
Citation: Yu, X.; Li, Y.; Geng, S. Fuzzy

Linear Temporal Logic with Quality

Constraints. Mathematics 2024, 12,

3148. https://doi.org/10.3390/

math12193148

Academic Editor: Michael Voskoglou

Received: 24 May 2024

Revised: 24 August 2024

Accepted: 4 October 2024

Published: 8 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Fuzzy Linear Temporal Logic with Quality Constraints
Xianfeng Yu 1,2, Yongming Li 1,3,* and Shengling Geng 1

1 College of Computer Science, Qinghai Normal University, Xining 810008, China; pioneer.369@163.com (X.Y.)
2 School of Mathematics and Computer Application, Shangluo University, Shangluo 726000, China
3 School of Mathematics and Statistics, Shanxi Normal University, Xi’an 710062, China
* Correspondence: liyongm@snnu.edu.cn

Abstract: As an extension of quantitative temporal logic, uncertain temporal logic essentially describes
the temporal behavior of uncertain and incomplete systems, thus better solving search and decision-
making problems in such systems. Fuzzy linear temporal logic (FLTL) is a focal point in uncertain
temporal logic research. However, there are evident shortcomings in the current research outcomes.
First, in previous FLTL studies, the practice of obtaining path reachability and formula satisfaction
values independently and subsequently selecting the smaller of the two as the satisfaction value
metric led to information loss. Furthermore, this simplistic information fusion approach fails to
reflect the varying importance of these two types of information to the requirements. Second,
computing path reachability and temporal logic formula satisfaction values separately may result in
a mismatch between the two pieces of information with respect to the same path segment. Thus, the
primary challenge lies in accurately integrating the satisfaction values of temporal logic formulas
with the path reachability of the segments that yields these satisfaction values, utilizing various
reasonable information synthesis methods, to ensure synchronization between path reachability and
formula satisfaction values without incurring information loss. Additionally, it is crucial to reflect the
different preference requirements for these two types of information. Moreover, the temporal logic
formula characterizes system properties, with its sub-formulas delineating distinct sub-properties.
Consequently, considering the varying importance preferences of sub-formulas is also significant. To
address these deficiencies, we introduced quality constraint operators into FLTL, resulting in quality-
constrained fuzzy linear temporal logic (QFLTL). This incorporation enables the synchronization and
comprehensive fusion of path-reachability information and formula satisfaction values within the
final semantic metric, thereby resolving the issues related to information synchronization and loss.
Furthermore, it can accommodate the differing preference requirements between the two types of
information and sub-properties during the information synthesis process. We defined the syntax and
semantics of QFLTL and examined its expressive power and properties. Notably, we investigated the
decidability of logical decision problems in QFLTL, encompassing validity, satisfiability, and model-
checking issues. We proposed corresponding solution algorithms and analyzed their complexities.

Keywords: quality constraints; fuzzy linear temporal logic (FLTL); fuzzy linear temporal logic with
quality constraints (QFLTL); model checking; search and decision problems

MSC: 68T37

1. Introduction

Temporal logic is a valuable tool for describing system behaviors over time and finds
wide applications in searching and decision-making. Classic temporal logic formulas,
such as LTL, CTL, and CTL*, can only characterize the qualitative properties of a system.
The expressive power of quantitative temporal logic is more powerful, including proba-
bilistic temporal logic [1–6], possibilistic temporal logic [7,8], and lattice-valued temporal
logic [9–12].

Mathematics 2024, 12, 3148. https://doi.org/10.3390/math12193148 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12193148
https://doi.org/10.3390/math12193148
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12193148
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12193148?type=check_update&version=2

Mathematics 2024, 12, 3148 2 of 36

The work presented in [7] does not integrate information regarding property satis-
faction value and path reachability when evaluating the truth of fuzzy linear temporal
logic (FLTL) formulas. Typically, this is achieved by considering the maximum measure
of the paths within the path set, where the formula satisfies the predicate constraints. In
contrast, in reference [8], the “∧” (min) operation is utilized for the composite operation
involving both the formula satisfaction value and the path-reachability measure. Under
the “∧” operation framework, the composite manipulation of the transition matrix can
efficiently compute the quantitative reachable semantics of the possibilistic temporal logic
formulas, thereby resolving the corresponding model-checking problem. However, the
“∧” operation selects the smaller value between path-reachability metrics and formula
satisfaction values for attributes along the path, potentially leading to information loss.
Furthermore, this simplistic approach to information fusion fails to differentiate between
the significance of path reachability and attribute formula satisfaction values. In light of
this, we propose incorporating a novel fuzzy synthesis operation for information fusion,
aimed at overcoming the limitation of information loss inherent in the “∧” operation. To
achieve this, we introduce quality constraint operators that weigh and integrate these two
types of information, thereby reflecting the varying levels of importance attributed to each
type of information, as per the preference requirements. Additionally, employing quality-
constrained operators to constrain sub-property formulas results in a QFLTL formula that
is capable of distinguishing the importance of different sub-properties within the resulting
temporal logic formula.

On the other hand, when computing the satisfaction value of fuzzy temporal logic
(FTL) formulas, as in [8], the semantics of any FTL formula φ are compounded by both
the formula satisfaction value and the reachability measure of the entire infinite path.
However, when the satisfaction value of the formula is only obtained on a finite fragment
of this infinite path, the formula satisfaction value and path-reachability measure are not
synchronized. For instance, if formula “⃝φ” (where “⃝” denotes the next time operator)
contains only propositional logical operators within φ, it is not necessary to consider the
possibility measure of the entire infinite path. Even though the semantics of operators
such as “3” (eventually), “□” (always), and “

⋃
” (until) inherently encompass the entire

infinite path, their satisfaction values are often derived from a path fragment that precedes
a certain state on the path. Therefore, for information synchronization purposes, we must
combine the reachability measure of this specific path fragment with the satisfaction value
derived from it, in order to obtain accurate and comprehensive measurement information.

References [13,14] introduce the concept of quality constraints, which enhance the
expressive power of quantitative temporal logic. Inspired by this work, we introduce
quality constraint operators into FLTL, thereby creating FLTL with quality constraints
(QFLTL) and accurately integrating path reachability into the path fragment, which is
obtained through formula satisfaction values based on preference levels. The syntax and
semantics of QFLTL are discussed in Section 2 of the article.

Considering only the quality constraint operators to characterize the varying degrees
of importance among sub-property formulas, they are incorporated into the QFLTL for-
mula. When assessing the reachability of the system path (transition process) qualitatively
(Boolean), we provide Boolean reachability semantics for QFLTL. We investigate the practi-
cality of QFLTL, analyze its properties, and evaluate its Boolean semantics. These aspects
are discussed in Section 3.

We present an automaton construction algorithm for the Boolean reachability seman-
tics of QFLTL and discuss its complexity. Based on this automaton construction method,
we investigate searching and decision-making, as well as the logical decision problems
pertaining to QFLTL, such as validity, satisfiability (the dual problem to validity), and
model checking under Boolean path-reachability semantics. The algorithms for solving
these problems are provided, and their complexity is also analyzed. These aspects are
discussed in Section 4.

Mathematics 2024, 12, 3148 3 of 36

If the property formula is subject to quality constraints while considering the system
path (transition process), it becomes quantitatively achievable as well. It is necessary to
selectively fuse the satisfaction values of property formulas with path-reachability measures.
Based on this premise, it is natural to provide quantitative reachability semantics for QFLTL.
However, due to the integration of path-reachability information into the quantitatively
reachable QFLTL framework, the calculation of values for its formulas inherently relies
on state transition systems. The approach of constructing automata solely based on the
QFLTL formula alone is insufficient for solving search and decision problems that involve
quantitative path reachability, in contrast to the QFLTL based purely on Boolean reachability.
Therefore, the system is confined to scenarios where only infinite loop paths are considered,
and the validity, satisfiability, model checking, and other search and decision problems
pertaining to the quantitative path-reachability semantics of QFLTL within this specific
context are described. Furthermore, the algorithms for solving these problems are presented,
and the collective complexity of these algorithms is analyzed. These aspects are discussed
in Section 5.

In Section 6 of the article, we present an example of a patient’s treatment process.
Through this example, we demonstrate that our proposed Boolean reachability semantics
and quantitative reachability semantics for QFLTL have a significant practical application
value. They can avoid information loss, ensure information synchronization, characterize
different weight preferences between path reachability and the satisfaction values of prop-
erty formulas, and distinguish different weight preferences among property subformulas.
At the same time, it has been verified that our proposed algorithms for solving QFLTL
search and decision problems are effective.

In Section 7 of the article, a summary of the main contributions of this article is
provided, and the potential research directions for future consideration are outlined.

2. The Syntax and Semantics of QFLTL
2.1. Preliminary Knowledge

In Zadeh’s fuzzy logic, the classical fuzzy propositional operators encompass “¬”
(negation), “∧” (conjunction), “∨” (disjunction), and “−→” (implication), among others [15].
To expand this set of classical fuzzy propositional calculus operators and cater to the
requirements of QFLTL (quantified fuzzy linear temporal logic), we can introduce a series of
propositional quality constraint operators. These newly introduced operators will facilitate
the expression of more intricate logical relationships and quality constraints within the
framework of QFLTL.

Definition 1 [fuzzy operations]. ∀x, y ∈ [0, 1], the fuzzy operations are defined as follows,

(1) λcp(x) = λ·x;
(2) λne(x) = λ·x + 1 − λ;
(3) λc f (x) = λ·x + (1 − λ)/2;
(4) ¬x = 1 − x;
(5) x ∧ y = min{x, y};
(6) x ∨ y = max{x, y};
(7) x −→ y = max{1 − x, y}
(8) x

⊕
λ y = λ·x + (1 − λ)·y.

λcp(x) is called a competence weighting operator, which imposes a weighting con-
straint on x by multiplying it by λ. λcp(x) maps x to the truth value in the interval [0, λ] and
even if x attains the maximum truth value of “1”, λcp(x) can only attain a value of λ ≤ 1.
This effectively reduces the satisfiability value. λne(x) is called the necessity weighting
operator. We consider “true” to be “irrelevant” and “false” to be “critical” (such as in contin-
uous “∧” operations, where operands can be weighted to avoid information loss caused by
logic bridging faults.). λne(x) maps x to the truth value in the interval [1 − λ, 1], and even
if x attains the minimum truth value “0”, λne(x) can only obtain 1 − λ ≥ 0. This effectively

Mathematics 2024, 12, 3148 4 of 36

increases the satisfiability value. The distribution of truth values for propositional variables
x1, x2, x3 in x1 ∧ x2 ∧ x3 after applying λne(x) is shown in Table 1. Obviously, the operator
λne(x) increases the true value of the formula, and to some extent, it overcomes the “logic
short circuit” caused by continuous “ ∧ ” operations, refining the original seven “0”s into
four “0.2”s, two “0.3”s, and one “0.4”s. The necessity weighting operator enhances the
expressive ability of logical formulas in terms of validity.

Table 1. Example of some necessity weighting operators for proposition quality constraints.

x1 x2 x3 x1∧x2∧x3 0.6ne(x1)∧0.7ne(x2)∧0.8ne(x3)

0 0 0 0 0.2
0 0 1 0 0.3
0 1 0 0 0.2
0 1 1 0 0.4
1 0 0 0 0.2
1 0 1 0 0.3
1 1 0 0 0.2
1 1 1 1 1

The following formalized explanation demonstrates that the λne operation fulfills this
requirement. “False” is the critical issue, whereas the true value is considered irrelevant.
Construct function f[−1,0] : [0, 1] −→ [−1, 0] . Let

f[−1,0](0) = −1, f[−1,0](1) = 0, f[−1,0](λne(x)) = λ f[−1,0](x).

Then, construct another function f[0,1] : [−1, 0] −→ [0, 1] . Define a linear transforma-
tion as f[0,1](x) = 1 + f[−1,0](x) ⇐⇒ f[−0,1](x) = f[0,1](x)− 1;

f[0,1](λne(x)) = 1 + f[−1,0](λne(x)) = 1 + λ f[−1,0](x) = 1 + λ
(

f[0,1](x)− 1
)

;

Then, we get λne(x) = 1 + λ(x − 1) = λx + 1 − λ;
λc f (x) is called the credibility weighting operator. We now expand the range of true

values and construct a function. f[−1,1] : [0, 1] −→ [−1, 1] . Let

f[−1,1](0) = −1, f[−1,1](1) = 1, f[−1,1]

(
λc f (x)

)
= λ f[−1,1](x).

Then, we construct another function, f[0,1] : [−1, 1] −→ [0, 1] . Define a linear transfor-
mation, as follows.

f[0,1](x) =
(

1 + f[−1,1](x)
)

/2 ⇐⇒ f[−1,1](x) = 2 f[0,1](x)− 1;

f[0,1]

(
λc f (x)

)
=
(

1 + f[−1,1]

(
λc f (x)

))
/2 =

(
1 + λ f[−1,1](x)

)
/2

=
(

1 + λ
(

2 f[0,1](x)− 1
))

/2 = λ f[0,1](x) + (1 − λ)/2

Then, we get λc f (x) = λx + (1 − λ)/2;
The operators λcp(x) and λne(x) are dual. That is, the operator λcp(x) reduces the

level of truth. Meanwhile, the operator λne(x) reduces the level of falsehood. However,
the operator λc f (x) reduces the level of falsehood when x ∈ [0, 0.5] and increases the level
of truth when x ∈ (0.5, 1], resulting in the overall concentration of truth values within
interval [(1 − λ)/2, (1 + λ)/2]. These three operators are linear interpolation operators
that formalize quality as a value between zero (false) and one (true). Figure 1 shows a
comparison of true value distributions for the fuzzy proposition x ∈ [0, 1] after applying
three linear interpolation operators. Here, we set λ = 0.5.

Mathematics 2024, 12, 3148 5 of 36

Mathematics 2024, 12, x FOR PEER REVIEW 5 of 36

a comparison of true value distributions for the fuzzy proposition 𝑥 ∈ [0,1] after apply-
ing three linear interpolation operators. Here, we set 𝜆 = 0.5.

Figure 1. Comparison of true values under the action of linear interpolation operators. 𝑥⨁ఒ𝑦 = 𝜆 ∙ 𝑥 + (1 − 𝜆) ∙ 𝑦 is a weighted average of 𝑥 and 𝑦. 𝜆 represents the con-
tribution weight of 𝑥 to the composite information of 𝑥 and 𝑦 , and 1 − 𝜆 represents
the contribution weight of 𝑦 to the composite information of 𝑥 and 𝑦. The operator ⨁ఒ
is used for fusing two pieces of fuzzy information according to their different levels of
importance. If 𝜆 = 0.5, then “⨁ఒ” is simply denoted as “⊕”.

2.2. The Syntax of QFLTL
Definition 2 [structure of QFLTL]. Assume that 𝐴𝑃 is a finite set of atomic propositions. 𝐴𝑃𝑅 ⊆ [0,1] ∩ ℚ is a set of finite fuzzy propositional constants. The QFLTL formula is recur-
sively defined as follows,
(1) Atomic proposition 𝑝, 𝑝 ∈ 𝐴𝑃;
(2) Proposition constant element 𝑟, 𝑟 ∈ 𝐴𝑃𝑅;
(3) ∆𝜑, 𝜑ଵ △ଶ 𝜑ଶ, ∆𝜑, 𝜑ଵ⋃𝜑ଶ.

Here, ℚ represents the set of rational numbers; 𝜑, 𝜑ଵ , and 𝜑ଶ are QFLTL formulas. △ଵ∈ {¬, 𝜆௖௣, 𝜆௡௘, 𝜆௖௙} is a unary fuzzy propositional logic operator, and △ଶ∈ {⋀, ⋁, ⟶, ⨁ఒ} is a binary fuzzy propositional logic operator. ∆∈{○,◇,} is a unary temporal logic
operator. The formulas obtained by finite recursive nesting of the above three rules are all
QFLTL formulas.

2.3. Semantics and Practical Examples of QFLTL
The semantics of QFLTL is a fuzzy function, given a sequence of fuzzy propositions 𝜋 and a QFLTL formula 𝜑, and the semantics map 𝜋 and 𝜑 to the fuzzy satisfaction

value of 𝜑 on 𝜋.
The fuzzy proposition sequence 𝜋 can characterize a path in a physical symbol sys-

tem. Below is a quantitative definition of a physical symbol system—fuzzy Kripke struc-
tures (FKSs) [7,8].

Definition 3 [Fuzzy Kripke Structures (FKSs)]. An FKS is a tuple 𝑀 = (𝑆, 𝐼, 𝛿, 𝐴𝑃, 𝐿), where
(1) 𝑆 is a finite set of states;
(2) the fuzzy distribution 𝐼: 𝑆 ⟶ [0,1] represents the fuzzy set of each state as the initial state;
(3) 𝛿: 𝑆 × 𝑆 ⟶ [0,1] represents the fuzzy transition relationship between system states;
(4) 𝐴𝑃 is a set of finite atomic propositions;
(5) 𝐿: 𝑆 ⟶ [0,1]஺௉ is a state label function that characterizes a set of fuzzy atomic propositions.

Figure 1. Comparison of true values under the action of linear interpolation operators.

x
⊕

λ y = λ·x + (1 − λ)·y is a weighted average of x and y. λ represents the con-
tribution weight of x to the composite information of x and y, and 1 − λ represents the
contribution weight of y to the composite information of x and y. The operator

⊕
λ is used

for fusing two pieces of fuzzy information according to their different levels of importance.
If λ = 0.5, then “

⊕
λ” is simply denoted as “⊕”.

2.2. The Syntax of QFLTL

Definition 2 [structure of QFLTL]. Assume that AP is a finite set of atomic propositions.
APR ⊆ [0, 1]∩Q is a set of finite fuzzy propositional constants. The QFLTL formula is recursively
defined as follows,

(1) Atomic proposition p, p ∈ AP;
(2) Proposition constant element r, r ∈ APR;
(3) ∆φ, φ1

a
2 φ2, ∆φ, φ1

⋃
φ2.

Here,Q represents the set of rational numbers; φ, φ1 , and φ2 are QFLTL formulas.
a

1 ∈
{
¬, λcp, λne, λc f

}
is a unary fuzzy propositional logic operator, and

a
2 ∈ {

∧
,
∨

,−→,
⊕

λ} is a binary fuzzy propositional logic operator. ∆ ∈{⃝,3,□} is
a unary temporal logic operator. The formulas obtained by finite recursive nesting of the
above three rules are all QFLTL formulas.

2.3. Semantics and Practical Examples of QFLTL

The semantics of QFLTL is a fuzzy function, given a sequence of fuzzy propositions π
and a QFLTL formula φ, and the semantics map π and φ to the fuzzy satisfaction value of
φ on π.

The fuzzy proposition sequence π can characterize a path in a physical symbol system.
Below is a quantitative definition of a physical symbol system—fuzzy Kripke structures
(FKSs) [7,8].

Definition 3 [Fuzzy Kripke Structures (FKSs)]. An FKS is a tuple M = (S, I, δ, AP, L), where

(1) S is a finite set of states;
(2) the fuzzy distribution I : S −→ [0, 1] represents the fuzzy set of each state as the initial state;
(3) δ : S × S −→ [0, 1] represents the fuzzy transition relationship between system states;
(4) AP is a set of finite atomic propositions;
(5) L : S −→ [0, 1]AP is a state label function that characterizes a set of fuzzy atomic propositions.

Definition 4 [path and path reachability]. Suppose M = (S, I, δ, AP, L) is an FKS, where a
path π is a state sequence π = π0, π1, · · · , πi, πi+1, · · · ∈ Sω, and L(π) ∈ [0, 1]AP represents a
set of fuzzy atomic propositions as a fuzzy label function. ∀p ∈ AP, i ∈ N (where N represents the

Mathematics 2024, 12, 3148 6 of 36

set of natural numbers) L(πi)(p) ∈ [0, 1] represents the fuzzy atomic proposition induced by atomic
proposition p on state πi. πi = πi, πi+1, · · · ∈ Sω represents a path starting from state πi. The
recursive definition of path reachability is as follows.

δ∗i (π) =

{
I(π0) i = 0;

δ∗i−1(π) ∧ δ(πi−1, πi) i > 0.

where δ∗i (π) represents the reachability of the path fragment π0, π1, · · · , πi. This reflects the idea
of the “barrel principle”, which states that the overall reachability of a path is determined by the
minimum reachability of any path fragment. When i −→ +∞, δ∗∞(π) represents the reachability
of the infinite path π = π0, π1, · · · , πi, πi+1, · · · ∈ Sω. Path(M) = {π|π ∈ Sω, I(π0) > 0} is
the set of infinite paths in M.

Definition 5 [Boolean reachable semantics of QFLTL]. The Boolean reachable seman-
tics ∥·∥ maps an infinite path π ∈

(
[0, 1]AP

)ω
and a QFLTL formula φ to the fuzzy satisfaction

value ∥π, φ∥ of φ on π, which is defined as follows.

(1)
∥∥πi, r

∥∥ = r;
(2)

∥∥πi, p
∥∥ = L(πi)(p);

(3)
∥∥πi,

a
1(φ)

∥∥ =
a

1
(∥∥πi, φ

∥∥);
(4)

∥∥πi, φ1
a

2 φ2
∥∥ =

∥∥πi, φ1
∥∥a

2
∥∥πi, φ2

∥∥;
(5)

∥∥πi,⃝φ
∥∥ =

∥∥πi+1, φ
∥∥;

(6)
∥∥πi,3φ

∥∥=
∨
j≥i

∥∥π j, φ
∥∥;

(7)
∥∥πi,□φ

∥∥=
∧
j≥i

∥∥π j, φ
∥∥;

(8)
∥∥πi, φ1

⋃
φ2
∥∥ =

∨
j≥i

(
∥∥π j, φ2

∥∥ ∧ ∧
i≤k<j

∥∥∥πk, φ1

∥∥∥).
Definition 6 [quantitatively reachable semantics of QFLTL]. Suppose M = (S, I, δ, AP, L) is
an FKS, then π = π0, π1, · · · , πi, πi+1, · · · ∈ Sω is any path in M; ◦ ∈ {

∧
, ·,⊕λ} is a

fuzzy synthesis operation. The quantitative reachability semantics J· K maps an infinite path

π ∈
(
[0, 1]AP

)ω
and a QFLTL formula φ to the fuzzy satisfaction value Jπ, φ K of φ on π, which

is defined as follows.

(1) Jπi, r K = δ*
i (π) ◦ r;

(2) Jπi, p K = δ*
i (π) ◦ L(πi)(p);

(3) Jπi,
a

1(φ) K =
a

1
(
Jπi, φ K

)
;

(4) Jπi, φ1
a

2 φ2 K = Jπi, φ1 K
a

2 Jπi, φ2 K;
(5) Jπi,⃝φ K = Jπi+1, φ K;
(6) Jπi,3φ K =

∨
j≥i

Jπ j, φ K;

(7) Jπi,□φ K =
∧
j≥i

Jπ j, φ K;

(8) Jπi, φ1
⋃

φ2 K =
∨
j≥i

(
Jπ j, φ2 K∧ ∧

i≤k<j
Jπk, φ1 K

)
.

Note that the quantitative semantic J· K is recursively defined. Formally, it appears
that, except when φ is a fuzzy constant r ∈ APR or an atomic proposition p ∈ AP,
J· K synthesizes path-reachability information. However, no explicit path-reachability
information is directly extracted in other situations. Nevertheless, when the recursion
terminates with φ being a fuzzy constant r or an atomic proposition p, in essence, regardless
of the intermediate forms taken, the information is synthesized through recursive iterations.
If each form were to be considered separately, it would in fact lead to redundancy in the
representation of reachability information.

Mathematics 2024, 12, 3148 7 of 36

The principle of multiplication is embodied by “·”. To obtain the quantitative reacha-
bility semantic measure Jπi, φ K of the QFLTL formula φ on path πi = πi, πi+1, · · · ∈ Sω,
we first compute the reachability δ∗i (π) of the prefix path π0, π1, · · · , πi and, then, multiply
it by the satisfaction value ∥πi, φ∥ of the formula. “

⊕
λ” embodies the idea of weighted av-

erage, considering the fusion of path reachability and formula satisfaction values according
to different weights.

If the propositional quality constraint operators λcp, λne, λc f , and
⊕

λ are removed,
and only the “∧” operation is utilized during information synthesis, then QFLTL simplifies
into FLTL, as described in references [10,11]. Clearly, FLTL is a subset of QFLTL.

Now, we will present some examples of the system properties described using QFLTL
to illustrate the practicality of QFLTL.

Example 1. Figure 2 shows a 4-state FKS.

Mathematics 2024, 12, x FOR PEER REVIEW 7 of 36

of the intermediate forms taken, the information is synthesized through recursive itera-
tions. If each form were to be considered separately, it would in fact lead to redundancy
in the representation of reachability information.

The principle of multiplication is embodied by “∙”. To obtain the quantitative reach-
ability semantic measure ൳𝜋௜, 𝜑൷ of the QFLTL formula 𝜑 on path 𝜋௜ = 𝜋௜, 𝜋௜ାଵ, ⋯ ∈ 𝑆ఠ,
we first compute the reachability 𝛿௜∗(𝜋) of the prefix path 𝜋଴, 𝜋ଵ, ⋯ , 𝜋௜ and, then, multi-
ply it by the satisfaction value ‖π௜, 𝜑‖ of the formula. “ ⨁ఒ ” embodies the idea of
weighted average, considering the fusion of path reachability and formula satisfaction
values according to different weights.

If the propositional quality constraint operators 𝜆௖௣, 𝜆௡௘, 𝜆௖௙, and ⨁ఒ are removed,
and only the “∧” operation is utilized during information synthesis, then QFLTL simpli-
fies into FLTL, as described in references [10,11]. Clearly, FLTL is a subset of QFLTL.

Now, we will present some examples of the system properties described using
QFLTL to illustrate the practicality of QFLTL.

Example 1. Figure 2 shows a 4-state FKS.

Figure 2. A 4-state FKS. 𝐴𝑃 = {𝑎}, S = {𝑠଴, 𝑠ଵ, 𝑠ଶ, 𝑠ଷ}, 𝐼 = (0.8,0,0,0)஋, 𝐼(𝑠଴) = 0.8, 𝐿(𝑠଴)(𝑎) = 0.3, ⋯ , 𝐿(𝑠ଷ)(𝑎) =0.9, δ(𝑠଴, 𝑠ଵ) = 0.5, ⋯ , δ(𝑠ଷ, 𝑠ଷ) = 0.8. There is only one infinite path; that is 𝜋 =𝑠଴, 𝑠ଵ, 𝑠ଶ, 𝑠ଷఠ, 𝛿଴∗(𝜋) = 0.8, 𝛿ଵ∗(𝜋) = 0.5, 𝛿ଶ∗(𝜋) = 0.5, when 𝑖 ≥ 3, 𝛿ଷ∗(𝜋) = 0.3,

If “.” is taken as the information fusion operator, then, ൳𝜋௜, ◇𝑎൷ = ⋁௜ஹ଴൳𝜋௜, 𝑎൷ = ⋁௜ஹ଴𝛿௜∗(𝜋) ∙ 𝜋௜(𝑎) = (0.3 × 0.8) ∨ (0.6 × 0.5) ∨ (0.7 × 0.5) ∨ (0.9 × 0.3) ∨ (0.9 × 0.3) ∨ ⋯ = 0.35.
If it is believed that the formula satisfies an importance that is three times greater

than that of the value formula path reachability, we take ⨁଴.ଶହ as the information fusion
operator. Then, ⟦𝜋, (◇𝑎)⟧ = ⋁௜ஹ଴൳𝜋௜, 𝑎൷=⋁𝛿௜∗(𝜋)௜ஹ଴ ⨁଴.ଶହ𝜋௜(𝑎) = (0.8 × 0.25 + 0.3 × 0.75) ∨ (0.5 × 0.25 + 0.6 × 0.75) ∨ (0.5 × 0.25 + 0.7 × 0.75) ∨ (0.3 × 0.25 + 0.9 × 0.75) ∨ (0.3 × 0.25 + 0.9 × 0.75) ∨ ⋯ = 0.75

At this point, the value of ⟦𝜋, ◇𝑎⟧ is obtained along the path fragment cluster {𝜋 =𝑠଴, 𝑠ଵ, 𝑠ଶ, 𝑠ଷ௜ |i≥ 1}.

Example 2. Consider a scheduler that accepts requests and generates authorizations. Use the
QFLTL formula 𝜑 = □(𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ⟶ (𝑔𝑟𝑎𝑛𝑡 ⨁ଷ/ସ◯𝑔𝑟𝑎𝑛𝑡)) ∧ ¬(4/5)௖௣(¬𝑟𝑒𝑞𝑢𝑒𝑠𝑡)

to characterize the following temporal property.
During the runtime of the scheduler, it always ensures that, once a process requests

a critical resource (𝑟𝑒𝑞𝑢𝑒𝑠𝑡), it will be granted in the future or in the immediate next state
(𝑔𝑟𝑎𝑛𝑡). If the process does not issue any authorization requests throughout the entire
scheduling process, it is considered to fulfill a condition related to a value of 3/4, but the
exact formulation of this condition in temporal logic would depend on the context and
specific requirements.

Figure 2. A 4-state FKS.

AP = {a}, S = {s0, s1, s2, s3}, I = (0.8, 0, 0, 0)T, I(s0) = 0.8, L(s0)(a) = 0.3, · · · , L(s3)
(a) = 0.9, δ(s0, s1) = 0.5, · · · , δ(s3, s3) = 0.8. There is only one infinite path; that is
π = s0, s1, s2, s3

ω, δ*
0(π) = 0.8, δ*

1(π) = 0.5, δ*
2(π) = 0.5, when i ≥ 3, δ*

3(π) = 0.3,
If “.” is taken as the information fusion operator, then,

Jπi,3a K =
∨

i≥0
Jπi, a K =

∨
i≥0

δ∗i (π)·πi(a)

= (0.3 × 0.8) ∨ (0.6 × 0.5) ∨ (0.7 × 0.5) ∨ (0.9 × 0.3) ∨ (0.9 × 0.3) ∨ · · · = 0.35.

If it is believed that the formula satisfies an importance that is three times greater
than that of the value formula path reachability, we take

⊕
0.25 as the information fusion

operator. Then,

Jπ, (3a) K =
∨

i≥0
Jπi, a K=

∨
δ∗i (π)
i≥0

⊕
0.25 πi(a)

= (0.8 × 0.25 + 0.3 × 0.75) ∨ (0.5 × 0.25 + 0.6 × 0.75) ∨ (0.5 × 0.25 + 0.7 × 0.75)
∨(0.3 × 0.25 + 0.9 × 0.75) ∨ (0.3 × 0.25 + 0.9 × 0.75) ∨ · · · = 0.75

At this point, the value of Jπ,3a K is obtained along the path fragment cluster{
π = s0, s1, s2, si

3 |i≥ 1}.

Example 2. Consider a scheduler that accepts requests and generates authorizations. Use the
QFLTL formula

φ = □
(

request −→
(

grant
⊕

3/4
⃝ grant

))
∧ ¬

(
4/5)cp(¬request)

to characterize the following temporal property.

During the runtime of the scheduler, it always ensures that, once a process requests
a critical resource (request), it will be granted in the future or in the immediate next state
(grant). If the process does not issue any authorization requests throughout the entire
scheduling process, it is considered to fulfill a condition related to a value of 3/4, but the
exact formulation of this condition in temporal logic would depend on the context and
specific requirements.

Mathematics 2024, 12, 3148 8 of 36

Assuming π ∈
(
[0, 1]AP

)ω
is an arbitrary path, it is used to characterize the process

scheduling process. Below, we will analyze the satisfaction values of the formula on
different paths for π.

(1) If the following LTL formula is used, it is difficult to characterize the above temporal
properties accurately;

□(request →3(grant∨ ⃝grant) ∧ (□¬request))

(2) Obviously, this LTL formula struggles to distinguish between situations where no
request has been made and situations where requests are authorized at a future system
time or at a subsequent system time;

(3) To characterize this temporal property using the aforementioned QFLTL formula, we
can express it as follows. When no request is issued at all, the satisfaction value of
the formula is one-fifth. After a request is issued but authorization is never granted,
the satisfaction value is zero. After a request is issued, if there exists a future adjacent
state pair where both states grant authorization, the satisfaction value is one. If in a
state pair, the first state grants authorization but the second does not, the satisfaction
value is three-fourths. And if in a state pair, the first state does not grant authorization
but the second does, the satisfaction value is one-fourth.

Obviously, the five satisfaction values correspond to the five possible scenarios that
may arise during the process scheduling procedure. Therefore, QFLTL has a stronger
expressive ability than LTL.

3. The Properties and Boolean Transformations of QFLTL
3.1. Relationship between QFLTL Formulas

Definition 7 [the relations between QFLTL formulas]. Let φ1 and φ2 be the QFLTL formulas.
M = (S, I, δ, AP, L) is an FKS. Path(M) = {π|π ∈ Sω, I(π0) > 0} is the set of infinite

paths in M, and ∼∈ (>,<,≥,≤, ̸=,=) is a relational operator.

(1) If ∀π ∈
(
[0, 1]AP

)ω
, ∥π, φ1∥ ∼ ∥π, φ2∥ then we say that φ1 and φ2 satisfy the relationship

“∼”, which is denoted as φ1 ∼ φ2;
(2) If ∀π ∈ Path(M), Jπ, φ1 K ∼ Jπ, φ2 K then we say that φ1 and φ2 satisfy the relationship

“∼” in M, which is denoted as φ1 ∼M φ2.

Proposition 1 [equivalent calculus of QFLTL]. If φ1 and φ2 are QFLTL formulas, and M =
(S, I, δ, AP, L) is an FKS, then,

(1) φ=¬¬φ;
(2) φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2); φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2);
(3) φ1 −→ φ2 = ¬φ1 ∨ φ2 ;
(4) 3φ=Ture ∪ φ;
(5) □φ = ¬(3¬φ);
(6) 3φ = φ∨⃝3φ
(7) □φ = φ∧⃝□φ
(8) φ1

⋃
φ2 = φ2 ∨ (φ1∧⃝(φ1

⋃
φ2);

(9) φ =M ¬¬φ;
(10) φ1 ∧ φ2 =M ¬(¬φ1 ∨ ¬φ2);φ1 ∨ φ2 =M ¬(¬φ1 ∧ ¬φ2);
(11) φ1 −→ φ2 ≥M ¬φ1 ∨ φ2 ;
(12) 3φ =M Ture ∪ φ;
(13) □φ =M ¬(3¬φ);
(14) 3φ =M φ∨⃝3φ;
(15) □φ =M φ∧⃝□φ;
(16) φ1

⋃
φ2 = φ2 ∨ (φ1∧⃝(φ1

⋃
φ2).

Mathematics 2024, 12, 3148 9 of 36

Proof. According to Definition 5, it is straightforward to prove the conclusion of Proposition 1.□

Proposition 2. The set
{
¬, λcp, λne, λc f ,∨,

⊕
λ, ⃝ ,3,

⋃
} constitutes a functionally complete

set of QFLTL operators.

According to Definitions 5 and 6, the QFLTL semantics assign a fuzzy satisfaction
value to a given path π and a QFLTL formula φ. Thus, the value of the QFLTL formula
depends on both φ itself and the specified path π. Subsequently, through meticulous
analysis and the summarization of φ and π, the properties of QFLTL and the Boolean
method are elucidated. This serves as a prerequisite for the subsequent automation and
reasoning processes.

3.2. Boundedness of the Range of QFLTL Formulas

Definition 8 [spanning tree of QFLTL formulas]. The spanning tree of a QFLTL formula φ is
recursively defined as follows.

(1) A proposition constant r or an atomic proposition p in φ is characterized as a leaf node of the
spanning tree of φ;

(2) Each operator of φ corresponds to a subtree of the spanning tree of φ, where the operator
serves as the root node of its subtree, and the subformulas associated with this operator are the
branches of the subtree.

Definition 9 [length of QFLTL formulas]. The number of nodes in the spanning tree of a
QFLTL formula φ is called the length of φ, which is denoted as |φ|.

Definition 10 [calculated base and cardinality]. Given a path of π = π0, π1, · · · , πi, πi+1, · · · ∈(
[0, 1]AP

)ω
, the set, Bπ =

{
πi
∣∣i ∈ N, πi ∈ π, ∀ i ̸= j, πi ̸= πj.

}
is called the base of π, and

|π| =|Bπ |∈ N+ is called the cardinality of π.

A path with limited cardinality is called a measurable path. If Π is a set of measurable
paths, then

∨
π∈Π

|Bπ | is called the cardinality of Π.

Obviously, the basis of a finite path is finite. In fact, the basis of an infinite path can
also be finite. The following are two important definitions related to infinite paths with
finite bases.

Definition 11 [lasso path] If a path π ∈
(
[0, 1]AP

)ω
has the form

π = π0, π1, · · · , πµ−1, (π
µ

, πµ+1, · · ·πµ+υ−1)
ω

where µ ∈ N, υ ∈ N+, then π is called a lasso path.

Definition 12 [pure lasso path]. Let π = π0, π1, · · · , πµ−1, (π
µ
, πµ+1, · · ·πµ+υ−1)

ω be a

lasso path, where µ ∈ N, and υ ∈ N+ If π0, π1, · · · , πµ−1, π
µ
, πµ+1, · · ·πµ+υ−1 are distinct

from each other, then π is called a pure lasso path.

Proposition 3 [base of lasso path]. The base of the lasso path

π = π0, π1, · · · , πµ−1, (π
µ

, πµ+1, · · ·πµ+υ−1)
ω

is |π| ≤ µ + υ, if and only if π is a pure lasso path.

Mathematics 2024, 12, 3148 10 of 36

Theorem 1 [bounded range of QFLTL formula]. Let φ be a QFLTL formula and M =

(S, I, δ, AP, L) be an FKS. V[φ] =
{
∥π, φ∥

∣∣∣π ∈
(
[0, 1]AP

)ω}
be the Boolean reachable semantic

range, V Jφ K = { Jπ, φ K|π ∈ Sω} be the quantitative reachable semantic range, and m be the

cardinality of the measurable path set in
(
[0, 1]AP

)ω
. Then,

∣∣∣V[φ]
∣∣∣≤ m|φ| and |V Jφ K| ≤ |S||φ|+2.

Proof. First, we prove that
∣∣∣V[φ]

∣∣∣≤ m|φ| . This proof is induced based on the structure of φ.

(1) If φ = r, p, |V[φ]| = 1 ≤ m=m|φ|;
(2) If φ =

a
1 ϕ,⃝ϕ,♢ϕ,□ϕ, |V[φ]| = |V[ϕ]|, based on the inductive hypotheses, we

obtain |V[φ]| = |V[ϕ]| ≤ m|ϕ| ≤ m|ϕ|+1=m|φ|;
(3) If φ = φ1 ∧ φ2, φ1 ∨ φ2, φ1 −→ φ2, φ1

⊕
λ φ2, φ1

⋃
φ2V[φ] ⊆ V[φ1] ∪ V[φ2], |V[φ]|

≤ |V[φ1]|+ |V[φ2]|, |V[φ]| ≤ m|φ1|+m|φ2| ≤ m|φ1|+|φ2| ≤ m|φ1|+|φ2|+1 = m|φ|.
Next, we prove that |VJφ K| ≤ |S||φ|+2.
From the definition of δ∗i , it is easy to deduce that

∣∣{δ∗i
∣∣i ∈ N

}∣∣ ≤ |S × S| = |S|2.
Based on the structure of φ, the following is the proof.

(4) When “◦” takes “∧”, VJφ K ⊆ V[φ] ∪
{

δ*
i

∣∣i ∈ N
}

,
∣∣VJφ K|≤ |V[φ]|+ |S|2 ≤ |S||φ|·|S|2

≤ |S||φ|+2;
(5) When “◦” takes “·” or “

⊕
λ”, VJφ K ⊆

{
δ*

i

∣∣i ∈ N
}
× V[φ],

∣∣∣VJφ K
∣∣∣≤ |V[φ]|·|S|2 =

|S||φ|·|S|2 ≤ |S||φ|+2 . □

3.3. Boolean Characterization of QFLTL Formula

Next, using the fuzzy predicate P ⊆ [0, 1] ∩Q (Q is a set of rational numbers.) to
qualitatively partition the satisfaction values of the QFLTL formula φ. The aim is to
characterize the qualitative satisfaction property of φ.

Lemma 1. If P is a fuzzy predicate and P = [α, β] (where P can be an open interval or a semi-open
or semi-closed interval), and λ ∈ (0, 1) is a fuzzy number, then we have,

(1)
∥∥π, λcp(φ)

∥∥ ∈ [α, β], if and only if ∥π, φ∥ ∈ Pcp = [α/λ, β/λ];
(2) ∥π, λne(φ)∥ ∈ [α, β] if and only if ∥π, φ∥ ∈ Pne = [(α + λ − 1)/λ, (β + λ − 1)/λ] ;

(3)
∥∥∥π, λc f (φ)

∥∥∥ ∈ [α, β] if and only if ∥π, φ∥ ∈ Pc f = [(2α + λ − 1)/2λ, (2β + λ − 1)/2λ] ;

(4) ∥π, φ1
⊕

λ φ2∥ ∈ [α, β], if and only if, ∃d1, d2, d1 = ∥π, φ1∥ ∈ V[φ1], d2 = ∥π, φ2∥ ∈
V[φ2]

d1
⊕

λ d2 ∈ [α, β].

Proof. According to the definition of ∥·∥ given in Definition 5, the result is obvious. □

Theorem 2 [Boolean transformation of QFLTL]. Let φ be a QFLTL formula, π be an infinite
path, and P be a predicate over the satisfaction values of QFLTL formulas. There exists an LTL
formula Bool(φ, P) such that ∥π, φ∥ ∈ P if and only if π ⊨ Bool(φ, P).

Proof. The construction of Bool(φ, P) is as follows.

(1) If φ = r ∈ [0, 1], Bool(φ, P) =
{

Ture r ∈ P
False r /∈ P

;

(2) If φ = p ∈ AP, Bool(p, P) =


Ture [0, 1] ⊆ P

p π0(p) ∈ P
¬p π0(p) /∈ P

False [0, 1] ∩ P = ∅

;

(3) If φ = ¬ϕ, Bool(φ, P) = ¬Bool(ϕ, P);
(4) If φ = λcp(ϕ), Bool

(
λcp(ϕ), P

)
=Bool

(
ϕ, Pcp

)
;

Mathematics 2024, 12, 3148 11 of 36

(5) If φ = λne(ϕ), Bool(λne(ϕ), P)=Bool(ϕ, Pne);

(6) If φ = λc f (ϕ), Bool
(

λc f (ϕ), P
)

=Bool
(

ϕ, Pc f

)
;

(7) If φ = φ1
⊕

λ φ2, Bool(φ, P) =
∨

d1∈V[φ1],d2∈V[φ2],d1
⊕

λ d2∈[α,β]
Bool(φ1, d1)∧ Bool(φ2, d2);

(8) If φ = φ1 ∨ φ2, Bool(φ1 ∨ φ2, P) = Bool(φ1, P) ∨ Bool(φ2, P);
(9) If φ = ⃝ϕ, Bool(⃝ϕ, P) =⃝Bool(ϕ, P);
(10) If φ =3ϕ, Bool(3ϕ, P) =3Bool(ϕ, P);
(11) If φ = □ϕ, Bool(□ϕ, P) = □Bool(ϕ, P);
(12) If φ = φ1

⋃
φ2 Bool(φ1

⋃
φ2, P) =

∨
c∈P

⋂
V[φ]

((Bool(φ1, [c, 1])
⋃

Bool(φ2, [c, 1]))

∧¬(Bool(φ1, [0, c))
⋃

Bool(φ2, [0, c)))).

According to the above construction of Bool(ϕ, P), it is straightforward to prove cases
(1) through (11), and here, we will prove a relatively complex case involving φ = φ1

⋃
φ2.

∥π, φ∥ = c ∈ P ∩ V[φ] ⇐⇒ ∨
i≥0

(∥∥πi, φ2
∥∥ ∧ ∧

0≤j<i

∥∥π j, φ1
∥∥) = c

⇐⇒
(∨

i≥0

(∥∥πi, φ2
∥∥ ∧ ∧

0≤j<i

∥∥π j, φ1
∥∥) ≥ c

)
∧ ¬

(∨
i≥0

(∥∥πi, φ2
∥∥ ∧ ∧

0≤j<i

∥∥π j, φ1
∥∥) < c

)

⇐⇒
(∨

i≥0

(∥∥πi, φ2
∥∥ ∧ ∧

0≤j<i

∥∥π j, φ1
∥∥) ∈ [c, 1)

)
∧ ¬

(∨
i≥0

(∥∥πi, φ2
∥∥ ∧ ∧

0≤j<i

∥∥π j, φ1
∥∥) ∈ [0, c)

)
⇐⇒ (

∨
i≥0

(πi ⊨ Bool(φ1, [c, 1]) ∧ ∧
0≤j<i

π j ⊨ Bool(φ2, [c, 1]))

∧¬(∨
i≥0

(πi ⊨ Bool(φ1, [0, c)]) ∧ ∧
0≤j<i

π j ⊨ Bool(φ2, [0, c))))

⇐⇒ π ⊨ (Bool(φ1, [c, 1])
⋃

Bool(φ2, [c, 1])) ∧ ¬(Bool(φ1, [0, c))
⋃

Bool(φ2, [0, c))). □

According to Theorem 2, the quantitative reasoning problem of QFLTL formulas can
be reduced to the classical LTL reasoning framework for solving.

4. Search and Decision Problems for Boolean Reachable Semantics in QFLTL

Validity, satisfiability, model checking, and other core issues in search and decision-
making are addressed within the QFLTL framework, along with the solutions to these issues.

4.1. The Automaton Representation of Boolean Reachable Semantics in QFLTL

Within the inferential theoretical frameworks of classic LTL, PLTL, and PoLTL, there
exist theories and applications that construct an automaton Aφ,P capable of qualitatively
satisfying the predicate P with the formula φ. Subsequently, we solve related search and
decision problems by assessing the emptiness of Aφ,P or the product of the physical symbol
system Γ, which is obtained from the current application modeling and Aφ,P. Next, we will
extend this theory to the QFLTL framework.

Theorem 3 [constructing QFLTL formula as an automaton]. Let φbe a QFLTL formula, π ∈(
[0, 1]AP

)ω
be a measurable infinite path, and P ⊆ [0, 1] ∩Q be a fuzzy predicate. Let m be the

cardinality of the set of all measurable paths. There exists a NGBA Aφ,P, such that ∥π, φ∥ ∈ P if

and only if π ∈ L(A φ,P

)
. The number of states of Aφ,P does not exceed m|φ|2 . The index (i.e., the

number of Büchi acceptance sets) of Aφ,P does not exceed |φ|.

Proof. The set of sub formulas of φ is denoted as cl(φ), and

Cφ = {g|g : cl(φ) → [0, 1], ∀ϕ ∈ cl(φ), g(φ) ∈ V[φ]}.

Mathematics 2024, 12, 3148 12 of 36

Construct an NGBA Aφ,P =
{

2AP, Q, δ, Q0, F
}

, where 2AP is the input alphabet (set
of symbols). The state space of Aφ,P is Q ∈ Cφ. The transition function δ : Q × 2AP → Q
determines the next state, given the current state and input symbol. If the current state is
gi ∈ Q, it transitions to the next state gi+1 upon inputting σi ∈ 2AP. The initial state set of
Aφ,P is Q0 = {g 0

}
. Where g0 is a specific function in Cφ.F is the set of final states, where

each φ1
⋃

φ2 ∈ cl(φ) contributes a subset of final states

Fφ1
⋃

φ2 =
{

g
∣∣∣g(φ2) = g

(
φ1
⋃

φ2

)}
to F.

For all ϕ ∈ cl(φ), Aφ,P satisfies the following consistency constraints.

(1) Consistency constraint for propositional logic (CP rules);

– CP − r The consistency of fuzzy constant propositions.

when ϕ = r ∈ [0, 1], gi(r) =
{

r r ∈ P
0 r /∈ P

;

– CP − AP The consistency of fuzzy atomic propositions.

When ϕ = p ∈ AP, gi(p) =
{

πi(p) πi(p) ∈ P
0 πi(p) /∈ P

;

– CP −¬ When ϕ = ¬ψ, gi(ϕ) = ¬gi(ψ) = 1 − gi(ψ);
– CP − λcp When ϕ = λcp(ψ), gi(ϕ) = λ·gi(ψ);
– CP − λne When ϕ = λne(ψ), gi(ϕ) = λ·gi(ψ) + 1 − λ;
– CP − λc f When ϕ = λc f (ψ), gi(ϕ) = λ·gi(ψ) + (1 − λ)/2;
– CP −∧ When ϕ = ψ1 ∧ ψ2, gi(ϕ) = gi(ψ1) ∧ gi(ψ2);
– CP −∨ When ϕ = ψ1 ∨ ψ2, gi(ϕ) = gi(ψ1) ∨ gi(ψ2);
– CP − ◦ When ϕ = ψ1 ◦ ψ2, gi(ϕ) = gi(ψ1) ◦ gi(ψ2).

(2) Temporal Consistency Constraint. (CT Rules).

– —CP − σ.Σ = (p|p ∈ AP, gi(p) > 0);
– —CP−⃝ When ϕ =⃝ψ When gi(ϕ) = gi+1(ψ);
– —CP −3 When ϕ = 3ψ gi(ϕ) = gi(ψ) ∨ gi+1(ψ);
– —CP −□ When ϕ = □ψ gi(ϕ) = gi(ψ) ∧ gi+1(ψ);
– —CP −⋃

When ϕ = ψ1
⋃

ψ2, gi(ϕ) = gi(ψ2) ∨ (g i(ψ1) ∧ (g i+1(ψ1)
⋃

gi+1(ψ2))).

Next, we prove that “∥π, φ∥ ∈ P =⇒ π ∈ L(A φ,P

)
”.

For all ϕ ∈ cl(φ), let gi(ϕ) =
∥∥πi, ϕ

∥∥. According to Definition 5, it can be proven that
the running ρ = g0, g1, . . . satisfies all the consistency mentioned above. Here is a relatively
complex “CP −⋃

”, as demonstrated by the following example.

gi(φ1
⋃

φ2) =
∥∥πi, φ1

⋃
φ2
∥∥ =

∨
j≥i

(∥∥π j, φ2
∥∥ ∧ ∧

i≤k<j

∥∥∥πk, φ1

∥∥∥)
= gi(φ2) ∨ (gi(φ1) ∧ gi+1(φ1

⋃
φ2)).

Next, it is necessary to prove that there exists an infinite number of states in Fφ1
⋃

φ2 =
{g|g(φ2) = g(φ1

⋃
φ2)}, suchthat g ∈ {g0, g1, . . .}. To do this, let us first prove that ∀i ∈ N,∥∥∥πi, φ2

∥∥∥ ≤
∥∥∥πi, φ1

⋃
φ

2

∥∥∥ (1)

∥∥∥πi, φ1
⋃

φ2

∥∥∥ =
∥∥∥πi, φ2

∥∥∥ ∨
∥∥∥πi, φ1

∥∥∥ ∧ ∨
j≥i+1

∥∥∥π j, φ2

∥∥∥ ∧ ∧
i≤k<j

∥∥∥πk, φ1

∥∥∥
 ≥

∥∥∥πi, φ2

∥∥∥.

Mathematics 2024, 12, 3148 13 of 36

Furthermore, we prove that ∃j ∈ N, such that
∥∥π j, φ2

∥∥ ≥
∥∥π j, φ1

⋃
φ2
∥∥. According to

Theorem 4, since V[φ2] is finite, ∃j ∈ N, such that
∥∥π j, φ2

∥∥ =
∨

k≥j

∥∥∥πk, φ2

∥∥∥. This leads to the

following conclusion.

∥∥∥π j, φ2

∥∥∥ =
∨
k≥j

∥∥∥πk, φ2

∥∥∥ ≥
∨
k≥j

∥∥∥π j, φ2

∥∥∥ ∧ ∧
j≤t<k

∥∥∥πk, φ1

∥∥∥
 =

∥∥∥π j, φ1
⋃

φ2

∥∥∥.

Since the premise of Equation (1) is ∀j ∈ N, it can be obtained that,∥∥∥π j, φ2

∥∥∥ ≤
∥∥∥π j, φ1

⋃
φ

2

∥∥∥. (2)

By integrating (1) and (2), it can be concluded that

∀i ∈ N, ∃j ≥ i
∥∥∥π j, φ2

∥∥∥ =
∥∥∥π j, φ1

⋃
φ

2

∥∥∥.

Furthermore, it can be concluded that gj(φ2) = gj(φ1
⋃

φ2). By this approach, we
have ∀i ∈ N, ∃j ≥ i, gj ∈ F

φ1
⋃

φ2
= {g|g(φ2) = g(φ1

⋃
φ2)} ⊆ F.

In summary, ρ = g0, g1, . . . is an acceptable run in Aφ,P.

On the other hand, it needs to prove that ∥π, φ∥ ∈ P ⇐= π ∈ L(A φ,P

)
.

Let = g0, g1, . . . be an acceptable run on π ∈ L(A φ,P

)
in Aφ,P.∀i ∈ N,∀ϕ ∈ cl(φ). We

now prove that
∥∥πi, φ

∥∥ = gi(φ). This conclusion is easily proven based on the structure of
φ and the construction of Aφ,P. For a more complex situation, that is, when ϕ = φ1

⋃
φ2,

we prove that, ∥∥∥πi, ϕ
∥∥∥ = gi

(
φ1
⋃

φ2

)
.□ (3)

To prove formula (3), we first need to prove the following two lemmas.

Lemma 2. If ϕ = φ1
⋃

φ2 ∈ cl(φ), gl ∈ Fφ, then

gl

(
φ1
⋃

φ2

)
=
∨
j≥l

gj(φ2) ∧
∧

l≤k<j

gk(φ1)

=
∥∥∥πl , φ1

⋃
φ2

∥∥∥.

Proof. First, we prove that

gl

(
φ1
⋃

φ2

)
≤
∨
j≥l

gj(φ2) ∧
∧

l≤k<j

gk(φ1)

. (4)

∨
j≥l

gj(φ2) ∧
∧

l≤k<j

gk(φ1)

 = gl(φ2) ∨
∨

j≥l+1

gj(φ2) ∧
∧

l≤k<j

gk(φ1)

 ≥ gl(φ2)

Since gl ∈ Fφ, then
∨
j≥l

(
gj(φ2)∧

∧
l≤k<j

gk(φ1)

)
≥ gl(φ2) = gl(φ1

⋃
φ2) Hence, (4) holds.

Then we prove that

gl

(
φ1
⋃

φ2

)
≥
∨
j≥l

gj(φ2) ∧
∧

l≤k<j

gk(φ1)

. (5)

Mathematics 2024, 12, 3148 14 of 36

Suppose inequality (5) does not hold, then we have

gl

(
φ1
⋃

φ2

)
<
∨
j≥l

gj(φ2) ∧
∧

l≤k<j

gk(φ1)

. (6)

According to inequality (6), ∃t ≥ l such that

gl

(
φ1
⋃

φ2

)
< gt(φ2) ∧

∧
l≤k<t

gk(φ1)≤ gt(φ2). (7)

Next, we prove a recursive inequality

gi

(
φ1
⋃

φ2

)
≥ gi+1

(
φ1
⋃

φ2

)
. (8)

If inequality (8) does not hold, then we have

gi

(
φ1
⋃

φ2

)
< gi+1

(
φ1
⋃

φ2

)
. (9)

Since gi(φ1
⋃

φ2) = gi(φ2) ∨ (g i(φ1)∧gi+1(φ1
⋃

φ2)), by substituting (9) into this
equation, get

gi

(
φ1
⋃

φ2

)
> gi(φ2) ∨ (g i(φ1)∧gi

(
φ1
⋃

φ2

))
= (g i(φ2) ∨ gi(φ1))∧(g i(φ2) ∨ gi

(
φ1
⋃

φ2

))
> (g i(φ2) ∨ gi(φ1)) ∧ gi(φ1

⋃
φ2). Therefore,

gi

(
φ1
⋃

φ2

)
> gi(φ2) ∨ gi(φ1) (10)

However,

gi(φ1
⋃

φ2) = gi(φ2) ∨ (g i(φ1)∧gi+1(φ1
⋃

φ2))
= (g i(φ2) ∨ gi(φ1))∧(g i(φ2) ∨ gi(φ1

⋃
φ2)) ≤ gi(φ2) ∨ (g i(φ1).

This contradicts inequality (10), so inequality (8) does not hold, and inequality (8)
is proven.

From the arbitrariness of i in (8), it can be obtained that

gi

(
φ1
⋃

φ2

)
≥ gi+1

(
φ1
⋃

φ2

)
≥ · · · ≥ gt

(
φ1
⋃

φ2

)
. (11)

Since gt

(
φ1
⋃

φ2

)
= gt(φ2) ∨ (g t(φ1) ∧ gt+1

(
φ1
⋃

φ2

)
≥ gt(φ2), (12)

by substituting inequalities (11) and (12) into (7), we have

gl

(
φ1
⋃

φ2

)
≥ g

t

(
φ1
⋃

φ2

)
≥ gl(φ2) > gl

(
φ1
⋃

φ2

)
.

This is a contradictory formula, so (6) does not hold, and therefore, (5) holds. Derived

from inequalities (4) and (5), we have gl(φ1
⋃

φ2) =
∨
j≥l

(
gj(φ2) ∧

∨
l≤k<j

gk(φ1)

)
.

Then, by introducing the inductive hypothesis, we can obtain gl(φ1
⋃

φ2)

= ∨
j≥l

(
gj(φ2) ∧

∧
l≤k<j

gk(φ1)

)
=
∥∥∥πl , φ1

⋃
φ2

∥∥∥. Lemma 2 has been proven. □

Lemma 3. ∀i ∈ N, gi(φ1
⋃

φ2) =
∨
j≥i

(
gj(φ2) ∧

∧
i≤k<j

gk(φ1)

)
=
∥∥πi, φ1

⋃
φ2
∥∥.

Mathematics 2024, 12, 3148 15 of 36

Proof. For all i ∈ N, we only need to prove that

gi

(
φ1
⋃

φ2

)
=
∨
j≥i

gj(φ2) ∧
∧

i≤k<j

gk(φ1)

. (13)

Now, using the first mathematical induction method to prove Equation (13), according
to Lemma 2, Equation (13) holds when i = l. Now, assuming that Equation (13) holds,

when i = t, then we have gt(φ1
⋃

φ2) =
∨
j≥t

(
gj(φ2) ∧

∧
t≤k<j

gk(φ1)

)
.

We then need to show that it also holds for i = t − 1.

gt−1(φ1
⋃

φ2) = gt−1(φ2) ∨ gt(φ1
⋃

φ2)

= gt−1(φ2) ∨
∨
j≥t

(
gj(φ2) ∧

∧
t≤k<j

gk(φ1)

)
(Induction Hypositesis)

= (g t−1(φ2) ∧ 1) ∨ ∨
j≥t

(
gj(φ2) ∧

∧
t≤k<j

gk(φ1)

)

= (g t−1(φ2) ∧
∧

t−1≤k<t−1
gk(φ1)) ∨

∨
j≥t

(
gj(φ2) ∧

∧
t≤k<j

gk(φ1)

)

=
∨

j≥t−1

(
gj(φ2) ∧

∧
t−1≤k<j

gk(φ1)

)
.

This is to say that, if Equation (13) holds when i = t, then, it can be proven that
Equation (12) holds when i = t − 1. In addition, since Equation (13) holds when i = l
(as per Lemma 2), we can conclude by mathematical induction that Equation (13) holds
∀t ∈ {i, i + 1, · · · , t, · · · , l}. From Lemma 2 (and the proof of Lemma 3), we obtain that∥∥∥πi, φ1

⋃
φ2

∥∥∥ = gi

(
φ1
⋃

φ2

)
. □

Furthermore, it can be concluded that ∥π, φ1
⋃

φ2∥ =
∥∥π0, φ1

⋃
φ2
∥∥ = g0(φ1

⋃
φ2) ∈

Q0. According to the definition of Q0, we get ∥π, φ1
⋃

φ2∥ = g0(φ1
⋃

φ2) ∈ P. We deduce
that ∥π, φ∥ ∈ P ⇐= π ∈ L(A φ,P

)
.

At this point, we have proven that ∥π, φ∥ ∈ P if and only if π ∈ L(A φ,P

)
.

Finally, we will discuss the scale of Aφ,P, which was constructed in Theorem 3.
Let V+(φ) =

⋃
ϕ∈cl(φ)

V(ϕ) ∈ V(φ). Because g : cl(φ) → V+(φ) , so,

|Q| ≤ |g| =
∣∣V+(φ)

∣∣cl(φ) ≤ |V(φ)|cl(φ) = (m |φ|
)|φ|;

= m|φ|2; |F φ1
⋃

φ2

∣∣∣≤∣∣∣g(φ1
⋃

φ2

)∣∣∣≤∣∣∣cl(φ)
∣∣∣≤∣∣∣φ∣∣∣.

At this point, the proof of Theorem 3 has been completed. □

4.2. The Validity and Satisfiability Issues of Boolean Reachability Semantics for QFLTL

Definition 13 [validity and satisfiability of the Boolean reachability semantics of QFLTL].

Given a QFLTL formula φ, computing min
{
∥π, φ∥

∣∣∣π ∈
(
[0, 1]AP

)ω }
is the problem of Boolean

reachability semantic validity of QFLTL. Computing max
{
∥π, φ∥

∣∣∣π ∈
(
[0, 1]AP

)ω }
is the prob-

lem of Boolean reachability semantic satisfiability of QFLTL.

Mathematics 2024, 12, 3148 16 of 36

Solve the problem of Boolean reachability semantic validity of QFLTL through a divide
and conquer strategy. The subproblem description for the decomposition of the Boolean
reachable semantic validity problem is as follows.

Given a QFLTL formula φ, a fuzzy threshold c ∈ [0, 1], and ∀π ∈
(
[0, 1]AP

)ω
, deter-

mine whether ∥π, φ∥ ≥ c holds or not.

∀π ∈
(
[0, 1]AP

)ω
, ∥π, φ∥ ≥ c ⇐⇒ ¬ ∃π ∈

(
[0, 1]AP

)ω
, ∥π, φ∥ ∈ [0, c) = P<c.

Construct Aφ,P<c using the method of Theorem 3. If L
(

Aφ,P<c

)
= ∅, then ∀π ∈(

[0, 1]AP
)ω

, ∥π,∅∥ ≥ c holds. Otherwise, it does not hold. If L
(

Aφ,P<c

)
̸= ∅, we can

choose a smaller c′ < c, and construct Aφ,P<c′
using the method of Theorem 3. Then, it

can easily be shown that L
(

Aφ,P<c′

)
⊆ L

(
Aφ,P<c

)
. That is to say, L

(
Aφ,P<c

)
monotonically

decreases as the threshold c decreases, in the sense of set inclusion order. In this way, we can
utilize the binary search method to solve the Boolean reachable semantic validity problem.

The satisfiability problem for Boolean reachable semantics is described as follows.

Given a QFLTL formula of φ and a fuzzy threshold of c ∈ [0, 1], ∃π ∈
(
[0, 1]AP

)ω
, such that

∥π, φ∥ ≥ c holds or not, construct Aφ,P≥c using the method of Theorem 3. If L
(

Aφ,P≥c

)
̸= ∅,

then ∃π ∈
(
[0, 1]AP

)ω
, such that ∥π, φ∥ ≥ c holds. Otherwise, it does not hold. Similar to

the discussion above regarding the relationship with the threshold c, it is straightforward to
conclude that L

(
Aφ,P≥c

)
decreases as the threshold c increases, in the sense of set inclusion.

In this way, we can also employ the idea of binary search to solve satisfaction problems.
Below, we will present algorithms for solving the validity and satisfiability problems

for QFLTL with Boolean reachable semantics. These algorithms can provide solutions
to the problems within a very small range of error ε that meets the requirements. The
smaller the value of ε, the smaller the error of the solution, but the convergence speed of
the algorithm will decrease. We will provide a rigorous proof process for this during the
algorithm correctness proof and complexity analysis.

Algorithm 1 provides the validity problem-solving algorithm for QFLTL with Boolean
reachable semantics. Algorithm 2 provides the satisfiability problem-solving algorithm for
QFLTL with Boolean reachable semantics.

Theorem 4. Given a QFLTL formula φ and an error threshold ε, let m be the cardinality
of the measurable path set. Using Algorithms 1 and 2 to solve the QFLTL Boolean reachable
semantic validity problem and satisfiability problem, respectively, is correct, and their complexity
is O

(
m|φ|2 .

⌈
log
(
ε−1)⌉).

Proof. Let us first prove the correctness of the algorithms. The size of the set L
(

Aφ,P<mid[i]

)
is positively correlated with the length of the predicate interval P<mid[i] = [low[i], mid[i]),
where i ∈ N. Based on this monotonicity, employ the binary search method to approximate
the solution cv for the Boolean reachable semantic validity problem of QFLTL to a very
small fuzzy interval [low[k], high[k]], such that cv = mid[k] and l[k] = high[k]− low[k] ≤ ε.
Here, ε is typically a given relatively small error threshold, representing the error between
the final solution and the true solution. The smaller the value of ε, the closer the solution
is to the true solution. But at the same time, the convergence speed of the algorithm will
decrease. We will discuss the impact of ε on algorithm complexity later. The specific
analysis is as follows.

Mathematics 2024, 12, 3148 17 of 36

If L
(

Aφ,P<mid[i]

)
= ∅ in step 5 of the i-th iteration of Algorithm 1, it indicates that

the range of the fuzzy predicate P<mid[i] = [low[i], mid[i]] is too narrow. Therefore let
high[i + 1] = high[i] and low[i + 1] = mid[i]. In step 3 of the (i + 1)-th iteration,

mid[i + 1] = (mid[i] + high[i])/2 > (low[i] + high[i])/2 = mid[i].

But note that the last equality is actually incorrect here because mid[i + 1] is defined as
a new midpoint; the intended comparison must have been with mid[i].

If L
(

Aφ,P<mid[i]

)
̸= ∅ in step 8 of the i-th iteration of Algorithm 1, it indicates that

the range of the fuzzy predicate P<mid[i] = [low[i], mid[i]) is too wide. Therefore, let
high[i + 1] = mid[i], low[i + 1] = low[i]. For step 3 of the (i + 1)-th iteration,

mid[i + 1] = (low[i] + mid[i])/2 < (low[i] + high[i])/2 = mid[i].

It is possible to narrow down the range of the fuzzy predicate to P<mid[i] = [low[i], mid[i]).
By iteratively compressing the predicate P<mid until P<mid[k] = [low[k], mid[k]) is

compressed into an interval of length less than ε, we find the minimum cv = mid[k] that

ensures that min
{
∥π, φ∥

∣∣∣π ∈
(
[0, 1]AP

)ω }
∈ [cv − ε/2, cv + ε/2]. In other words, when ε

is used as an acceptable error threshold, we conclude that cv = mid[k].
The correctness proof of Algorithm 2 is similar to that of Algorithm 1 and is, therefore,

omitted here.
Now, let us analyze the algorithm complexity. The initial search interval length is l[0] =

1 − 0 = 1. The interval length corresponding to the i-th search is l[i] = high[i]− low[i], and
the recursive relationship is l[i + 1] = l[i]/2. A simple proof is as follows.

Because mid[i] = low[i]
⊕

high[i]=(low[i] + high[i])/2;
If low[i + 1] = mid[i], thenhigh[i + 1] = high[i], and l[i + 1]

= high[i + 1]− low[i + 1] = high[i]− (low[i] + high[i])/2 = (high[i]− low[i])/2 = l[i]/2;
If high[i + 1] = mid[i], thenlow[i + 1] = low[i], and l[i + 1] = high[i + 1]− low[i + 1]

= (low[i] + high[i])/2 − low[i] = (high[i]− low[i])/2 = l[i]/2;
So, we get l[i + 1] = l[i]/2.
If the length of the final search interval is denoted as l[k], then l[k] = ε. Thus, we

have ε = l[k] = l[0] × (1/2)k = (1/2)k, and solving for k gives k=log
(
ε−1). The i-th

search requires constructing an automaton Aφ,P<mid[i]
or Aφ,P>mid[i]

with a complexity of

O
(

m|φ|2
)

(Refer to Theorem 3). Additionally, it is necessary to determine the null state of
the automaton. The complexity of the automaton’s null checking is linearly related to the
size of the automaton [16]. Each binary search necessitates the construction of Aφ,P<mid[i]

,

which is repeated a total of k = log
(
ε−1) times. So, the complexity of Algorithms 1 and 2 is

O
(

m|φ|2 .
⌈
log
(
ε−1)⌉). □

Obviously, the smaller the error threshold ε, the higher the algorithm complexity
becomes. At the same time, the complexity of the algorithm grows exponentially as |φ|2
increases. Fortunately, in reality, the formula length |φ| is usually not very large, which
indicates that Algorithm 1 and Algorithm 2 are effective.

4.3. Model Checking of QFLTL with Boolean Reachable Semantics

Model the system to obtain the physical symbol system M and represent the properties
that the system satisfies using the temporal logic formula φ. Verify the satisfaction of φ on
M through a model-checking algorithm. In classical model checking, if the checking result
indicates that φ satisfies M, the checking process terminates. If φ does not satisfy M, return
to the counterexample path in M for refinement and improvement. In quantitative model
checking, the algorithm calculates the minimum satisfaction value of φ on M and outputs
the path that achieves this minimum satisfaction value.

Mathematics 2024, 12, 3148 18 of 36

Algorithm 1. The solving algorithm for the Boolean reachable semantic validity problem
of QFLTL.

Input: A QFLTL formula φ, an error threshold ε (for example ε = 10−6);

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 36

Algorithm 1. The solving algorithm for the Boolean reachable semantic validity problem of
QFLTL.
Input: A QFLTL formula 𝜑, an error threshold 𝜀 (for example 𝜀 = 10ି଺);
Solution process:
1.Initialization: 𝑙𝑜𝑤[0] = 0, ℎ𝑖𝑔ℎ[0] = 1, 𝑖 = 0;
2 LOOP
3 𝑚𝑖𝑑[𝑖] = 𝑙𝑜𝑤[𝑖] ⨁ ℎ𝑖𝑔ℎ[𝑖] ;
4 Construct 𝐴ఝ,௉ಬ೘೔೏[೔] using the method of Theorem 3;
5 IF 𝐿(𝐴ఝ,௉ಬ೘೔೏[೔]) = ∅
6 ℎ𝑖𝑔ℎ[𝑖 + 1] = ℎ𝑖𝑔ℎ[i], 𝑙𝑜𝑤[𝑖 + 1] = 𝑚𝑖𝑑[𝑖];
7 END
8 ELSE 𝐿(𝐴ఝ,௉ಬ೘೔೏[೔]) ≠ ∅
9 ℎ𝑖𝑔ℎ[𝑖 + 1] = 𝑚𝑖𝑑[𝑖], 𝑙𝑜𝑤[𝑖 + 1] = 𝑙𝑜𝑤[𝑖];
10 END
11 𝑙[𝑖] = ℎ𝑖𝑔ℎ[i] − 𝑙𝑜𝑤[𝑖];
12 IF 𝑙[𝑖] ≤ 𝜀
13 BREAK;
14 END
15 ELSE 𝑙[𝑖] > 𝜀
16 𝑖 = 𝑖 + 1;
17 END
18 END
19 𝑐𝑣 = 𝑚𝑖𝑑[𝑖];
Output: 𝒄𝒗.

Algorithm 2. The solving algorithm for Boolean reachable semantic satisfiability problem of
QFLTL.
Input: A QFLTL formula 𝜑, an error threshold 𝜀 (for example 𝜀 = 10ି଺) ;
Solution process: 1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛: 𝑙𝑜𝑤[0] = 0, ℎ𝑖𝑔ℎ[0] = 1, 𝑖 = 0;
2 LOOP
3 𝑚𝑖𝑑[𝑖] = 𝑙𝑜𝑤[𝑖] ⨁ ℎ𝑖𝑔ℎ[𝑖] ;
4 Construct 𝐴ఝ,௉ಱ೘೔೏[೔] using the method of Theorem 3;
5 IF 𝐿(𝐴ఝ,௉ಱ೘೔೏[೔]) ≠ ∅
6 ℎ𝑖𝑔ℎ[𝑖 + 1] = ℎ𝑖𝑔ℎ[i], 𝑙𝑜𝑤[𝑖 + 1] = 𝑚𝑖𝑑[𝑖];
7 END
8 ELSE 𝐿(𝐴ఝ,௉ಱ೘೔೏[೔]) = ∅
9 ℎ𝑖𝑔ℎ[𝑖 + 1] = 𝑚𝑖𝑑[𝑖], 𝑙𝑜𝑤[𝑖 + 1] = 𝑙𝑜𝑤[𝑖];
10 END
11 𝑙[𝑖] = ℎ𝑖𝑔ℎ[i] − 𝑙𝑜𝑤[𝑖];
12 IF 𝑙[𝑖] ≤ 𝜀
13 BREAK;
14 END
15 ELSE 𝑙[𝑖] > 𝜀
16 𝑖 = 𝑖 + 1;
17 END
18 END
19 𝑐𝑠 = 𝑚𝑖𝑑[𝑖];
Output: 𝒄𝒔.

Theorem 4. Given a QFLTL formula 𝜑 and an error threshold 𝜀, let m be the cardinality of the
measurable path set. Using Algorithms 1 and 2 to solve the QFLTL Boolean reachable semantic
validity problem and satisfiability problem, respectively, is correct, and their complexity is 𝑂(𝑚|ఝ|మ. ⌈𝑙𝑜𝑔 (𝜀ିଵ)⌉).

Output: cv.

Algorithm 2. The solving algorithm for Boolean reachable semantic satisfiability problem
of QFLTL.

Input: A QFLTL formula φ, an error threshold ε (for example ε = 10−6);

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 36

Algorithm 1. The solving algorithm for the Boolean reachable semantic validity problem of
QFLTL.
Input: A QFLTL formula 𝜑, an error threshold 𝜀 (for example 𝜀 = 10ି଺);
Solution process:
1.Initialization: 𝑙𝑜𝑤[0] = 0, ℎ𝑖𝑔ℎ[0] = 1, 𝑖 = 0;
2 LOOP
3 𝑚𝑖𝑑[𝑖] = 𝑙𝑜𝑤[𝑖] ⨁ ℎ𝑖𝑔ℎ[𝑖] ;
4 Construct 𝐴ఝ,௉ಬ೘೔೏[೔] using the method of Theorem 3;
5 IF 𝐿(𝐴ఝ,௉ಬ೘೔೏[೔]) = ∅
6 ℎ𝑖𝑔ℎ[𝑖 + 1] = ℎ𝑖𝑔ℎ[i], 𝑙𝑜𝑤[𝑖 + 1] = 𝑚𝑖𝑑[𝑖];
7 END
8 ELSE 𝐿(𝐴ఝ,௉ಬ೘೔೏[೔]) ≠ ∅
9 ℎ𝑖𝑔ℎ[𝑖 + 1] = 𝑚𝑖𝑑[𝑖], 𝑙𝑜𝑤[𝑖 + 1] = 𝑙𝑜𝑤[𝑖];
10 END
11 𝑙[𝑖] = ℎ𝑖𝑔ℎ[i] − 𝑙𝑜𝑤[𝑖];
12 IF 𝑙[𝑖] ≤ 𝜀
13 BREAK;
14 END
15 ELSE 𝑙[𝑖] > 𝜀
16 𝑖 = 𝑖 + 1;
17 END
18 END
19 𝑐𝑣 = 𝑚𝑖𝑑[𝑖];
Output: 𝒄𝒗.

Algorithm 2. The solving algorithm for Boolean reachable semantic satisfiability problem of
QFLTL.
Input: A QFLTL formula 𝜑, an error threshold 𝜀 (for example 𝜀 = 10ି଺) ;
Solution process: 1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛: 𝑙𝑜𝑤[0] = 0, ℎ𝑖𝑔ℎ[0] = 1, 𝑖 = 0;
2 LOOP
3 𝑚𝑖𝑑[𝑖] = 𝑙𝑜𝑤[𝑖] ⨁ ℎ𝑖𝑔ℎ[𝑖] ;
4 Construct 𝐴ఝ,௉ಱ೘೔೏[೔] using the method of Theorem 3;
5 IF 𝐿(𝐴ఝ,௉ಱ೘೔೏[೔]) ≠ ∅
6 ℎ𝑖𝑔ℎ[𝑖 + 1] = ℎ𝑖𝑔ℎ[i], 𝑙𝑜𝑤[𝑖 + 1] = 𝑚𝑖𝑑[𝑖];
7 END
8 ELSE 𝐿(𝐴ఝ,௉ಱ೘೔೏[೔]) = ∅
9 ℎ𝑖𝑔ℎ[𝑖 + 1] = 𝑚𝑖𝑑[𝑖], 𝑙𝑜𝑤[𝑖 + 1] = 𝑙𝑜𝑤[𝑖];
10 END
11 𝑙[𝑖] = ℎ𝑖𝑔ℎ[i] − 𝑙𝑜𝑤[𝑖];
12 IF 𝑙[𝑖] ≤ 𝜀
13 BREAK;
14 END
15 ELSE 𝑙[𝑖] > 𝜀
16 𝑖 = 𝑖 + 1;
17 END
18 END
19 𝑐𝑠 = 𝑚𝑖𝑑[𝑖];
Output: 𝒄𝒔.

Theorem 4. Given a QFLTL formula 𝜑 and an error threshold 𝜀, let m be the cardinality of the
measurable path set. Using Algorithms 1 and 2 to solve the QFLTL Boolean reachable semantic
validity problem and satisfiability problem, respectively, is correct, and their complexity is 𝑂(𝑚|ఝ|మ. ⌈𝑙𝑜𝑔 (𝜀ିଵ)⌉).

Output: cs.

Mathematics 2024, 12, 3148 19 of 36

Definition 14 [Boolean reachable semantic model checking]. Given a QFLTL formula φ and
an FKS M, computing argmin({∥π, φ∥|π ∈ Path(M)}) is defined as the problem of performing
Boolean reachable semantic model checking for QFLTL.

That is, searching for the paths that start from the initial state in M, where the target
paths are those with the minimum satisfaction value of φ among all such paths.

Theorem 5. Let φ be a QFLTL formula, M be a dynamic transfer system, ε be a given error
threshold, mc =min({∥π, φ∥|π ∈ Path(M)}). Furthermore, let Aφ,P<mc , Aφ,P≤mc and Aφ,P≥mc ,
be the NGBA constructed using the method of Theorem 3. Then the following conclusion is valid.

(1) Path
(

Aφ,P<mc

⊗
M
)
= Φ, Path

(
Aφ,P≤mc

⊗
M
)
̸= Φ;

(2) Let mc = ∥π, φ∥, π ∈ Path(M), Aφ,P=mc = Aφ,P≤mc

⊗
Aφ,P≥mc , then

π ∈ L
(

Aφ,P=mc

)
= L

(
Aφ,P≤mc

⊗
Aφ,P≥mc

)
;

(3) argmin({∥π, φ∥|π ∈ Path(M)}) = Path(A φ,P=mc

⊗
M
)

.

Proof. (1) First, we prove Path(Aφ,P<mc

⊗
M) = ∅.

Given mc =min({∥π, φ∥|π ∈ Path(M)}), it follows that

∀π(π ∈ Path(M) → ∥π, φ∥ ≥ mc ⇐⇒ ¬∃π(π ∈ Path(M) ∧ ∥π, φ∥ < mc).

Since mc is the minimum satisfaction value among all paths in M, there exists no path
in M that has a satisfaction value of less than mc. Hence, Path

(
Aφ,P<mc

⊗
M
)
= ∅.

Now, we provide the proof for Path
(

Aφ,P≤mc

⊗
M
)
̸= ∅.

Given mc =min({∥π, φ∥|π ∈ Path(M)}), it implies that

∃π(π ∈ Path(M) ∧ ∥π, φ∥ = mc).

Since there exists at least one path with a satisfaction value equal to mc, it also implies
that ∃π(π ∈ Path(M) ∧ ∥π, φ∥ ≤ mc). Therefore, Path

(
Aφ,P≤mc

⊗
M
)
̸= ∅;

(2) mc = ∥π, φ∥, π ∈ Path(M) ⇐⇒ π ∈ Path(M) ∧ ∥π, φ∥ ≥ mc ∧ ∥π, φ∥ ≤ mc

=⇒ (π ∈ Path(M) ∧ ∥π, φ∥ ≥ mc) ∧ (π ∈ Path(M) ∧ ∥π, φ∥ ≤ mc)
⇐⇒ π ∈ L

(
Aφ,P≤mc

⊗
Aφ,P≥mc

)
= L

(
Aφ,P=mc

)
(1) First, give the proof of argmin({∥π, φ∥|π ∈ Path(M)}) ⊆ Path(A φ,P=mc

⊗
M
)

.

∀πmc ∈ argmin({∥π, φ∥|π ∈ Path(M)}) =⇒ πmc ∈ Path(M) ∧ ∥πmc, φ∥ = mc
⇐⇒ πmc ∈ Path(M) ∧ πmc ∈ L

(
Aφ,P=mc

)
⇐⇒ πmc ∈ Path(A φ,P=mc

⊗
M
)

.

Next, we provide the proof of Path(A φ,P=mc

⊗
M
)
⊆ argmin({∥π, φ∥|π ∈ Path(M)})

∀πmc ∈ Path(A φ,P=mc

⊗
M
)

⇐⇒ πmc ∈ L
(

Aφ,P=mc

)
∧ πmc ∈ Path(M)

⇐⇒
(

πmc ∈
(
[0, 1]AP

)ω
∧ ∥πmc, φ∥ = mc

)
∧ πmc ∈ Path(M)

=⇒ (πmc ∈ Path(M) ∧ ∥πmc, φ∥ = mc) ∧ πmc ∈ Path(M)

⇐⇒ πmc ∈ {π|π ∈ Path(M), ∥π, φ∥ = mc} ⇐⇒ πmc ∈ argmin({∥π, φ∥|π ∈ Path(M)}). □

Under the constraint of the fuzzy predicate P, an automaton Aφ,P is constructed based
on the QFLTL (quantified fuzzy linear temporal logic) formula φ. The product of Aφ,P and
system model M yields Aφ,P

⊗
M, which characterizes the satisfaction of system M with

respect to the temporal property φ under the constraint of fuzzy predicate P. Based on this
principle, a Boolean reachable semantic model-checking algorithm for QFLTL is proposed
as Algorithm 3.

Mathematics 2024, 12, 3148 20 of 36

Algorithm 3. An automatic model-checking algorithm for Boolean reachable semantics in QFLTL.

Input: A QFLTL formula φ, an error threshold ε (for example ε = 10−6), FKS M.

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 36

Under the constraint of the fuzzy predicate P, an automaton 𝐴ఝ,௉ is constructed
based on the QFLTL (quantified fuzzy linear temporal logic) formula 𝜑. The product of 𝐴ఝ,௉ and system model 𝑀 yields 𝐴ఝ,௉⨂𝑀, which characterizes the satisfaction of system 𝑀 with respect to the temporal property 𝜑 under the constraint of fuzzy predicate P.
Based on this principle, a Boolean reachable semantic model-checking algorithm for
QFLTL is proposed as Algorithm 3.

Algorithm 3. An automatic model-checking algorithm for Boolean reachable semantics in QFLTL
Input: A QFLTL formula 𝜑, an error threshold 𝜀 (for example 𝜀 = 10ି଺), FKS M.
Solution process: 1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛: 𝑙𝑜𝑤[0] = 0, ℎ𝑖𝑔ℎ[0] = 1, 𝑖 = 0;
2 LOOP
3 𝑚𝑖𝑑[𝑖] = 𝑙𝑜𝑤[𝑖] ⨁ ℎ𝑖𝑔ℎ[𝑖] ;
4 Construct 𝐴ఝ,௉ರ೘೔೏[೔]using the method of Theorem 3;
5 Construct 𝐴ఝ,௉ರ೘೔೏[೔]⨂𝑀 using the method described in reference [17];
6 Use the method in reference [16] to determine the null of 𝐴ఝ,௉ರ೘೔೏[೔]⨂𝑀;
7 IF 𝐴ఝ,௉ರ೘೔೏[೔]⨂𝑀 = ∅
8 ℎ𝑖𝑔ℎ[𝑖 + 1] = ℎ𝑖𝑔ℎ[i], 𝑙𝑜𝑤[𝑖 + 1] = 𝑚𝑖𝑑[𝑖];
9 END
10 ELSE 𝐴ఝ,௉ರ೘೔೏[೔]⨂𝑀 ≠ ∅;
11 ℎ𝑖𝑔ℎ[𝑖 + 1] = 𝑚𝑖𝑑[𝑖], 𝑙𝑜𝑤[𝑖 + 1] = 𝑙𝑜𝑤[𝑖];
12 END
13 𝑙[𝑖] = ℎ𝑖𝑔ℎ[i] − 𝑙𝑜𝑤[𝑖];
14 IF 𝑙[𝑖] ≤ 𝜀
15 BREAK;
16 END
17 ELSE 𝑙[𝑖] > 𝜀
18 𝑖 = 𝑖 + 1;
19 END
20 END
21 𝑚𝑐 = 𝑚𝑖𝑑[𝑖]
22 Construct 𝐴ఝ,௉ಱ೘೔೏[೔]using the method of Theorem 3;
23 Construct 𝐴ఝ,௉స೘೎ = 𝐴ఝ,௉ರ೘೎⨂𝐴ఝ,௉ಱ೘೎;
24 Construct 𝐴ఝ,௉స೘೎⨂𝑀;
25 Search for paths in 𝐴ఝ,௉స೘೎⨂𝑀 and generate the path set 𝑃𝑎𝑡ℎ(𝐴ఝ,௉స೘೎⨂𝑀);
Output: 𝑃𝑎𝑡ℎ(𝐴ఝ,௉స೘೎⨂𝑀).

Theorem 6. Given a QFLTL formula 𝜑 and an error threshold 𝜀; Let 𝑀 = (𝑆, 𝐼, 𝛿, 𝐴𝑃, 𝐿) be
an FKS. Using Algorithm 3 to solve the QFLTL Boolean reachable semantic model-checking prob-
lem is correct. The complexity of the algorithm is 𝑂(|𝑆||ఝ|మ. ൫⌈𝑙𝑜𝑔(𝜀ିଵ)⌉ + |𝑆||ఝ|మାଵ൯).

Proof. According to Definition 14, the model-checking problem aims to find the paths in M that correspond to the minimum satisfaction value of φ. Steps 2–20 of Algorithm 3
employ a binary search method to continuously narrow the search interval until the sat-
isfied value of 𝜑 in M is compressed to an interval where |‖𝑀, 𝜑‖ − 𝑚𝑐| < 𝜀. Thus, 𝑚𝑐 =𝐦𝐢𝐧 ({‖𝜋, 𝜑‖|𝜋 ∈ 𝑃𝑎𝑡ℎ(𝑀)}) is obtained. In steps 22–24 of the algorithm, based on Theo-
rems 3 and 5, it can be deduced that 𝐚𝐫𝐠 𝐦𝐢𝐧 ({‖𝜋, 𝜑‖|𝜋 ∈ 𝑃𝑎𝑡ℎ(𝑀)}) = 𝑃𝑎𝑡ℎ(𝐴ఝ,௉స೘೎⨂𝑀) .

Now, we analyze the complexity of Algorithm 3. Based on Theorem 3, the complexity
of constructing an automaton is 𝑂(𝑚|ఝ|మ), where 𝑚 is the cardinality of the measurable
paths. In the model-checking problem, the maximum cardinality of the path is the number
of states |S|. Therefore, the complexity of constructing the automaton 𝐴ఝ,௉ is O(|𝑆||ఝ|మ).The number of states for 𝐴ఝ,௉⨂𝑀 is O(|𝐴ఝ,௉| ∙ |𝑆|). So, the complexity of con-
structing 𝐴ఝ,௉⨂𝑀 is 𝑂൫|𝑆||ఝ|మାଵ൯. The complexity of the null detection algorithm for

Output: Path
(

Aφ,P=mc

⊗
M
)
.

Theorem 6. Given a QFLTL formula φ and an error threshold ε; Let M = (S, I, δ, AP, L) be an
FKS. Using Algorithm 3 to solve the QFLTL Boolean reachable semantic model-checking problem is

correct. The complexity of the algorithm is O
(
|S||φ|

2
.
(⌈

log
(
ε−1)⌉+ |S||φ|

2+1
))

.

Proof. According to Definition 14, the model-checking problem aims to find the paths
in M that correspond to the minimum satisfaction value of φ. Steps 2–20 of Algorithm
3 employ a binary search method to continuously narrow the search interval until the
satisfied value of φ in M is compressed to an interval where |∥M, φ∥ − mc| < ε. Thus,
mc = min({∥π, φ∥|π ∈ Path(M)}) is obtained. In steps 22–24 of the algorithm, based on
Theorems 3 and 5, it can be deduced that

argmin({∥π, φ∥|π ∈ Path(M)}) = Path(A φ,P=mc

⊗
M
)

.

Now, we analyze the complexity of Algorithm 3. Based on Theorem 3, the complexity
of constructing an automaton is O

(
m|φ|2

)
, where m is the cardinality of the measur-

able paths. In the model-checking problem, the maximum cardinality of the path is the
number of states |S|. Therefore, the complexity of constructing the automaton Aφ,P

is O
(
|S||φ|

2)
.The number of states for Aφ,P

⊗
M is O

(∣∣Aφ,P
∣∣·∣∣S∣∣). So, the complexity of

constructing Aφ,P
⊗

M is O
(
|S||φ|

2+1
)

. The complexity of the null detection algorithm for

Aφ,P
⊗

M is linearly related to its size [16,17], which is O
(
|S||φ|

2+1
)

. The complexity of

computing mc is O
(
|S||φ|

2+1.
(⌈

log
(
ε−1)⌉) (refer to Theorem 4). The size of the product

Mathematics 2024, 12, 3148 21 of 36

of two NGBAs is the product of their sizes [18]. The size of Aφ,P=mc = Aφ,P≤mc

⊗
Aφ,P≥mc

is O(|A φ,P=mc

∣∣∣)= O(|A φ,P≤mc

∣∣∣)× O
(
|A φ,P≥mc

∣∣∣) = O
(
|S|2|φ|

2)
. The size of Aφ,P

⊗
M is

O(|A φ,P

∣∣∣)× O(|S|) = O
(
|S|2|φ|

2
× |S|

)
= O

(
|S|2|φ|

2+1
)

. The complexity of searching for
paths in Aφ,P

⊗
M is linearly related to its size. Hence, the overall complexity of model

checking is O
(
|S||φ|

2
.
(⌈

log
(
ε−1)⌉+ |S||φ|

2+1
))

. □

5. Search and Decision Problems for Quantitative Reachable Semantic in QFLTL

Quantitative reachability semantics integrate path-reachability information with for-
mula satisfaction value information, where path reachability is defined on a specified path
fragment. The search and decision problem-solving for temporal logic is typically grounded
in automata construction and emptiness checking or via the composition of fuzzy matrices.
However, for QFLTL, neither of these approaches suffices. First, automata construction for
temporal logic formulas solely considers the values satisfied by the formulas and fails to
incorporate quantitative transition metrics between states. Second, as information composi-
tion is no longer constrained to conjunction (“∧”), it becomes impractical to compute the
quantitative reachable semantics of QFLTL formulas through fuzzy matrix composition
operations. Nonetheless, a straightforward approach involves searching for paths in finite
Kripke structures (FKSs) and subsequently calculating reachable semantics along these
paths. First, in practical system operation, the limited application of sequence, selection,
and loop rules during system transitions indeed encompasses primarily lasso paths. Sec-
ond, an FKS comprising solely of lasso paths can induce a finite tree structure, thereby
reducing the search and decision problems of QFLTL quantitative reachability semantics
to those based on this spanning tree. Consequently, we will restrict the paths in the FKS
to either pure lasso paths or lasso paths exclusively. Subsequently, we offer solutions to
search and decision-making problems within these specialized FKSs.

Let M = (S, I, δ, AP, L) be an FKS. We introduce the concept of relationships between
states as follows. ∀s ∈ S, Child(s) = {s′|s′ ∈ S, δ(s, s′) > 0} is the set of subsequent states
of s, also known as the set of child nodes of s.

For all i ∈ N, Childi(s) ∈
{

{s} i = 0;
Child(Child i−1(s)

)
i > 0.

is called the i-th generation

descendant node of s.
For all s ∈ S, Fater(s) = {s′|s ∈ Child(s′)} is the set of prefix states for s, also known

as the set of parent nodes for s.

For all i ∈ N, Fatheri(s) ∈
{

{s} i = 0;
Father(Father i−1(s)

)
i > 0.

is called the i-th genera-

tion ancestor node of s.
For all n ∈ N+ (where N+ represents a non-zero set of natural numbers),

In = {0, 1, · · · , n − 1} is called an n-related ordinal set.

5.1. Search and Decision Problems on Pure Lasso FKSs

Definition 15 [pure lasso FKSs] Given an FKS of M = (S, I, δ, AP, L), a pure lasso FKS
accompanied with M is a tuple MPL = (M, ΠPL), where

ΠPL = {π|π ∈ Path(M), π is a pure lasso path.}.

To solve the search and decision problems on pure lasso FKSs, we transform them into
an equivalent finite tree structure when computing the QFLTL formula value.

Definition 16 [spanning tree of pure lasso FKSs]. Let MPL = (M, ΠPL) be a pure lasso FKS.
The spanning tree T_MPL of MPL is defined as follows.

(1) ∀s ∈ M in MPL, if I(s) > 0 then s is the root node of T_MPL;

Mathematics 2024, 12, 3148 22 of 36

(2) If s is a node of T_MPL, ∀s′ ∈ Child(s) in M, then add node s′ to the spanning tree as a child
of s and add an edge (s, s′) with a weight of δ(s, s′). If ∀i ∈ N+, it holds that s′ ̸= Fatheri(s′).
Then, expand s′ recursively. Otherwise, s′ is a leaf node, and the extension of this branch ends.

According to Definition 16, the nodes of a pure lasso FKS can be continuously ex-
panded without generating a loop, and a corresponding spanning tree for the pure lasso
FKS can be constructed. Algorithm 4 outlines the procedure for generating the spanning
tree of a pure lasso FKS.

Algorithm 4. The algorithm for generating spanning trees of a pure lasso FKS.

Input: A pure lasso FKS MPL = (M, ΠPL), a table OPEN, and a table CLOSED.
//The OPEN table is used to store nodes to be extended, while the CLOSED table stores the
spanning tree of T_MPL.

Mathematics 2024, 12, x FOR PEER REVIEW 21 of 36

child of s and add an edge (𝑠, 𝑠ᇱ) with a weight of 𝛿(𝑠, 𝑠ᇱ). If ∀𝑖 ∈ ℕା, it holds that 𝑠ᇱ ≠𝐹𝑎𝑡ℎ𝑒𝑟௜(𝑠ᇱ). Then, expand 𝑠ᇱ recursively. Otherwise, 𝑠ᇱ is a leaf node, and the extension
of this branch ends.
According to Definition 16, the nodes of a pure lasso FKS can be continuously ex-

panded without generating a loop, and a corresponding spanning tree for the pure lasso
FKS can be constructed. Algorithm 4 outlines the procedure for generating the spanning
tree of a pure lasso FKS.

Algorithm 4. The algorithm for generating spanning trees of a pure lasso FKS.
Input: A pure lasso FKS 𝑀௉௅ = (𝑀, Π௉௅), a table OPEN, and a table CLOSED.
//The OPEN table is used to store nodes to be extended, while the CLOSED table stores the span-
ning tree of 𝑇_𝑀௉௅.
Solution process:
1 LOOP ∀𝑠 ∈ 𝑀௉௅
2 IF 𝐼(𝑠) > 0
3 Add 𝑠 to table OPEN;//𝑠 is the root node of 𝑇_𝑀௉௅.
4 END
5 END
6 LOOP OPEN is not empty
7 Remove the first node 𝑠௡ from the OPEN table, and add it to the CLOSED table;
8 𝐵_𝑁𝑜𝑑𝑒 = 𝑠௡//Mark the node for tracing back.
9 LOOP Father(𝐵_𝑁𝑜𝑑𝑒) ≠ 𝑁𝑈𝐿𝐿
10 𝑠௙ = Father(𝐵_𝑁𝑜𝑑𝑒);
11 IF 𝑠௙ = 𝑠௡//The current extension node is a duplicate of its immediate ancestor.
12 Child(𝑠௡) = 𝑁𝑈𝐿𝐿 //Extension of node 𝑠௡ ended.
13 BREAK;
14 END
15 ELSE 𝑠௙ ≠ 𝑠௡;
16 𝐵_𝑁𝑜𝑑𝑒 = 𝑠௙;
17 END
18 END
19 IF Father(𝐵ே௢ௗ௘) = 𝑁𝑈𝐿𝐿//The current extension node does not have a duplicate direct

ancestor node.
20 LOOP ∀𝑠 ∈ Child(𝑠௡)//Traverse the child nodes of s
21 Add 𝑠 to OPEN table;
22 Father(𝑠) = 𝑠௡;//Establishing a backtracking pointer.
23 END
24 END
25 END
Output: table CLOSED.

Definition 17. 𝑀௉௅ = (𝑀, 𝛱௉௅) is a pure lasso FKS, and 𝑇_𝑀௉௅ is the spanning tree of 𝑀௉௅.
The sequence of nodes 𝜋௙௜௡ = 𝑠଴, 𝑠ଵ, ⋯ , 𝑠௡ିଵ, 𝑠௡, from the root node to a leaf node in 𝑇_𝑀௉௅ is
called a path of 𝑇_𝑀௉௅. 𝑃𝑎𝑡ℎ(𝑇_𝑀௉௅) is the set of paths in 𝑇_𝑀௉௅.
Theorem 7 If 𝜋௙௜௡ = 𝑠଴, 𝑠ଵ, ⋯ , 𝑠௡ିଵ, 𝑠௡ is a path in 𝑇_𝑀௉௅, and 𝜑 is a QFLTL formula. Then,
(1) 𝑠௡ ∈ {𝑠଴, 𝑠ଵ, ⋯ , 𝑠௡ିଵ}, 𝐵൫𝜋௙௜௡൯ = {𝑠଴, 𝑠ଵ, ⋯ , 𝑠௡ିଵ}, ห𝜋௙௜௡ห = 𝑛 ≤ |𝑆|;
(2) The computational complexity of ൳𝜋௙௜௡, 𝜑൷ is 𝑂((|𝑆| + 3)|ఝ|).
Proof. According to Definitions 11, 12, 16, and 17, the result of (1) in theorem 7 holds. Let 𝑡(൳𝜋௙௜௡, 𝜑൷) denote the number of computations performed for 𝜋௙௜௡ with respect to 𝜑.
When selecting the operators”∘” and “⨁ఒ”, the maximum number of operations is three.
When selecting “𝜆௡௘ ” or “𝜆௖௙ ” for “△ଵ ”, two operations are performed. Computing 𝛿∗௜(𝜋௙௜௡) requires i times the “⋀”operation. Now, we summarize and prove (2) based on
the structure of 𝜑 .
(1) When 𝜑 = 𝑟, ൳𝜋௙௜௡, 𝜑൷ = 𝑟 ∘ 𝛿∗௜൫𝜋௙௜௡൯; 𝑡൫൳𝜋௙௜௡, 𝜑൷൯ = 𝑖 + 3 ≤ |𝑆| + 3 ≤ (|𝑆| + 3)|ఝ|;
(2) When 𝜑 = 𝑝, ൳𝜋௙௜௡, 𝜑൷ = 𝐿൫𝜋௙௜௡௜ ൯(𝑝) ∘ 𝛿∗௜൫𝜋௙௜௡൯; 𝑡(൳𝜋௙௜௡, 𝑝൷) = 𝑖 + 3 ≤ (|𝑆| + 3)|ఝ|;

Output: table CLOSED.

Definition 17. MPL = (M, ΠPL) is a pure lasso FKS, and T_MPL is the spanning tree
of MPL. The sequence of nodes π f in = s0, s1, · · · , sn−1, sn, from the root node to a leaf node
in T_MPL is called a path of T_MPL. Path(T_M PL) is the set of paths in T_MPL.

Theorem 7 If π f in = s0, s1, · · · , sn−1, sn is a path in T_MPL, and φ is a QFLTL formula. Then,

(1) sn ∈ {s0, s1, · · · , sn−1}, B
(

π f in

)
= {s0, s1, · · · , sn−1},

∣∣∣π f in

∣∣∣ = n ≤ |S|;

(2) The computational complexity of Jπ f in, φ K is O
(
(|S|+ 3)|φ|

)
.

Proof. According to Definitions 11, 12, 16, and 17, the result of (1) in theorem 7 holds.
Let t

(
Jπ f in, φ K

)
denote the number of computations performed for π f in with respect to

φ. When selecting the operators”◦” and “
⊕

λ”, the maximum number of operations is
three. When selecting “λne” or “λc f ” for “

a
1”, two operations are performed. Computing

δi
∗(π f in

)
requires i times the “

∧
”operation. Now, we summarize and prove (2) based on

the structure of φ.

Mathematics 2024, 12, 3148 23 of 36

(1) When φ = r, Jπ f in, φ K = r ◦ δi
∗

(
π f in

)
; t
(

Jπ f in, φ K
)
= i + 3 ≤ |S|+ 3 ≤

(
|S|+ 3)|φ| ;

(2) When φ = p, Jπ f in, φ K = L
(

πi
f in

)
(p) ◦ δi

∗

(
π f in

)
; t
(

Jπ f in, p K
)
= i + 3 ≤

(
|S|+ 3)|φ| ;

(3) When φ =
a

1 ϕ, Jπ f in,
a

1 ϕ K =
a

1

(
Jπ f in, ϕ K

)
, t
(

Jπ f in,
a

1 ϕ K
)
= t
(

Jπ f in, ϕ K
)
+ 2.

According to the inductive assumption,

t(Jπ f in,
i

1

ϕK) =≤ (|s|+ 3)|ϕ| + 2 < (|s|+ 3)|ϕ|+1 = (|s|+ 3)|φ|;

(4) When φ = φ1
a

2 φ2, Jπ f in, φ1
a

2 φ2 K = Jπ f in, φ1 K
a

2 Jπ f in, φ2 K

t
(

Jπ f in, φ K
)

= t
(

Jπ f in, φ1 K
)
+ t
(

Jπ f in, φ2 K
)
+ 3

≤ (|S|+ 3)|φ1| + (|S|+ 3)|φ2| + 3 < (|s|+ 3)|φ1|+|φ2+1 = (|S|+ 3)|φ|

(5) When φ =⃝ϕ, Jπ f in,⃝ϕ K = Jπ1
f in, ϕ K. According to the inductive assumption,

t(Jπ f in, ⃝ϕK) = t(Jπ1
f in, ϕK) ≤ (|S|+ 3)|ϕ| < (|S|+ 3)|φ|;

(6) when φ =3ϕ, Jπ f in,3ϕ K=
∨

0≤j<n
Jπ

j
f in, ϕ K;

t(Jπ f in 3ϕK) = n · t(Jπi
f in, ϕK) ≤ n · (|S|+ 3)|ϕ|

≤ |S| · (|S|+ 3)|ϕ| < (|S|+ 3)|ϕ|+1 = (|S|+ 3)|φ|;

(7) When φ = □ϕ,

Jπ f in, ϕ K =
∧

0≤j<i
Jπi

f in, ϕ K, t
(

Jπ f in,□ϕ K
)
= n · t

(
Jπi

f in, ϕ K
)
≤
(
|S|+3)|φ|;

(8) When φ = φ1
⋃

φ2, Jπ f in, φ1
⋃

φ2K =
∨

0≤i<n
(Jπ f in, φ2K∧

∧
0≤j<i

Jπ f in, φ1K)

t(Jπ f in, φ1
⋃

φ2K) ≤ n · (t(Jπi
f in, φ2K)+t(Jπ

j
f in, φ2K) + n)

≤ |S| · (t(Jπi
f in, φ2K)+t(Jπ

j
f in, φ2K)) + |S|2 ≤ |S|

((|S|+ 3)|φ1| + (|S|+ 3)|φ2|) + |S|2 < |S| · ((|S|+ 3)|φ1| + (|S|+ 3)|φ2| + (|S|+ 3))
< (|S|+ 3) · ((|S|+ 3)|φ1| + (|S|+ 3)|φ2| + (|S|+ 3)).

Let |S| + 3 = k ∈ N, k > 3 ∀k1, k2 ∈ N+. Now, we prove that kk1 + kk2 + k <
kk1+k2 . This equation is equivalent to 1/kk2 + 1/kk1 + 1/kk1+k2−1 < 1. Because 1/kk2 ≤
1/4, 1/kk1 ≤ 1/4, 1/kk1+k2−1 ≤ 1/7, 1/kk2 + 1/kk1 + 1/kk1+k2−1 < 1 is correct, and kk1 +
kk2 + k < kk1+k2 is also proven. In this case,

t(Jπ f in, φ1 ∪ φ2K) < (|S|+ 3) · ((|S|+ 3)|φ1| + (|S|+ 3)|φ2| + (|S|+ 3))
< (|S|+ 3) · (|S|+ 3)|φ1|+|φ2| = (|S|+ 3)|φ1|+|φ2|+1 = (|S|+ 3)|φ|. □

Corollary 1. MPL = (M, ΠPL) is a pure lasso FKS, and T_MPL is the spanning tree of MPL.
∀π ∈ Path(MPL). There exists a unique π f in ∈ Path(T_MPL), so that Jπ, φ K = Jπ f in, φ K.

Proof. According to Definition 17 and Algorithm 4, ∀π ∈ Path(MPL), π has the form
π = π0, π1, · · · , πu−1, (πu, πu+1, · · · , πu+v−1)

ω , and there exists a unique, π f in ∈
Path(TMPL), π f in = π0, π1, · · · , πu−1, πu, πu+1, · · · , πu+v−1, such that,

∃πu+v ∈ {s|s ∈ Child(πu+v−1)}, and πu+v = πu.

Mathematics 2024, 12, 3148 24 of 36

The uniqueness here is guaranteed by the tree structure of T_MPL, where exists is a
unique path from the root node to the leaf node in the tree. It is straightforward to prove
Jπ, φ K = Jπ f in, φ K by induction on the structure φ. Here is an example to illustrate the
situation about φ = φ1

⋃
φ2.

Let Hi = Jπi, φ2 K∧ ∧
0≤j<i

Jπ j, φ1 K, where i ∈ N and

π = π0, π1, · · · , πu−1, (πu, πu+1, · · · , πu+v−1)
ω.

We have Hu+v = Hµ for all πi ∈ (πu, πu+1, · · · , πu+v−1)
ω,∃k ∈ N, j ∈ {u, u+ 1, · · ·u+ v− 1},

such that πi = πj+kv = πj.
In this way, for all i ≥ u, ∃j ∈ {u, u + 1, · · · , u + v − 1}, such that Hi = Hj. Therefore,

Jπ, φ1
⋃

φ2 K =
∨

i≥0

(
Jπi, φ2 K∧ ∧

0≤j<i
Jπ j, φ1 K

)

=
∨

0≤i≤u−1

(
Jπi, φ2 K∧ ∧

0≤j<i
Jπ j, φ1 K

)
∨ ∨

u≤i≤u+v−1

(
Jπi, φ2 K∧ ∧

0≤j<i
Jπ j, φ1 K

)

∨ ∨
u+v≤i

(
Jπi, φ2 K∧ ∧

0≤j<i
Jπ j, φ1 K

)

=
∨

0≤i≤u−1

(
Jπi, φ2 K∧ ∧

0≤j<i
Jπ j, φ1 K

)
∨ ∨

u≤i≤u+v−1

(
Jπi, φ2 K∧ ∧

0≤j<i
Jπ j, φ1 K

)
= Jπ f in, φ1 ∪ φ2 K.□

Next, we provide a formal description and a solution algorithm for search and decision
problems in pure lasso FKSs.

Definition 18 [quantitative reachable semantic validity and satisfiability in pure lasso
FKSs]. Let MPL = (M, ΠPL) be a pure lasso FKS, and T_MPL be the spanning tree of MPL. The
problem of calculating min{ Jπ f in, φ K

∣∣∣π f in ∈ Path(T_MPL)
}

is defined as the quantitative
reachable semantic validity problem on the pure lasso FKS. Similarly, the problem of calculat-
ing max{ Jπ f in, φ K

∣∣∣π f in ∈ Path(T_MPL)
}

is defined as the problem of quantitatively reachable
semantic satisfiability on the pure lasso FKS.

Algorithm 5 is the algorithm for solving the quantitative reachable semantic validity
and satisfiability problems in QFLTL on pure lasso FKSs.

Algorithm 5. Quantitative reachable semantic validity and satisfiability problem-solving
algorithm in QFLTL on pure lasso FKSs.

Input: A pure lasso FKS MPL = (M, ΠPL), and a QFLTL formula φ.

Solution process:
1 Calculate the spanning tree T_MPL of MPL according to Algorithm 4;
2 Perform a depth −
first search on T_MPL, when a leaf node is encountered, backtrack to generate a path π f in from
the root node to that leaf node;
3 For the path π f in generated in step 2

(
where π f in ∈ Path(T_MPL)) , use the “Challenge Arena

Algorithm” to find the maximum and minimum values : Let mvp = min{ Jπ f in, φ K
∣∣∣π f in

∈ Path(T_MPL) } . Let msp = max{ Jπ f in, φ K
∣∣∣π f in ∈ Path(T_MPL)

}
.

Output: mvp, msp.

Mathematics 2024, 12, 3148 25 of 36

Theorem 8. Given a QFLTL formula φ and a pure lasso FKS, in Algorithm 5, mvp and msp are the
validity and satisfiability values of φ on MPL. The complexity of the algorithm is O

(
|S|!·

∣∣∣S||φ|).

Proof. According to Theorem 7 and Corollary 1, the output results of Algorithm 5, mvp,
and msp, are the validity and satisfiability values of φ on MPL. According to Algorithm
4, solve the spanning tree TMPL of MPL. There can be a maximum of |S| root nodes in
the tree. Each root node can have up to |S| − 1 children, and the first layer can have up
to |S| − 1 branches. The nodes in the i-th layer have i direct ancestors, with a maximum
of |S| − i children, and can generate |S| − i branches. Hence, TMPL has a maximum
of |S| × (|S| − 1) × (|S| − 2) × · · · × (|S| − (|S| − 1)) = |S|! leaf nodes. Each leaf node
corresponds to path π f in, with a length not exceeding |S| from the root node, so TMPL has a
maximum of O(|S|!) paths. According to Theorem 7, evaluating φ on π f in has a complexity

of O
((∣∣∣S∣∣∣+3)|φ|

)
on π f in. The complexity of the overall algorithm is the product of

the number of paths and the complexity of evaluating φ on π f in, so the complexity of

Algorithm 5 is O
(
|S|!·

∣∣∣S||φ|). In practice, however, due to the fact that the number of
subsequent states in TMPL is often less than |S|, the number of paths is generally much
smaller than O(|S|!). Therefore, the average complexity of the algorithm is significantly
lower than O

(
|S|!·

∣∣∣S||φ|). □

5.2. Searching and Decision-Making Problems on Lasso FKSs

Next, we relax the constraints of the system production rules and consider the search-
ing and decision-making problems on systems containing general lasso paths. The parti-
tioning of system paths essentially depends on the constraints and partitioning of rules
generated by the system. We provide the following formal description for systems that
contain only lasso paths.

Definition 19 [lasso FKSs]. Given an FKS M = (S, I, δ, AP, L), the lasso FKS accompanied
by M is a tuple ML = (M, ΠL), where ΠL = {π|π ∈ Path(M), π is a lasso path.}.

Definition 20 [division about generating rules]. Let M be an FKS. The production rules are
defined as follows.

(1) Sequential transition rule set, δs = {δ(s, s′)|∀s ∈ S, s′ ∈ Child(s), |Child(s)| = 1};
(2) Selective transition rule set, δa = {δ(s, s′)|∀s ∈ S, s′ ∈ Child(s), |Child(s)| > 1};
(3) Finite cycle transition rule set,

δl+ =
{(

δ(s0, s1), δ(s1, s2), · · · , δ(sn−1, sn))
+
∣∣∀i ∈ In, δ(si, si+1) ∈ δs, and s0 = sn

}
;

(4) Infinite loop transition rule set,

δlω = {(δ(s0, s1), δ(s1, s2), · · · , δ(sn−1, sn))
ω |∀i ∈ In, δ(si, si+1) ∈ δs, and s0 = sn}.

Theorem 9 [decision theorem about lasso FKSs]. If M is an FKS, then ML is a lasso FKS
associated with M, if and only if the transition function of ML is defined as follows.

δL = {δs, δa, δl+ , δlω |δs, δa, δl+ , δlω arefinitesets.}.

Proof. First, we prove the necessity. Let ML be the lasso FKS accompanied by FKS M.
From Definitions 19 and 20, the elements of ML are known to be lasso paths that have
formed π = π0, π1, · · · , πu−1, (πu, πu+1, · · · , πu+v−1)

ω . On this form of path, a finite path,
the finite fragments π0, π1, · · · , πu−1 and states πu, πu+1, · · · , πu+v−1 appear in sequence,
which are generated by a finite number of sequential rules. It allows for the occurrence of a

Mathematics 2024, 12, 3148 26 of 36

finite number of loop fragments in the sequence, which are generated by the finite number
of uses of finite loop transition rules. That is,

∀i ∈ Iu+vδ(πi, π+1) ∈ δs ∪ δl+ , |δs ∪ δl+ |< ∞ , (πu, πu+1, · · · , πu+v−1)
ω ∈ δlω .

∀s ∈ S if |Child(s)| ≥ 2. There will be |Child(s)| finite branches starting from s in M,
corresponding to one use of selection generation rules in ML, resulting in Child(s) lasso
paths. Hence, the transition function of ML is defined as

δL = {δs, δa, δl+ , δlω |δs, δa, δl+ , δlω are finite sets.}.

For the proof of sufficiency, the transition function of ML is δL. Using the select
transition rules once will generate a finite number of branches, with each lasso path
corresponding to one branch. The constraint of a lasso path pertains only to one path.
Thus, we only need to consider the application of rules for sequence generation, finite
loop generation, and infinite loop generation on a single branch. Applying δs, δa, and δl+

a finite number of times within δL can generate a path segment with a finite number of
loop fragments, denoted as π0, π1, · · · , πu−1, πu, πu+1, · · · , πu+v−1. Since the path in M is
infinite, infinite loops must be generated using the infinite loop transition rule δlω . We use
δlω exactly once. According to the definition of δlω , let us assume that, in the path segment
π0, π1, · · · , πu−1, πu, πu+1, · · · , πu+v−1, we have (δ(πu, πu+1), · · · , δ(πu+v−2, πu+v−1))

ω .
This ultimately produces an infinite path, with the form π = π0, π1, · · · , πu−1, (πu, πu+1,
· · · , πu+v−1)

ω . According to Definition 11, π is a lasso path. In this manner, we obtain the
spanning FKS ML of M, and the transition function of ML is δL ⊆ δ. We prove that the path
generated by δL are lasso paths. That is to say, by restricting the transition function of M to
δL, we can obtain the lasso FKS ML that is accompanied by M. □

Corollary 2 [decision theorem about pure lasso FKSs]. If M is an FKS, then MPL is the pure
lasso FKS associated with M if and only if the transition function of MPL is,

δPL = {δs, δa, δlω , |δs, δa, δlω are finite sets. }.

Pure lasso (Definition 12) requires an infinite loop to appear on the path, and this
infinite loop is generated using the infinite loop transition rule δlω exactly once. There are
no duplicate states on the path segments outside and inside the loop, which is why the
rules for generating pure lasso FKSs do not include the finite cycle transition rule. The
proof of Corollary 1 is similar to that of Theorem 9, focusing on the necessary and sufficient
conditions for MPL to be a pure lasso FKS associated with M.

Definition 21 [quantitative reachable semantic validity and satisfiability in lasso FKSs].
Given a QFLTL formula of φ and an FKS, M = (S, I, δ, AP, L), where ML = (M, ΠL) is the lasso
FKS associated with M. Computing min{Jπ f in, φK

∣∣∣π f in ∈ Path(T_ML)
}

is defined as the quanti-
tative reachable semantic validity problem in lasso FKSs, and computing
max{Jπ f in, φK

∣∣∣π f in ∈Path(T_ML)
}

is defined as the problem of quantitatively reachable se-
mantic satisfiability problem in lasso FKSs.

Theorem 10. Given a QFLTL formula of φ and an FKS of M, let ML = (M, ΠL) be the lasso
FKS associated with M. There exists a pure lasso FKS MPL that is associated with ML, such that

(1) min{ Jπ, φ K|π ∈ Path(ML)}= min{ Jπ, φ K|π ∈ Path(MPL)};
(2) max{ Jπ, φ K|π ∈ Path(ML)}= max{ Jπ, φ K|π ∈ Path(MPL)}.

Proof. According to Definitions 11 12, 16, and 19, Theorem 9 and Corollary 2, a pure
lasso path is a special case of a lasso path. A finite number of finite loop fragments can
appear on the inner and outer path fragments of an infinite loop segment in a lasso path,

Mathematics 2024, 12, 3148 27 of 36

while a pure lasso path does not contain such finite loop fragments. The proof of Theorem
10 involves treating k ∈ N+ finite loop fragments on the lasso path in ML as infinite
loop fragments and then decompose the original lasso path to generate k + 1 pure lasso
paths. We prove that the validity and satisfiability problem on the original lasso path are
equivalent to the validity and satisfiability problems on the newly generated set of k + 1
pure lasso paths. Let π = π0, π1, · · · , πu−1, (πu, πu+1, · · · , πu+v−1)

ω be a lasso path in
ML, where πu, πu+1, · · · , πu+v−1 is the path fragment where the infinite loop is located,
and π0, π1, · · · , πu−1, is the path fragment outside the infinite loop. Suppose a finite loop
segment (πa, πa+1, · · · , πa+m−1)

+ ⊆ π 0, π1, · · · , πu−1 appears within π0, π1, · · · , πu−1.
We construct a pure lasso path as follows.

π′ = π0, π1, · · · , πa−1, πa, πa+1, · · · , πa+m−1, · · · , πu−1(πu, πu+1, · · · , πu+v−1)
ω

In this path, the states in the finite loop fragment only appear in sequence once. Then,
construct another pure lasso path, where π” = π0, π1, · · · , πa−1, (πa, πa+1, · · · , πa+m−1)

ω .
Once the state in π enters a finite loop fragment, a pure lasso path π” is generated based on
this segment using the infinite repetition generation rule. When (πa, πa+1, · · · , πa+m−1)

+ ⊆
π0, π1, · · · , πu−1, construct two pure lasso paths. One path is π′ . The states in the finite
loop fragment of π′ only appear sequentially once in each infinite loop. Another path is
constructed as π” . Once the state in π enters a finite loop segment, a pure lasso path π” is
generated based on this fragment using the infinite repetition generation rule. It can be
summarized according to the structure of φ, and it is straightforward to prove that

when calculating min{ Jπ, φ K|π ∈ Path(ML)}, we have Jπ, φ K= Jπ′, φ K∧ Jπ”, φ K. (14)

When calculating max{ Jπ, φ K|π ∈ Path(ML)}, we have Jπ, φ K= Jπ′, φ K∨ Jπ” , φ K. (15)

When there are k > 1 finite loop fragments within the lasso path π, a similar approach
can be applied. The finite loop fragment traverses the state of all finite loop fragments
outside the infinite loop of π only once. If the finite loop fragment is within the infinite loop
of π, each time it enters the infinite loop, it traverses the state of the finite loop segment
once. In this scenario, we generate a pure lasso π(0). Traverse the state of the i-1 loop
segment before the i-th finite loop segment only once, and after entering the i-th finite loop
segment, use the loop fragment infinitely to generate a pure lasso path. In this way, a
finite pure lasso path cluster {π(i)|i ∈ Ik} accompanied by the lasso path π is constructed.
Similar to Equations (14) and (15),

when calculating min{ Jπ, φ K|π ∈ Path(ML)}, we have Jπ, φ K =
∧

0≤j<k

Jπ(i), φ K. (16)

When calculating max{ Jπ, φ K|π ∈ Path(ML)}, we have Jπ, φ K =
∨

0≤j<k

Jπ(i), φ K. (17)

Obviously, according to Algorithm 4, when generating the pure lasso-spanning tree
T_MPL on ML, it includes all pure lasso paths in the pure lasso path cluster {π(i)|i ∈ Ik}
that are accompanied by the lasso path π. Consequently, the conclusion of Theorem 10
holds. □

In order to solve the quantitative reachable semantic validity and satisfiability problem
of QFLTL on lasso FKSs. It is possible to construct a pure lasso FKS that accompanies
the original lasso FKS during the proof process, based on Theorem 10. Subsequently, the
quantitative semantic validity and satisfiability problem-solving algorithm of QFLTL on
the pure lasso FKS is used to solve the original problem.

Mathematics 2024, 12, 3148 28 of 36

Algorithm 6. Algorithm for solving the quantitative reachable semantic validity and satisfiability
problem for QFLTL on lasso FKSs.

Input: Given a QFLTL formula φ and a Lasso FKS ML = (M, ∏L).
//The production rule for ML is denoted as δL = {δs, δa, δl+ , δlω |δs, δa, δl+ , δlω are finite sets.}.

Solution process:
1 According to Algorithm 4, construct the spanning tree T_ML of ML;
2 Perform a depth-first search on T_ML. If a leaf node is encountered, backtracking generates a
path π f in from the root node to that leaf node;

3 For each path
{

π f in

∣∣∣π f in ∈ Path(T_MPL)
}

generated in step 2, use the “Challenge Arena
Algorithm” to find the maximum and minimum values:

mv = min{ Jπ f in, φ K
∣∣∣π f in ∈ Path(T_MPL)

}
; ms = max

{
Jπ f in, φ K

∣∣∣π f in ∈ Path(T_MPL)
}

.

Output: mv, ms.

Theorem 11 Given a QFLTL formula φ and a lasso FKS ML, in Algorithm 6, mv and ms are the
validity and satisfiability values of φ on ML. The complexity of the algorithm is O

(
|S|!·

∣∣∣S||φ|).

The proof of Theorem 11 is analogous to the proof of Theorem 8.

5.3. Quantitative Reachable Semantic Model Checking for QFLTL

A quantitative model-checking algorithm for QFLTL should return the path set within
the system that achieves the minimum value of the given temporal logic formula. formula.

Definition 22 [quantitative reachable semantic model checking]. Given a QFLTL for-
mula of φ and an FKS of M, let ML = (M, ΠL) be the lasso FKS associated with M, and
MPL = (M, ΠPL) be the lasso FKS associated with ML. Computing arg(min{Jπ, φK|
π ∈ Path(MPL)}) is defined as the quantitative reachable semantic model-checking problem in
pure lasso FKSs. Computing arg(min{ Jπ, φ K|π ∈ Path(ML)}) is defined as the quantitative
reachable semantic model-checking problem in lasso FKSs.

The paths in a pure lasso FKS correspond one-to-one with those in its spanning
tree. In the spanning tree, a depth-first search is performed to find a leaf node, and then,
backtracking is employed from the leaf node to the root node to generate one path after
another. Each generated path is evaluated, and the “Challenge Arena Algorithm” is utilized
to record the set of paths that achieve the minimum value of the given QFLTL formula.
Below is a model-checking algorithm for QFLTL on pure lasso FKSs, based on Algorithm 4.

Algorithm 7. The model-checking algorithm for QFLTL on pure lasso FKSs.

Input: A QFLTL formula φ, an FKS M, and pure lasso FKS MPL that associated with M.
//The production rule for MPL is δPL = {δs, δa, δlω , |δs, δa, δlω are finite sets. } .

Mathematics 2024, 12, x FOR PEER REVIEW 27 of 36

Definition 22 [quantitative reachable semantic model checking]. Given a QFLTL formula
of 𝜑 and an FKS of 𝑀, let 𝑀௅ = (𝑀, 𝛱௅) be the lasso FKS associated with 𝑀 , and 𝑀௉௅ =(𝑀, 𝛱௉௅) be the lasso FKS associated with 𝑀௅. Computing 𝒂𝒓𝒈(𝒎𝒊𝒏{ ⟦𝜋, 𝜑⟧|𝜋 ∈ 𝑃𝑎𝑡ℎ(𝑀௉௅)})
is defined as the quantitative reachable semantic model-checking problem in pure lasso FKSs. Com-
puting 𝒂𝒓𝒈(𝒎𝒊𝒏{ ⟦𝜋, 𝜑⟧|𝜋 ∈ 𝑃𝑎𝑡ℎ(𝑀௅)}) is defined as the quantitative reachable semantic
model-checking problem in lasso FKSs.

The paths in a pure lasso FKS correspond one-to-one with those in its spanning tree.
In the spanning tree, a depth-first search is performed to find a leaf node, and then, back-
tracking is employed from the leaf node to the root node to generate one path after an-
other. Each generated path is evaluated, and the “Challenge Arena Algorithm” is utilized
to record the set of paths that achieve the minimum value of the given QFLTL formula.
Below is a model-checking algorithm for QFLTL on pure lasso FKSs, based on Algorithm
4.

Algorithm 7. The model-checking algorithm for QFLTL on pure lasso FKSs.
Input: A QFLTL formula 𝜑, an FKS 𝑀, and pure lasso FKS 𝑀௉௅ that associated with 𝑀.
//The production rule for 𝑀௉௅ is 𝛿௉௅ = {𝛿௦, 𝛿௔, 𝛿௟ഘ, |𝛿௦, 𝛿௔, 𝛿௟ഘ are finite sets. }.
Solution process:
1 Initialize Π௠௩௣ = ∅;
2 According to Algorithm 4, construct the spanning tree 𝑇_𝑀௉௅ of 𝑀௉௅;
3 LOOP Perform depth-first search on 𝑇_𝑀௉௅, if a leaf node is encountered, backtrack to gener-

ate a path finπ from the root node to that leaf node;

4 IF Π௠௩௣ = ∅ THEN Π௠௩௣ = {𝜋௙௜௡};

5 ELSE 𝑡𝑎𝑘𝑒 𝑎𝑛𝑦 𝜋௙௜௡ᇱ ∈ Π௠௩௣;

6 IF ൳𝜋௙௜௡, 𝜑൷ = ൳𝜋௙௜௡ᇱ , 𝜑൷ THEN Π௠௩௣ = 𝛱௠௩௣⋃{𝜋௙௜௡};

7 IF ൳𝜋௙௜௡, 𝜑൷ < ൳𝜋௙௜௡ᇱ , 𝜑൷ THEN Π௠௩௣ = {𝜋௙௜௡};
8 END
Output: Π௠௩௣.

Next, we will provide a model-checking algorithm for QFLTL on lasso FKSs.

Output: Πmvp.

Mathematics 2024, 12, 3148 29 of 36

Next, we will provide a model-checking algorithm for QFLTL on lasso FKSs.

Algorithm 8. Model-checking algorithm for QFLTL on lasso FKSs.

Input: QFLTL formula φ, FKS M = (S, I, δ, AP, L), lasso FKS ML associated with M, table OPEN,
and table CLOSED.
//The production rule for ML is δL = {δs, δa, δl+ , δlω |δs, δa, δl+ , δlω are f inite set}. The OPEN table
is used to store node will be extended, and the CLOSED table is used to store ML.

Mathematics 2024, 12, x FOR PEER REVIEW 28 of 36

Algorithm 8. Model-checking algorithm for QFLTL on lasso FKSs.

Input: QFLTL formula 𝜑, FKS 𝑀 = (𝑆, 𝐼, 𝛿, 𝐴𝑃, 𝐿) , lasso FKS LM associated with 𝑀 , table
OPEN, and table CLOSED.
//The production rule for 𝑀௅ is 𝛿௅ = {𝛿௦, 𝛿௔, 𝛿௟శ, 𝛿௟ഘ|𝛿௦, 𝛿௔, 𝛿௟శ, 𝛿௟ഘ𝑎𝑟𝑒 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡}. The OPEN ta-
ble is used to store node will be extended, and the CLOSED table is used to store 𝑀௅.
Solution process:
1 Initialize Π௠௩௟ = ∅;
2 ∀𝑠 ∈ 𝑀௅ IF 𝐼(𝑠) > 0 THEN add s to the OPEN table;
3 LOOP the OPEN table is not empty
4 Remove the first node s from the OPEN table and add it to the CLOSED table;
5 IF 𝑠 exists , extended 𝑠 based on the production (𝛿(𝑠଴, 𝑠ଵ), 𝛿(𝑠ଵ, 𝑠ଶ), ⋯ , 𝛿(𝑠௡ିଶ, 𝑠௡ିଵ))ఠ.
6 Add 𝑠ଵ, 𝑠ଶ, ⋯ , 𝑠௡ିଵ to Table CLOSED one by one;
7 ∀𝑖 ∈ 𝐼௡, set 𝐹𝑎𝑡ℎ𝑒𝑟(𝑠௜ାଵ) = 𝑠௜;
8 Backtrack from 𝑠௡ିଵ along the Father pointer to a certain state 𝑠௜௡ such that
 𝐼(𝑠௜௡) > 0, forming a finite path 𝜋௙௜௡ = 𝑠௜௡, ⋯ , 𝑠ଵ, 𝑠ଶ, ⋯ , 𝑠௡ିଵ;
9 IF Π௠௩௟ = ∅ THEN Π௠௩௟ = {𝜋௙௜௡};
10 ELSE 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜋௙௜௡ᇱ ∈ 𝛱௠௩௣
11 IF ൳𝜋௙௜௡, 𝜑൷ = ൳𝜋௙௜௡ᇱ , 𝜑൷ THEN 𝛱௠௩௟ = 𝛱௠௩௟ ∪ {𝜋௙௜௡};
12 IF ൳𝜋௙௜௡, 𝜑൷ < ൳𝜋௙௜௡ᇱ , 𝜑൷ THEN 𝛱௠௩௟ = {𝜋௙௜௡};
13 END
14 IF 𝑠 exists , extended 𝑠 based on the production (𝛿(𝑠଴, 𝑠ଵ), 𝛿(𝑠ଵ, 𝑠ଶ), ⋯ , 𝛿(𝑠௡ିଶ, 𝑠௡ିଵ))ା.
15 Add 𝑠ଵ, 𝑠ଶ, ⋯ , 𝑠௡ିଵ to table CLOSED one by one;
16 ∀𝑖 ∈ 𝐼௡, set 𝐹𝑎𝑡ℎ𝑒𝑟(𝑠௜ାଵ) = 𝑠௜; Add 𝑠௡ିଵ to table OPEN;
17 END
18 IF 𝑠 exists , extended 𝑠 based on the production 𝛿(𝑠଴, 𝑠ଵ), 𝛿(𝑠ଵ, 𝑠ଶ), ⋯ , 𝛿(𝑠௡ିଶ, 𝑠௡ିଵ)).
19 Add 𝑠ଵ, 𝑠ଶ, ⋯ , 𝑠௡ିଵ to Table CLOSED one by one;
20 ∀𝑖 ∈ 𝐼௡, set 𝐹𝑎𝑡ℎ𝑒𝑟(𝑠௜ାଵ) = 𝑠௜, Add 𝑠௡ିଵ to table OPEN;
21 END
22 IF 𝑠 exists, extended 𝑠 based on the production {𝛿(𝑠, 𝑠ᇱ)|, 𝑠ᇱ ∈ 𝐶ℎ𝑖𝑙𝑑(𝑠), 𝑘 = |𝐶ℎ𝑖𝑙𝑑(𝑠)| > 1}
23 Add 𝑠ଵ, 𝑠ଶ, ⋯ , 𝑠௡ିଵ to Table CLOSED one by one;
24 ∀𝑖 ∈ 𝐼௞ − {0}, establish a Child pointer from 𝑠 to 𝑠௜;
25 END
26 END
Output: Π௠௩௟.

Theorem 12 Given a QFLTL formula of 𝜑 and an FKS of 𝑀, let 𝑀௅ = (𝑀, 𝛱௅) be the lasso
FKS associated with 𝑀, and let 𝑀௉௅ = (𝑀, 𝛱௉௅) be the pure lasso FKS associated with 𝑀. If 𝛱௠௩௣ and 𝛱௠௩௟ are the output results of Algorithms 7 and 8, respectively, then,
(1) 𝛱௠௩௣=𝒂𝒓𝒈(𝒎𝒊𝒏{ ⟦𝜋, 𝜑⟧|𝜋 ∈ 𝑃𝑎𝑡ℎ(𝑀௉௅)}), and the complexity of Algorithm 7 is 𝑂(|𝑆|！⋅ (|𝑆|+3)|ఝ|);
(2) 𝛱௠௩௟=𝒂𝒓𝒈(𝒎𝒊𝒏{ ⟦𝜋, 𝜑⟧|𝜋 ∈ 𝑃𝑎𝑡ℎ(𝑀௅)}), and the complexity of Algorithm 8 is 𝑂(|𝛿௟ഘ| ⋅(|𝑆|+3)|ఝ|).

Proof. According to Theorem 9 and Corollary 2, the CLOSED tables constructed by Algo-
rithms 7 and 8 correspond to M୔୐ and M୐, respectively. The proof process, which is sim-
ilar to that of Algorithm 4, generates the 𝑂(|𝛿௟ഘ|) and O(|S|！) paths during the dy-
namic generation of 𝑀௉௅ and 𝑀௅, respectively. According to Theorem 7, the complexity
of computing ൳𝜋௙௜௡, 𝜑൷ on a finite path 𝜋௙௜௡ is 𝑂((|𝑆|+3)|ఝ|). Therefore, the conclusion
of Theorem 12 is correct. □

6. Examples of QFLTL Reasoning
Next, we present an example of using FKS to model the patient treatment process,

employing QFLTL to characterize expectations for the treatment plan and solve related

Output: Πmvl .

Theorem 12 Given a QFLTL formula of φ and an FKS of M, let ML = (M, ΠL) be the lasso
FKS associated with M, and let MPL = (M, ΠPL) be the pure lasso FKS associated with M.
If Πmvp and Πmvl are the output results of Algorithms 7 and 8, respectively, then,

(1) Πmvp=arg(min{ Jπ, φ K|π ∈ Path(MPL)}), and the complexity of Algorithm 7 is O(|S|! ·
(|S|+ 3)|φ|);

(2) Πmvl=arg(min{ Jπ, φ K|π ∈ Path(ML)}), and the complexity of Algorithm 8 is O(|δlω | ·
(|S|+ 3)|φ|).

Proof. According to Theorem 9 and Corollary 2, the CLOSED tables constructed by
Algorithms 7 and 8 correspond to MPL and ML, respectively. The proof process, which is
similar to that of Algorithm 4, generates the O(|δlω |) and O(|S|!) paths during the dynamic
generation of MPL and ML, respectively. According to Theorem 7, the complexity of
computing Jπ f in, φ K on a finite path π f in is O((|S|+ 3)|φ|). Therefore, the conclusion of
Theorem 12 is correct. □

Mathematics 2024, 12, 3148 30 of 36

6. Examples of QFLTL Reasoning

Next, we present an example of using FKS to model the patient treatment process,
employing QFLTL to characterize expectations for the treatment plan and solve related
search and decision-making problems. Figure 3 depicts an FKS M that has been obtained
by modeling the patient’s treatment process.

Mathematics 2024, 12, x FOR PEER REVIEW 29 of 36

search and decision-making problems. Figure 3 depicts an FKS 𝑀 that has been obtained
by modeling the patient’s treatment process.

Figure 3. An FKS 𝑀 Representing the patient treatment process

The atomic proposition set 𝐴𝑃 = (𝑝, 𝑒, 𝑓); “ 𝑝, 𝑒, 𝑓”, respectively, indicate that the pa-
tient’s health status is “poor”, “fine”, and “excellent”. The state set S represents the pa-
tient’s physical state during the treatment process. 𝐼 = (1,0,0) indicates that the initial
state of the patient is determined as state 𝑠଴. 𝛿 is transition function. 𝛿(𝑠଴, 𝑠଴) = 0.3 rep-
resents that the possibility of the patient remaining in state 𝑠଴ is 0.3. 𝛿(𝑠଴, 𝑠ଵ) = 0.8 rep-
resents a probability of 0.8 for the patient to transition from state 𝑠଴ to 𝑠ଵ after treat-
ment. 𝛿(𝑠଴, 𝑠ଶ) = 0.2 indicates that the patient has a 0.2 possibility of directly transferring
from state 𝑠଴ to 𝑠ଶ after treatment. 𝛿(𝑠ଵ, 𝑠଴) = 0.4 indicates that the patient will deterio-
rate from state state 𝑠ଵ to 𝑠଴ with a possibility of 0.4. Other transitions are similar. L is a
label function. 𝐿(s଴)(𝑝) = 0.8. The possibility of “poor” status when the patient is in state 𝑠଴ is 0.8. 𝐿(s଴)(𝑓) = 0.1. The possibility of the health condition being “fine” when the pa-
tient is in state 𝑠଴ is 0.1. 𝐿(s଴)(𝑒) = 0. The possibility of the health condition being “ex-
cellent” when the patient is in state 𝑠଴ is zero. Other label values are similar. Different
paths correspond to different treatment processes. For example, 𝜋_0 = 𝑠଴ఠ indicates that
the patient has been in state 𝑠଴ continuously. 𝜋_1 = 𝑠଴, 𝑠ଵఠ indicates that the patient has
been changed from state 𝑠଴ to 𝑠ଵ after treatment and then remains in state 𝑠ଵ . 𝜋_2 =𝑠଴଻, 𝑠ଵఠ indicates that the patient has changed from state 𝑠଴ to 𝑠ଵ after one week of treat-
ment in state 𝑠଴ and has been in state 𝑠ଵ continuously. 𝜋_3 = 𝑠଴ହ, 𝑠ଵ଻, 𝑠ଶఠ indicates that
the patient has changed from state 𝑠଴ to state 𝑠ଵ after 5 days of treatment in state 𝑠଴. Af-
ter another 7 days of treatment, the state changed from 𝑠ଵ to 𝑠ଶ and then remained in
state 𝑠ଶ 𝜋_4 = 𝑠଴଻, 𝑠ଶఠ, indicating that the patient has changed from state 𝑠଴ to 𝑠ଶ after one
week of treatment in state 𝑠଴ and has been in state 𝑠ଶ continuously. The explanation of
other paths will not be elaborated here.

Here are some examples of computing related to path reachability. 𝛿௜∗(𝜋଴) = 𝛿௜∗(𝜋ଵ) = 𝛿௜∗(𝜋ଶ) = 𝛿௜∗(𝜋ଷ) = ቄ 1 𝑖 = 0;0.3 𝑖 > 0. 𝛿௜∗(𝜋_4) = ൝ 1 𝑖 = 0;0.3 0 < 𝑖 ≤ 7;0.2 𝑖 > 7.

There are nine pure lasso paths in M, which are 𝜋_𝑝𝑙_0 = 𝑠଴ఠ; 𝜋_𝑝𝑙_1 = (𝑠଴, 𝑠ଵ)ఠ; 𝜋_𝑝𝑙_2 = 𝑠଴, 𝑠ଵఠ; 𝜋_𝑝𝑙_3 = 𝑠଴, (𝑠ଵ, 𝑠ଶ)ఠ; 𝜋௣௟ర =𝑠଴, 𝑠ଵ, 𝑠ଶఠ; 𝜋_𝑝𝑙_5 = (𝑠଴, 𝑠ଶ, 𝑠ଵ)ఠ; 𝜋_𝑝𝑙_6 = 𝑠଴, 𝑠ଶ, 𝑠ଵఠ; 𝜋_𝑝𝑙_7 = 𝑠଴, (𝑠ଶ, 𝑠ଵ)ఠ; and 𝜋_𝑝𝑙_8 =𝑠଴, 𝑠ଶఠ.
There are 11 forms of lasso paths in M, which are 𝜋_𝑙_0 = 𝑠଴ఠ; 𝜋_𝑙_1 = (𝑠଴ା, 𝑠ଵା)ఠ; 𝜋_𝑙_2 = 𝑠଴ା, 𝑠ଵఠ; 𝜋_𝑙_3 = 𝑠଴ା, (𝑠ଵା, 𝑠ଶା)ఠ; 𝜋_𝑙_4 =𝑠଴ା, 𝑠ଵା, 𝑠ଶఠ; 𝜋_𝑙_5 = (𝑠଴, 𝑠ଵ)ା, 𝑠ଶఠ; 𝜋_𝑙_6 = (𝑠଴ା, 𝑠ଶା, 𝑠ଵା)ఠ; 𝜋_𝑙_7 = (𝑠଴ା, (𝑠ଶ, 𝑠ଵ)ା)ఠ; 𝜋_𝑙_8 =𝑠଴ା, 𝑠ଶା, 𝑠ଵఠ; 𝜋_𝑙_9 = 𝑠଴ା, (𝑠ଶା, 𝑠ଵା)ఠ; and 𝜋_𝑙_10 = 𝑠଴ା, 𝑠ଶఠ.

Figure 3. An FKS M Representing the patient treatment process.

The atomic proposition set AP = (p, e, f); “ p, e, f ”, respectively, indicate that the pa-
tient’s health status is “poor”, “fine”, and “excellent”. The state set S represents the patient’s
physical state during the treatment process. I = (1, 0, 0) indicates that the initial state of
the patient is determined as state s0. δ is transition function. δ(s0, s0) = 0.3 represents that
the possibility of the patient remaining in state s0 is 0.3. δ(s0, s1) = 0.8 represents a prob-
ability of 0.8 for the patient to transition from state s0 to s1 after treatment.δ(s0, s2) = 0.2
indicates that the patient has a 0.2 possibility of directly transferring from state s0 to s2 after
treatment. δ(s1, s0) = 0.4 indicates that the patient will deteriorate from state state s1 to s0
with a possibility of 0.4. Other transitions are similar. L is a label function. L(s0)(p) = 0.8.
The possibility of “poor” status when the patient is in state s0 is 0.8. L(s0)(f) = 0.1.
The possibility of the health condition being “fine” when the patient is in state s0 is 0.1.
L(s0)(e) = 0. The possibility of the health condition being “excellent” when the patient is
in state s0 is zero. Other label values are similar. Different paths correspond to different
treatment processes. For example, π_0 = sω

0 indicates that the patient has been in state
s0 continuously. π_1 = s0, sω

1 indicates that the patient has been changed from state s0 to
s1 after treatment and then remains in state s1. π_2 = s7

0, sω
1 indicates that the patient has

changed from state s0 to s1 after one week of treatment in state s0 and has been in state s1
continuously. π_3 = s5

0, s7
1, sω

2 indicates that the patient has changed from state s0 to state
s1 after 5 days of treatment in state s0. After another 7 days of treatment, the state changed
from s1 to s2 and then remained in state s2 π_4 = s7

0, sω
2 , indicating that the patient has

changed from state s0 to s2 after one week of treatment in state s0 and has been in state s2
continuously. The explanation of other paths will not be elaborated here.

Here are some examples of computing related to path reachability.

δ∗i (π0) = δ∗i (π1) = δ∗i (π2) = δ∗i (π3) =

{
1 i = 0;

0.3 i > 0.
δ∗i (π_4) =


1 i = 0;

0.3 0 < i ≤ 7;
0.2 i > 7.

There are nine pure lasso paths in M, which are

π_pl_0 = sω
0 ;π_pl_1 = (s0, s1)

ω; π_pl_2 = s0, sω
1 ; π_pl_3 = s0, (s1, s2)

ω;
π_pl_4 = s0, s1, sω

2 ;π_pl_5 = (s0, s2, s1)
ω; π_pl_6 = s0, s2, s1

ω;
π_pl_7 = s0, (s2, s1)

ω; and π_pl_8 = s0, sω
2 .

There are 11 forms of lasso paths in M, which are

π_l_0 = sω
0 ;π_l_1 =

(
s+0 , s+1)

ω; π_l_2 = s+0 , sω
1 ; π_l_3 = s+0 ,

(
s+1 , s+2)

ω;
π_l_4 = s+0 , s+1 , sω

2 ;π_l_5 = (s0, s1)
+, sω

2 ; π_l_6 =
(
s+0 , s+2 , s+1)

ω;
π_l_7 =

(
s+0 , (s2, s1)

+)ω; π_l_8 = s+0 , s+2 , sω
1 ;

π_l_9 = s+0 ,
(
s+2 , s+1)

ω; and π_l_10 = s+0 , sω
2 .

Mathematics 2024, 12, 3148 31 of 36

The pure lasso FKS accompanied by M is MPL = (M, ΠPL), where

ΠPL = {π_pl_i|i ∈ I9}.

The lasso FKS accompanied by M is ML = (M, ΠL), where ΠL = {π_l_i|i ∈ I11}.
The calculation of the reachability for the pure lasso path is as follows.

δ∗i (π_pl_0) =
{

1 i = 0;
0.3 i > 0.

δ∗i (π_pl_1) =


1 i = 0;

0.8 i = 1;
0.4 i > 1.

δ∗i (π_pl_2) =


1 i = 0;

0.8 i = 1;
0.7 i > 1.

Some properties characterized by the QFLTL formula are given as follows.
φ1 = 3

(
0.8c f (e)

)
. This formula is used to represent the possibility that the final

physical condition of a treated patient is considered “excellent”, with a maximum possibility
of 0.8.

φ2 = □(f
⊕

0.4 e). This formula is used to represent the possibility that the patient’s
physical condition consistently satisfies the criteria of ‘fine’ with a weight of 40% and
‘excellent’ with a weight of 60% during the treatment process.

φ3 = 0.5ne(f)
⋃

e. This formula represents the possibility that, throughout the treat-
ment process, the patient’s physical condition will consistently remain at a level considered
‘fine’ with a minimum necessity of at least 0.5 until it transitions to an ‘excellent’ level.

It is evident that the FLTL formula cannot express these properties, and neither can
the LTL formula.

Some examples of Boolean reachable semantic paths are as follows.

∥π_pl_0, φ1∥ =
∨

i≥0
∥(π_pl_0)i, 0.8c f (e)∥ = 0.8 × ∨

i≥0
0 = 0

∥π_pl_1, φ1∥ = 0.8 × (0 ∨ 0.5 ∨ 0 ∨ 0.5 ∨ · · · ∨ 0 ∨ 0.5) = 0.4
∥π_pl_2, φ1∥ =

∨
i≥0

∥(π_pl_2)i, 0.8c f (e)∥ = 0.8 × (0 ∨ 0.5 ∨ · · · ∨ 0.5) = 0.4;

∀k ∈ I9, k > 2, ∥π_pl_k, φ1∥ = 0.8. The reason is that the state s2 occurs on all of these
paths, and s2(e) = 1, which represents the maximum possible value for e. Taking into
account the quality constraint operator 0.8c f (x) acting on e, the satisfaction value is 0.8.

∀k ∈ I9, ∥π_pl_k, φ2∥ =
∧

i≥0
(0.4 × ∥(π_pl_k)i, f ∥+ 0.6 × ∥(π_pl_k)i, e∥ = 0.04.

∥π_pl_0, φ3∥ =
∨

i≥0
(∥(π_pl_0)i, e∥ ∧ ∧

0≤j<i
∥(π_pl_0)j, 0.5ne(f)∥) = ∨

i≥0
(0∧∧

0≤j<i
∥(π_pl_0)j, 0.55∥) = 0.

We have listed the Boolean reachability semantics of φ1, φ2, and φ3 on different lasso
paths in Table 2 below for convenient comparative analysis.

Table 2. The Boolean reachability satisfaction values of φ1, φ2, and φ3 on different lasso paths.

∥∥π_l_i, φj||
∥∥ π_pl_0 π_pl_1 π_pl_2 π_pl_3 π_pl_4 π_pl_5 π_pl_6 π_pl_7 π_pl_8

∣∣∣{∥∥∥πli , φj

∥∥∥}
∣∣∣

φ1 0 0.4 0.4 0.8 0.8 0.8 0.8 0.8 0.8 3
φ2 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 1
φ3 0 0.5 0.5 0.55 0.55 0.55 0.55 0.55 0.55 1

In quantitative reachability calculations, the weighted average operator “⊕0.3” is

selected as the composition operation “◦”. For all π ∈ ([0, 1] AP
)ω

, φ ∈ AP ∪ APR, i ∈ N,

according to Definition 6, we have Jπi, φ K = 0.3δ∗i (π) + 0.7Jπi, φ K. This indicates that the
path reachability contributes 30% to the overall satisfaction value of formula φ, while the

Mathematics 2024, 12, 3148 32 of 36

property satisfaction value contributes 70% to the overall satisfaction value of formula φ.
Below are some examples of such calculations.

Jπ_l_0, φ1K =
∨

i≥0
J(π_l_0)i, 0.8c f (e)K =

∨
i≥0

δ∗i (π_l_0)⊕0.3 0.8(π_l_0)i(e)

=
∨

i≥0
0.3 × δ∗i (π_l_0) + 0.7 × 0.8 × (π_l_0)i(e)

=
∨

i≥0
0.3×δ∗i (π_l_0) + 0.56 × 0) = 0.3 × (

∨
i≥0

δ∗i (πl0)) = 0.3 × (1 ∨ ∨
i≥1

0.3) = 0.3;

Jπ_l_0, φ2K =
∧

i≥0
J(π_l_0)i, f

⊕
0.4 eK

=
∧
(

i≥0
0.3 × δ∗i (πl0) + 0.7 × (0.4 × (π_l_0)i(f) + 0.6 × (π_l_0)i(e)))

=
∧

i≥0
(0.3 × δ∗i (πl0) + 0.28 × (π_l_0)i(f) + 0.42 × (π_l_0)i(e)))

=
∧

i≥0
(0.3 × δ∗i (πl0) + 0.28 × (π_l_0)i(f))

= (0.3 × 1 + 0.28 × 0.1) ∧ ∧
i≥1

(0.3 × 0.3 + 0.28 × 0.1) = 0.118.

Jπ_l_0, φ3K =
∨

i≥0
(J(π_l_1)i, e K∧ ∧

0≤j<i
J(π_l_1)j, 0.5ne(f) K

=
∨

i≥0
((0.3 × δ∗i (π_l_0) + 0.7 × (π_l_0)i(e)) ∧

∧
0≤j<i

(0.3 × δ∗j (π_l_0) + 0.7 × (0.5

+0.5 × (π_l_0)j(f)))
=
∨

i≥0
(0.3 × δ∗i (π_l_0) + 0.7 × 0) ∧ ∧

0≤j<i
(0.3 × δ∗j (π_l_0) + 0.35 + 0.35 × 0.1)

=
∨

i≥0
(0.3 × δ∗i (π_l_0) ∧ ∧

0≤j<i
(0.3 × δ∗j (π_l_0) + 0.385))

= (0.3 × 1 ∨ ∨
i≥1

(0.3 × 0.3 ∧ ∧
0≤j<i

(0.3 × 0.3 + 0.385)) = 0.3.

We have listed the quantitative reachability satisfaction values of φ1, φ2, and φ3 on
different lasso paths in Table 3 below for convenient comparative analysis.

Table 3. The quantitative reachability satisfaction values of φ1, φ2, and φ3 on different lasso paths.

Jπ_l_i, φj K π_pl_0 π_pl_1 π_pl_2 π_pl_3 π_pl_4 π_pl_5 π_pl_6 π_pl_7 π_pl_8
∣∣∣{ Jπli , φj K}

∣∣∣
φ1 0.3 0.52 0.52 0.77 0.77 0.77 0.62 0.62 0.62 4
φ2 0.118 0.148 0.328 0.328 0.328 0.088 0.328 0.328 0.328 4
φ3 0.3 0.59 0.59 0.625 0.625 0.625 0.685 0.685 0.685 4

In the literature [7,8], the possibility of temporal logic is studied, which solely utilizes
the classical max–min operation for information synthesis, excluding quality constraint
operators such as a, b, and c. As a result, it cannot express the more nuanced properties
like φ1, φ2, and φ3 in QFCLTL. We have computed the satisfaction values of the PoLTL
formulas ϕ1 = 3e, ϕ2 = □(f ∧ e), and ϕ3 = f

⋃
e, which correspond to these three

QFLTL formulas, on the KFS in the example regarding the patient treatment process. which
correspond to these three QFLTL formulas, on the KFS in the example regarding the patient
treatment process. The calculation results are presented in Table 4 to facilitate comparison
and analysis between QFLTL and PoLTL.

Table 4. The Satisfaction Values of ϕ1, ϕ2, and ϕ3 on different paths.

Jπli K(ϕj) π_pl_0 π_pl_1 π_pl_2 π_pl_3 π_pl_4 π_pl_5 π_pl_6 π_pl_7 π_pl_8
∣∣∣{ Jπli K(ϕj)}

∣∣∣
ϕ1 0 0.5 0.5 0.7 0.7 0.7 0.2 0.2 0.2 4
ϕ2 0 0 0 0 0 0 0 0 0 1
ϕ3 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2

After conducting a comparative analysis of Tables 2–4, we can draw the following
conclusions.

Mathematics 2024, 12, 3148 33 of 36

(1) QFLTL exhibits a stronger expressive power compared to PoLTL. First, PoLTL is
incapable of expressing temporal properties that incorporate qualitative constraints, such
as φ1, φ2, and φ3, which specify particular qualities. Second, QFLTL allows for a more
precise and quantitative characterization of system properties, as demonstrated by the
last column in the three tables, which represents the diverse number of satisfaction values
attained by the corresponding formulas within the system. It is clear that, within the same
system, QFLTL formulas differentiate between values with greater granularity than those
of PoLTL formulas;

(2) PoLTL may result in information loss, whereas QFLTL does not suffer from this
limitation. PoLTL solely utilizes the “∧” operation to combine information between the
path-reachability and property formulas, ultimately selecting the smaller of the two values
as the satisfaction measure. For instance, in Table 4, the bold values indicate the path
reachability, whereas the non-bold values correspond to the values of the property formulas.
In contrast, the QFLTL in Table 3 consistently synthesizes information from both aspects;

(3) PoLTL fails to differentiate between the importance of sub-formulas within a
property formula, nor does it make a distinction between the significance of the property
formula itself and path reachability. In contrast, QFLTL adeptly discriminates between
these types of information. For example, both the PoLTL formula ϕ2 = □(f ∧ e) and the
QFLTL formula φ2 = □(f

⊕
0.4 e) necessitate that f and e occur concurrently along the

path. Nonetheless, ϕ2 selects the smaller value between f and e, whereas φ2 integrates f
and e with a weight ratio of 0.4:0.6, suggesting that e is regarded as the more essential
property. During the synthesis of path reachability and property satisfaction values, PoLTL
merely chooses the smaller value, whereas the QFLTL formulas can blend the two using
the

⊕
0.3 operation, applying a weight ratio of 0.3:0.7 and indicating that QFLTL considers

the property formula to be more important than path reachability;
(4) PoLTL may cause a desynchronization between the values of the property formula

and the path-reachability information, whereas QFLTL can always ensure that these two
pieces of information remain synchronized. For example, on the path
π_pl_3 = s0, s1, s2, s1, s2, · · · , ..., the value of ϕ3 is 0.1 for all path segments after the first
occurrence of s1, which actually reflects the value of s0(f) = 0.1. However, in reality, the
reachability values for all path segments after the second occurrence of s1 are 0.5. On the
contrary, φ3, which uses the

⊕
0.3 operation to combine the current path reachability with

the value of the property formula, successfully synchronizes these two pieces of informa-
tion and results in four distinct values (as detailed in the fourth row of Table 3). In contrast,
ϕ3 only exhibits two values, namely 0 and 0.1.

Given an error threshold of ε = 0.001, here are examples to illustrate how algorithms
one to eight can be used to obtain solutions for related searching and decision problems
in QFLTL.

Using Algorithms 1–3 within FKS M, the individual problems of validity, satisfiability,
and model checking, each under Boolean reachability semantics, were solved for the
three QFLTL formulas φ1, φ2, and φ3. The computational results of these problems are
summarized in the following Table 5.

Table 5. Results for solving QFLTL Boolean reachability semantics-related problems within M.

φi
Algorithm 1 Validity

min{ ∥π, φi∥|π∈Path(M)}
Algorithm 2 Satisfiability

max{ ∥π, φi∥|π∈Path(M)}
Algorithm 3 Model Checking

arg min({ ∥π, φi∥|π∈Path(M)})

φ1 0.000 0.800 {sω
0 }

φ2 0.040 0.040 {sω
0 }

φ3 0.000 0.550 {sω
0 }

Based on the “Decision Theorem about Pure Lasso FKSs”(Corollary 2), by limiting
the generation rule of KFS M to δPL = {δs, δa, δlω , |δs, δa, δlω are f inite sets}, we obtain its
accompanying pure lasso FKS MPL.

Mathematics 2024, 12, 3148 34 of 36

Generate the spanning tree T_MPL of MPL using Algorithm 4, as depicted in Figure 4,
where the dashed edge “

Mathematics 2024, 12, x FOR PEER REVIEW 33 of 36

Based on the “Decision Theorem about Pure Lasso FKSs”(Corollary 2), by limiting
the generation rule of KFS 𝑀 to 𝛿௉௅ = {𝛿௦, 𝛿௔, 𝛿௟ഘ, |𝛿௦, 𝛿௔, 𝛿௟ഘ 𝑎𝑟𝑒 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡𝑠}, we obtain
its accompanying pure lasso FKS 𝑀௉௅.

Generate the spanning tree 𝑇_𝑀௉௅ of 𝑀௉௅ using Algorithm 4, as depicted in Figure
4, where the dashed edge “ ” represents an infinite loop of path fragments start-
ing from the same direct ancestor node as the leaf node that the edge reaches along its
path. The paths in 𝑇_𝑀௉௅ are pure lasso paths.

Figure 4. 𝑇_𝑀௉௅.

For example, Figure 5 shows a pure lasso path 𝜋_𝑝𝑙_3 = 𝑠଴, (𝑠ଵ, 𝑠ଶ)ఠ.

Figure 5. A pure lasso path 𝜋_𝑝𝑙_3 = 𝑠଴, (𝑠ଵ, 𝑠ଶ)ఠ.

Using Algorithms 5 and 7 within 𝑀௉௅, the individual problems of validity, satisfia-
bility, and model checking, each under Boolean reachability semantics, were solved for
the three QFLTL formulas 𝜑ଵ, 𝜑ଶ, and 𝜑ଷ. The computational results of these problems
are summarized in the following Table 6.

Table 6. Results for solving QFLTL quantitative reachability semantics-related problems within 𝑀௉௅. 𝝋𝒊 Algorithm 5 Validity 𝐦𝐢𝐧{⟦𝝅, 𝝋𝒊⟧|𝝅 ∈ 𝑷𝒂𝒕𝒉(𝑴𝑷𝑳)}
Algorithm 5 Satisfiability 𝐦𝐚𝐱{⟦𝝅, 𝝋𝒊⟧|𝝅 ∈ 𝑷𝒂𝒕𝒉(𝑴𝑷𝑳)}

Algorithm 7 Model Checking 𝐚𝐫𝐠(𝐦𝐢𝐧{⟦𝝅, 𝝋𝒊⟧|𝝅 ∈ 𝑷𝒂𝒕𝒉(𝑴𝑷𝑳)}) 𝜑ଵ 0.300 0.770 {𝑠଴ఠ} 𝜑ଶ 0.118 0.088 {𝑠଴ఠ} 𝜑ଷ 0.300 0.685 {𝑠଴ఠ}

Based on the “Decision Theorem about Lasso FKSs”(Theorem 9), by limiting the gen-
eration rule of KFS 𝑀 to 𝛿௅ = {𝛿௦, 𝛿௔, 𝛿௟శ, 𝛿௟ഘ|𝛿௦, 𝛿௔, 𝛿௟శ, 𝛿௟ഘ 𝑎𝑟𝑒 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡𝑠. }, we obtain its
accompanying pure lasso FKS 𝑀௅.

Using Algorithms 6 and 8 within 𝑀௅, the individual problems of validity, satisfiabil-
ity, and model checking, each under Boolean reachability semantics, were solved for the
three QFLTL formulas 𝜑ଵ, 𝜑ଶ, and 𝜑ଷ. The computational results of these problems are
summarized in the following Table 7.

Table 7. Results of solving QFLTL quantitative reachability semantics-related problems within 𝑇_𝑀௅.

” represents an infinite loop of path fragments starting
from the same direct ancestor node as the leaf node that the edge reaches along its path.
The paths in T_MPL are pure lasso paths.

Mathematics 2024, 12, x FOR PEER REVIEW 33 of 36

Based on the “Decision Theorem about Pure Lasso FKSs”(Corollary 2), by limiting
the generation rule of KFS 𝑀 to 𝛿௉௅ = {𝛿௦, 𝛿௔, 𝛿௟ഘ, |𝛿௦, 𝛿௔, 𝛿௟ഘ 𝑎𝑟𝑒 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡𝑠}, we obtain
its accompanying pure lasso FKS 𝑀௉௅.

Generate the spanning tree 𝑇_𝑀௉௅ of 𝑀௉௅ using Algorithm 4, as depicted in Figure
4, where the dashed edge “ ” represents an infinite loop of path fragments start-
ing from the same direct ancestor node as the leaf node that the edge reaches along its
path. The paths in 𝑇_𝑀௉௅ are pure lasso paths.

Figure 4. 𝑇_𝑀௉௅.

For example, Figure 5 shows a pure lasso path 𝜋_𝑝𝑙_3 = 𝑠଴, (𝑠ଵ, 𝑠ଶ)ఠ.

Figure 5. A pure lasso path 𝜋_𝑝𝑙_3 = 𝑠଴, (𝑠ଵ, 𝑠ଶ)ఠ.

Using Algorithms 5 and 7 within 𝑀௉௅, the individual problems of validity, satisfia-
bility, and model checking, each under Boolean reachability semantics, were solved for
the three QFLTL formulas 𝜑ଵ, 𝜑ଶ, and 𝜑ଷ. The computational results of these problems
are summarized in the following Table 6.

Table 6. Results for solving QFLTL quantitative reachability semantics-related problems within 𝑀௉௅. 𝝋𝒊 Algorithm 5 Validity 𝐦𝐢𝐧{⟦𝝅, 𝝋𝒊⟧|𝝅 ∈ 𝑷𝒂𝒕𝒉(𝑴𝑷𝑳)}
Algorithm 5 Satisfiability 𝐦𝐚𝐱{⟦𝝅, 𝝋𝒊⟧|𝝅 ∈ 𝑷𝒂𝒕𝒉(𝑴𝑷𝑳)}

Algorithm 7 Model Checking 𝐚𝐫𝐠(𝐦𝐢𝐧{⟦𝝅, 𝝋𝒊⟧|𝝅 ∈ 𝑷𝒂𝒕𝒉(𝑴𝑷𝑳)}) 𝜑ଵ 0.300 0.770 {𝑠଴ఠ} 𝜑ଶ 0.118 0.088 {𝑠଴ఠ} 𝜑ଷ 0.300 0.685 {𝑠଴ఠ}

Based on the “Decision Theorem about Lasso FKSs”(Theorem 9), by limiting the gen-
eration rule of KFS 𝑀 to 𝛿௅ = {𝛿௦, 𝛿௔, 𝛿௟శ, 𝛿௟ഘ|𝛿௦, 𝛿௔, 𝛿௟శ, 𝛿௟ഘ 𝑎𝑟𝑒 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡𝑠. }, we obtain its
accompanying pure lasso FKS 𝑀௅.

Using Algorithms 6 and 8 within 𝑀௅, the individual problems of validity, satisfiabil-
ity, and model checking, each under Boolean reachability semantics, were solved for the
three QFLTL formulas 𝜑ଵ, 𝜑ଶ, and 𝜑ଷ. The computational results of these problems are
summarized in the following Table 7.

Table 7. Results of solving QFLTL quantitative reachability semantics-related problems within 𝑇_𝑀௅.

Figure 4. T_MPL.

For example, Figure 5 shows a pure lasso path π_pl_3 = s0, (s1, s2)
ω .

Mathematics 2024, 12, x FOR PEER REVIEW 33 of 36

Based on the “Decision Theorem about Pure Lasso FKSs”(Corollary 2), by limiting
the generation rule of KFS 𝑀 to 𝛿௉௅ = {𝛿௦, 𝛿௔, 𝛿௟ഘ, |𝛿௦, 𝛿௔, 𝛿௟ഘ 𝑎𝑟𝑒 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡𝑠}, we obtain
its accompanying pure lasso FKS 𝑀௉௅.

Generate the spanning tree 𝑇_𝑀௉௅ of 𝑀௉௅ using Algorithm 4, as depicted in Figure
4, where the dashed edge “ ” represents an infinite loop of path fragments start-
ing from the same direct ancestor node as the leaf node that the edge reaches along its
path. The paths in 𝑇_𝑀௉௅ are pure lasso paths.

Figure 4. 𝑇_𝑀௉௅.

For example, Figure 5 shows a pure lasso path 𝜋_𝑝𝑙_3 = 𝑠଴, (𝑠ଵ, 𝑠ଶ)ఠ.

Figure 5. A pure lasso path 𝜋_𝑝𝑙_3 = 𝑠଴, (𝑠ଵ, 𝑠ଶ)ఠ.

Using Algorithms 5 and 7 within 𝑀௉௅, the individual problems of validity, satisfia-
bility, and model checking, each under Boolean reachability semantics, were solved for
the three QFLTL formulas 𝜑ଵ, 𝜑ଶ, and 𝜑ଷ. The computational results of these problems
are summarized in the following Table 6.

Table 6. Results for solving QFLTL quantitative reachability semantics-related problems within 𝑀௉௅. 𝝋𝒊 Algorithm 5 Validity 𝐦𝐢𝐧{⟦𝝅, 𝝋𝒊⟧|𝝅 ∈ 𝑷𝒂𝒕𝒉(𝑴𝑷𝑳)}
Algorithm 5 Satisfiability 𝐦𝐚𝐱{⟦𝝅, 𝝋𝒊⟧|𝝅 ∈ 𝑷𝒂𝒕𝒉(𝑴𝑷𝑳)}

Algorithm 7 Model Checking 𝐚𝐫𝐠(𝐦𝐢𝐧{⟦𝝅, 𝝋𝒊⟧|𝝅 ∈ 𝑷𝒂𝒕𝒉(𝑴𝑷𝑳)}) 𝜑ଵ 0.300 0.770 {𝑠଴ఠ} 𝜑ଶ 0.118 0.088 {𝑠଴ఠ} 𝜑ଷ 0.300 0.685 {𝑠଴ఠ}

Based on the “Decision Theorem about Lasso FKSs”(Theorem 9), by limiting the gen-
eration rule of KFS 𝑀 to 𝛿௅ = {𝛿௦, 𝛿௔, 𝛿௟శ, 𝛿௟ഘ|𝛿௦, 𝛿௔, 𝛿௟శ, 𝛿௟ഘ 𝑎𝑟𝑒 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡𝑠. }, we obtain its
accompanying pure lasso FKS 𝑀௅.

Using Algorithms 6 and 8 within 𝑀௅, the individual problems of validity, satisfiabil-
ity, and model checking, each under Boolean reachability semantics, were solved for the
three QFLTL formulas 𝜑ଵ, 𝜑ଶ, and 𝜑ଷ. The computational results of these problems are
summarized in the following Table 7.

Table 7. Results of solving QFLTL quantitative reachability semantics-related problems within 𝑇_𝑀௅.

Figure 5. A pure lasso path π_pl_3 = s0, (s1, s2)
ω .

Using Algorithms 5 and 7 within MPL, the individual problems of validity, satisfiability,
and model checking, each under Boolean reachability semantics, were solved for the
three QFLTL formulas φ1, φ2, and φ3. The computational results of these problems are
summarized in the following Table 6.

Table 6. Results for solving QFLTL quantitative reachability semantics-related problems within MPL.

φi
Algorithm 5 Validity

min{ Jπ, φi K|π∈Path(MPL)}
Algorithm 5 Satisfiability

max{ Jπ, φi K|π∈Path(MPL)}
Algorithm 7 Model Checking

arg(min{ Jπ, φi K|π∈Path(MPL)})

φ1 0.300 0.770 {sω
0 }

φ2 0.118 0.088 {sω
0 }

φ3 0.300 0.685 {sω
0 }

Based on the “Decision Theorem about Lasso FKSs”(Theorem 9), by limiting the
generation rule of KFS M to δL = {δs, δa, δl+ , δlω |δs, δa, δl+ , δlω are f inite sets.}, we obtain
its accompanying pure lasso FKS ML.

Using Algorithms 6 and 8 within ML, the individual problems of validity, satisfiability,
and model checking, each under Boolean reachability semantics, were solved for the
three QFLTL formulas φ1, φ2, and φ3. The computational results of these problems are
summarized in the following Table 7.

Table 7. Results of solving QFLTL quantitative reachability semantics-related problems within T_ML.

φi
Algorithm 6 Validity

min{ Jπ, φi K|π∈Path(ML)}
Algorithm 6 Satisfiability

max{ Jπ, φi K|π∈Path(ML)}
Algorithm 8 Model Checking

arg(min{ Jπ, φi K|π∈Path(ML)})

φ1 0.300 0.770 {sω
0 }

φ2 0.118 0.088 {sω
0 }

φ3 0.300 0.685 {sω
0 }

Algorithms 1–8 effectively address the search and decision-making problems of QFLTL.
Compared to the model-checking Algorithm in reference [13–17], Algorithms 3, 7, and 8

Mathematics 2024, 12, 3148 35 of 36

exhibit improved model-checking results by not only offering the maximum and minimum
satisfaction values of the formula but also presenting corresponding counterexample paths,
which serve as a foundation for further refinement and enhancement of the model.

These examples fully demonstrate the significant practical application value of both
the Boolean reachability semantics and the quantitative reachability semantics of QFLTL,
which are more expressive than PoLTL. They can avoid information loss, ensure information
synchronization, characterize different weight preferences between path reachability and
the satisfaction values of property formulas, and distinguish different weight preferences
among property subformulas. Furthermore, the search and decision algorithms for QFLTL
presented in the article are effective. Model checking can return counterexample paths,
which can serve as an important basis for model refinement and improvement. This is of
greater practical significance compared to the PoLTL model-checking algorithms found in
the existing work.

7. Conclusions and Future Work

The main contributions of this article are:
(1) It introduces quality constraint operators into fuzzy linear temporal logic (FLTL)

and accurately integrates path-reachability information into the path fragments obtained
based on formula satisfaction values, considering preference degrees. Furthermore, it
embeds the quality constraint operator into each individual property sub-formula to
characterize the differing preferences of each sub-attribute towards the overall system
attribute requirements;

(2) It provides the syntax of fuzzy linear temporal logic with quality constraints
(QFLTL). It explores the practicality of QFLTL, studying its properties and performing a
Boolean transformation on it;

(3) It offers an automaton construction algorithm for the Boolean reachable semantics
formula of QFLTL and discusses the complexity of the algorithm. Based on this automaton
method, we address search and decision problems, such as validity, satisfiability, and model
checking under the Boolean reachability semantics of QFLTL. The algorithms for solving
these problems are presented, and their complexity is analyzed;

(4) It achieves a further weighted fusion of path reachability and property formula sat-
isfaction values, resulting in a quantitatively reachable QFLTL. Subsequently, it restricts the
intelligent system to contain only lasso paths. It describes the validity, satisfiability, model
checking, and other search and decision problems of quantitative path-reachability seman-
tics for QFLTL on this specific system, along with the corresponding solving algorithm.
The complexity of the algorithm is analyzed;

(5) Finally, it demonstrates the practicality of QFLTL through a medical process ex-
ample. Concurrently, it verifies that the algorithm proposed in this article for solving the
search and decision-making problems of QFLTL is effective.

There is a significant amount of work that needs to be undertaken in this area, includ-
ing:

(1) developing heuristic searching algorithms specifically for lasso FKSs (finite Kripke
structures) in order to diminish the complexity associated with searching and decision-
making algorithms that address the quantitative reachability semantics of QFLTL (fuzzy
linear temporal logic with quality constraints);

(2) investigating algorithms that can solve searching and decision problems within
QFLTL for systems that encompass infinite repeated paths, thereby broadening the applica-
bility of QFLTL in the realm of searching and decision-making;

(3) integrating the concepts of fuzzy time constraints, path-reachability information,
and formula satisfaction values, alongside preferences and synchronization and conducting
research on FLTL (fuzzy linear temporal logic) with dual constraints of fuzzy time and
quality, aiming to enhance the completeness and accuracy of information expression;

(4) addressing the issue of logical decisions within QFLTL, based on the possibilistic
decision process [19–21], remains an area that requires further exploration.

Mathematics 2024, 12, 3148 36 of 36

Author Contributions: X.Y. conceived the syntax and semantics of QFLTL, delineated its validity,
satisfiability, and model checking problems, along with providing pertinent solution algorithms.
Y.L. focused on examining the logical attributes of QFLTL and developing automata construction
algorithms tailored for QFLTL. S.G. contributed practical instances illustrating QFLTL applications
and meticulously proofread the article to ensure adherence to the required writing standards. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No: 12071271,11671244, 12471437), Shaanxi Fundamental Science Research Project for Mathematics
and Physics (Grant No: 23JSZ011), National Key R&Dplan (Grant No: 2020YFC1523305), and
Key R&Dand transformation plan of Qinghai Province (Grant No: 2022-QY-203), Scientific and
Technological Research Fund of Shangluo University (Grant NO. 20SKY021).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bianco, A.; De Alfaro, L. Model checking of probabilistic and nondeterministic systems. In Proceedings of the International

Conference on Foundations of Software Technology and Theoretical Computer Science, Bangalore, India, 18–20 December 1995;
Springer: Berlin/Heidelberg, Germany, 1995; pp. 499–513.

2. Valiev, M.K.; Dekhtyar, M.I. Complexity of verification of nondeterministic probabilistic multiagent systems. Autom. Control
Comput. Sci. 2011, 45, 390–396. [CrossRef]

3. Baier, C.; Kwiatkowska, M. Model checking for a probabilistic branching time logic with fairness. Distrib. Comput. 1998, 11,
125–155. [CrossRef]

4. Hart, S.; Sharir, M.; Pnueli, A. Termination of probabilistic concurrent program. ACM Trans. Program. Lang. Syst. 1983, 5, 356–380.
[CrossRef]

5. Kwiatkowska, M.; Norman, G.; Parker, D. PRISM: Probabilistic symbolic model checker. Comput. Perform. Eval. Tools 2002, 24,
200–204.

6. Klein, J.; Baier, C.; Chrszon, P.; Daum, M.; Dubslaff, C.; Klüppelholz, S.; Märcker, S.; Müller, D. Advances in symbolic probabilistic
model checking with PRISM. In Proceedings of the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, Eindhoven, The Netherlands, 9 April 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 349–366.

7. Li, Y.M.; Li, L.J. Model checking of linear-time properties based on possibility measure. IEEE Trans. Fuzzy Syst. 2013, 21, 842–854.
[CrossRef]

8. Li, Y.M. Quantitative model checking of linear-time properties based on generalized possibility measures. Fuzzy Sets Syst. 2017,
320, 17–39. [CrossRef]

9. Zhao, L.; Wu, J.Z. Multi valued model test based on Wu method. Syst. Sci. Math. 2008, 28, 1020–1029.
10. Chechik, M.; Devereux, B.; Easterbrook, S.; Gurfinkel, A. Multi-valued symbolic model-checking. ACM Trans. Softw. Eng.

Methodol. 2003, 12, 371–408. [CrossRef]
11. Chechik, M.; Devereux, B.; Easterbrook, S. Implementing a multi-valued symbolic model Checker. Proc. Tools Algorithms Constr.

Anal. Syst. 2001, 2031, 92–95.
12. Wang, G.J.; Shi, H.X. Lattice modal proposition logic and its completeness. Sci. Sin. Inf.-Tionis 2011, 41, 66–76.
13. Frigeri, A.; Pasquale, L.; Spoletini, P. Fuzzy time in linear temporal logic. ACM Trans. Comput. Log. 2014, 15, 30–53. [CrossRef]
14. Almagor, S.; Boker, U.; Kupferman, O. Formally reasoning about quality. J. ACM 2016, 63, 1–56. [CrossRef]
15. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [CrossRef]
16. Emerson, E.A. Automata, tableaux, and temporal logics. In Proceedings of the Logics of Programs, Brooklyn, NY, USA, 17–19

June 1985; Springer: Berlin/Heidelberg, Germany, 1985; pp. 79–88.
17. Baier, C.; Katoen, J.P. Principles of model checking; MIT Press: Cambridge, MA, USA, 2008.
18. Vardi, M.Y. An automata-theoretic approach to linear temporal logic. Log. Concurr. Struct. Versus Autom. 2005, 1043, 238–266.
19. Ma, Z.; Gao, Y.; Li, Z.; Li, X.; Liu, Z. Quantitative reachability analysis of generalized possibilistic decision processes. J. Intell.

Fuzzy Syst. 2023, 44, 8357–8373. [CrossRef]
20. Li, Y.; Liu, W.; Wang, J.; Yu, X.; Li, C. Model checking of possibilistic linear-time properties based on generalized possibilistic

decision processes. IEEE Trans. Fuzzy Syst. 2023, 31, 3495–3506. [CrossRef]
21. Liu, W.; Wang, J.; He, Q.; Li, Y. Model Checking Computation Tree Logic over Multi-valued Decision Processes and Its Reduction

Techniques. Chin. J. Electron. 2024, 34, 1–13.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3103/S0146411611070169
https://doi.org/10.1007/s004460050046
https://doi.org/10.1145/2166.357214
https://doi.org/10.1109/TFUZZ.2012.2232298
https://doi.org/10.1016/j.fss.2017.03.012
https://doi.org/10.1145/990010.990011
https://doi.org/10.1145/2629606
https://doi.org/10.1145/2875421
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.3233/JIFS-222803
https://doi.org/10.1109/TFUZZ.2023.3260446

	Introduction
	The Syntax and Semantics of QFLTL
	Preliminary Knowledge
	The Syntax of QFLTL
	Semantics and Practical Examples of QFLTL

	The Properties and Boolean Transformations of QFLTL
	Relationship between QFLTL Formulas
	Boundedness of the Range of QFLTL Formulas
	Boolean Characterization of QFLTL Formula

	Search and Decision Problems for Boolean Reachable Semantics in QFLTL
	The Automaton Representation of Boolean Reachable Semantics in QFLTL
	The Validity and Satisfiability Issues of Boolean Reachability Semantics for QFLTL
	Model Checking of QFLTL with Boolean Reachable Semantics

	Search and Decision Problems for Quantitative Reachable Semantic in QFLTL
	Search and Decision Problems on Pure Lasso FKSs
	Searching and Decision-Making Problems on Lasso FKSs
	Quantitative Reachable Semantic Model Checking for QFLTL

	Examples of QFLTL Reasoning
	Conclusions and Future Work
	References

