of
the maximal dynamic factor (gray area in Figure 13). The phenomenon that now occurs
in the equilibrium state represents the dynamic collision of the rail with the hardened
surface of the fouled ballast. These dynamic effects were not covered by the proposed
model, but, from observations in the field, they are minimal, and the situation is definitive.
However, it is necessary to realize that this final state represents a limiting state since the
large, measured displacements during the passage of the train composition do not, in any
case, correspond to the safe condition of the track because, in such cases, there is a great
risk of derailment.

In a continuation of this research, it would be necessary to confirm some of the
presented results by using more complex mathematical models, at least in the initial and
final states. The latter state corresponds to the floating sleeper phenomenon. Also, it would
be beneficial to indicate other shapes/types of pulse loadings, which may produce higher
values of maximal dynamic factor than those analyzed in the current paper. Based on the
obtained and new results, advanced recommendations for more appropriate construction
and maintenance of railroads, particularly in karst areas, could be provided.

5. Conclusions

Dynamic influences have a markedly unfavorable effect on the degradation of rail
sleepers and should not be neglected. Based on the results presented in this study, it can be
concluded that the complex floating sleeper phenomenon (encountered in Slovenia and
many other countries) can be adequately, at least qualitatively, described by a proposed
simplified SDOF mathematic model that includes one degree of freedom. Despite its
simplicity, it enables the understanding of the key factors influencing the deterioration of
the ballast railway track.

The results of the presented research can be summarized as follows:

• A simplified SDOF mathematical model for the quantification of the influences on the
floating sleeper phenomenon has been developed.
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• For mathematical modeling of the phenomenon, extensive field measurements were
carried out, which yielded interesting results, enabled the identification of interesting
phenomena and findings, and enabled the simplification of mathematical modeling.

• Based on the actual field measurements and some recommendations from the re-
cent scientific literature, the loading was modeled as a pulse loading of different
shapes/types.

• Calculating the maximal dynamic factor reveals that the floating sleeper phenomenon
is highly non-linear. The initial response of the sleepers is elastic, but with a reduction
in stiffness due to different phenomena, the maximal dynamic factor can significantly
increase, which again influences a response in the form of damaged tracks. The final
damaged state corresponds to the floating sleeper phenomenon, which aligns with
lower values of maximal dynamic factors and relates to the dynamic collision of a rail
with the hardened surface of fouled ballast, with a low value for the dynamic factor.

The presented study has detected several issues that should be addressed in future
research:

• The accuracy of the applied pulse loadings should be evaluated and compared/discussed
with state-of-the-art mathematical models.

• The rate of wear of the ballast and its critical threshold should be identified. Given
that this sub-phenomenon is related to dynamic stability—that is, an abrupt change in
the ballast’s behavior, which relates to approaching the bifurcation point in the accom-
panying mathematical model—this could be an extremely challenging undertaking.

• As ballast wear contributes significantly to a reduction in track stiffness, the long-term
implications of this wear on the safety and performance of railway tracks should be
carefully addressed.

• The assumptions of the SDOF model, particularly those that ignore damping and the
impact of adjacent structural elements, should be checked.

• In general, additional research (theoretical and experimental) is needed, which will
confirm the obtained results and improve the explanation of the entire phenomenon
of floating sleepers.
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