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Abstract: We study Markov operators T, A, and T∗ of general Markov chains on an arbitrary
measurable space. The operator, T, is defined on the Banach space of all bounded measurable
functions. The operator A is defined on the Banach space of all bounded countably additive measures.
We construct an operator T∗, topologically conjugate to the operator T, acting in the space of all
bounded finitely additive measures. We prove the main result of the paper that, in general, a Markov
operator T∗ is quasi-compact if and only if T is quasi-compact. It is proved that the conjugate
operator T∗ is quasi-compact if and only if the Doeblin condition (D) is satisfied. It is shown that
the quasi-compactness conditions for all three Markov operators T, A, and T∗ are equivalent to
each other. In addition, we obtain that, for an operator T∗ to be quasi-compact, it is necessary
and sufficient that it does not have invariant purely finitely additive measures. A strong uniform
reversible ergodic theorem is proved for the quasi-compact Markov operator T∗ in the space of
finitely additive measures. We give all the proofs for the most general case. A detailed analysis of
Lin’s counterexample is provided.
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1. Introduction

In this paper, we investigate general Markov chains (MC) on arbitrary measurable
spaces. The main methodological feature of our work is that we actively use finitely
additive measures. We present a continuation of our research in [1–3]. We apply the
operator-theoretical treatment that was introduced by Kryloff and Bogoliouboff in [4]. In
this article, the authors introduced a new notion of quasi-compactness and gave a condition
for the quasi-compactness of Markov operators on spaces of bounded measurable functions.
Under this condition, the Markov operators have good ergodic properties, as was shown
in [4]. Yosida and Kakutani in [5] applied this quasi-compactness condition to Markov
operators defined on spaces of bounded countably additive measures. This allowed the
authors in [5] to prove several new ergodic theorems for general Markov operators with
certain additional conditions. Later, the operator approach to the study of general and
special MCs developed rapidly. In particular, various authors studied the question of
the relationship between the conditions of quasi-compactness of MC and the Doeblin
condition of ergodicity of MC [6]. The method developed in [6] was called the direct
point-set-theoretical (or probabilistic) method in [5]. The operator approach was also used
to study MCs, with operators defined on spaces of integrable functions (see, for example,
Horowitz [7]). This methodology was also successfully used to study the ergodic properties
of topological MCs (see, for example, Foguel [8–10]). We actively use the operator results for
MCs presented in several papers by Lin [11–13]. The operator approach to studying Markov
chains is well and thoroughly presented in the monographs Neveu [14] and Revuz [15].
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Hernandez-Lerma and Lasserre [16] also studied Markov chains using both probabilistic
and operator approaches.

In the recently published paper, Mebarki, Messirdi, and Benharrat [17] construct a
general theory of quasi-compact operators in arbitrary and special Banach spaces. Corol-
laries for Markov chains are given. Probabilistic and operator approaches are also used to
describe Markov chains in [17].

In those cases where our constructions and theorems in this article have points of
contact with the results of other works listed above (and many others), we provide the
corresponding references, remarks, and comments in the main text of the article. In many
works using the classical operator approach to studying general Markov operators, two
Markov operators are considered. These are the operator T in the space of bounded
measurable functions and the operator A in the space of bounded countably additive
measures. These operators are dual in a sense, but they are not topologically conjugate.
In this paper (as well as in [1–3]), we construct an extension of the operator A to the
space of bounded finitely additive measures, and we obtain the corresponding operator T∗

conjugate to the operator T. In this way, we obtain a functionally closed construction of
spaces and operators. We emphasize that in this construction, the transition function of the
Markov chain remains countably additive in the second argument.

The main results of the paper are presented in Sections 4 and 5. In Section 4, in
Theorem 4, we prove, in the general case, that a Markov operator T in the space of mea-
surable functions is quasi-compact if and only if its conjugate operator T∗ in the space
of finitely additive measures is quasi-compact. Furthermore, in Theorem 5, it is proved
that if the operator T in an arbitrary Banach space is quasi-compact, then its restriction
to an invariant Banach subspace is also quasi-compact. In Corollary 1, it is obtained that
if the conjugate Markov operator T∗ on the space of finitely additive measures is quasi-
compact, then the Markov operator A on the space of countably additive measures is also
quasi-compact. In Theorem 6, we prove, in the general case, that the conjugate Markov
operator T∗ in the space of finitely additive measures is quasi-compact if and only if the
Doeblin condition (D) is satisfied. Proposition 1 presents a summary logical diagram on the
pairwise equivalence of the quasi-compactness conditions for all three Markov operators T,
A, and T∗ and on their equivalence to the Doeblin condition (D).

In Theorems 8 and 9, it is proved that for an arbitrary MC, its Markov operator T∗ is
quasi-compact if and only if the condition (∗) is satisfied: all its invariant finitely additive
measures are countably additive, i.e., the operator T∗ does not have invariant purely finitely
additive measures. In Theorem 10, it is proved that if the operator T is quasi-compact,
then the set of all its invariant finitely additive measures is finite-dimensional (and all such
invariant measures are countably additive). Theorem 11 gives a conversion of Theorem 10
to the case when the operator T has a unique invariant finitely additive measure.

In Section 5, in Theorem 12, we prove, in the general case, a strong uniform re-
versible ergodic theorem for the quasi-compact Markov operator T∗ in the space of finitely
additive measures. In Section 6, we study in detail Lin’s counterexample [11] of a Markov
chain on a countable phase space with Markov operators P and P∗ defined on the spaces
L1 and L∞, respectively. In [11], the author showed that in this construction, the operator P
is quasi-compact, but its conjugate operator P∗ is not quasi-compact. In our construction,
the Markov operators T and T∗ for the same Markov chain are defined on other spaces:
on the spaces B(X, Σ) and B∗(X, Σ) = ba(X, Σ), respectively. In Section 6, we prove by
direct calculation that in this scheme, the conjugate operator T∗ for a given MC is also
quasi-compact. This does not refute but confirms our Theorem 4.

2. Definitions, Notations and Some Information

Here are some of the basic definitions and concepts we use and their symbolism,
focusing on [18,19]. We also use the notation system from our article [1]. Everywhere below,
R = R1 is the set of real numbers (number line), and N is the set of natural numbers. Let
X be an arbitrary infinite set, and Σ be some sigma-algebra of its subsets. We denote by
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B(X, Σ) the Banach space of bounded Σ-measurable functions f : X → R with the sup-norm
∥ f ∥ = sup| f (x)|.

Definition 1 (see [19]). A finitely additive non-negative measure µ : Σ → R is called purely
finitely additive (pure charge, pure mean) if any countably additive measure λ satisfying the
condition 0 ≤ λ ≤ µ, is identically zero. The alternating measure µ is called purely finitely additive
if in its Jordan decomposition µ = µ+ − µ− both non-negative measures µ+ and µ− are purely
finitely additive.

If the measure µ is purely finitely additive, then it is equal to zero on every one-point
set: µ({x}) = 0, ∀x ∈ X (see [20] [Lemma 1]). The converse, generally speaking, is not true
(for example, for the Lebesgue measure on the segment [0, 1]).

Theorem 1 (Yosida-Hewitt decomposition, see [19]). Any finitely additive measure µ can be
uniquely decomposed into the sum µ = µ1 + µ2, where µ1 is countably additive, and µ2 is a purely
finitely additive measure.

In this article, we consider Banach spaces of bounded measures µ : Σ → R, with
a norm equal to the total variation of the measure µ (but an equivalent sup-norm can
also be used): ba(X, Σ) is the space of finitely additive measures, ca(X, Σ) is the space of
countably additive measures, p f a(X, Σ) is the space of purely finitely additive measures. If
µ ≥ 0, then the norm is ∥µ∥ = µ(X). Purely finitely additive measures also form a Banach
space p f a(X, Σ) with the same norm and ba(X, Σ) = ca(X, Σ)⊕ p f a(X, Σ). We denote the
sets of measures: Sba = {µ ∈ ba(X, Σ) : µ ≥ 0, ||µ|| = 1}, Sca = {µ ∈ ca(X, Σ) : µ ≥ 0,

||µ|| = 1}, Sp f a = {µ ∈ p f a(X, Σ) : µ ≥ 0, ||µ|| = 1}. All measures from these sets will

be called probabilistic. We also denote SB = { f ∈ B(X, Σ), 0 ≤ f (x) ≤ 1, || f || = 1}. A
detailed exposition of the foundations of the general theory of finitely additive measures is
contained in the monograph K.P.S.B. Rao, and M.B. Rao [21], in which such measures are
called charges.

3. Markov Operators

Markov chains (MCs) on a (phase) measurable space (X, Σ) are given by their transi-
tion function (probability) p(x, E), x ∈ X, E ∈ Σ, under ordinary conditions:

(1) 0 ≤ p(x, E) ≤ 1, p(x, X) = 1, ∀x ∈ X, ∀E ∈ Σ;
(2) p(·, E) ∈ B(X, Σ), ∀E ∈ Σ;
(3) p(x, ·) ∈ ca(X, Σ), ∀x ∈ X.

We emphasize that the transition function is a countably additive measure with respect to
the second argument, i.e., we consider classical Markov chains. The transition function
generates two Markov linear bounded positive integral operators:

T : B(X, Σ) → B(X, Σ), (T f )(x) = T f (x) =
∫

X
f (y)p(x, dy), ∀ f ∈ B(X, Σ), ∀x ∈ X;

A : ca(X, Σ) → ca(X, Σ), (Aµ)(E) = Aµ(E) =
∫

X
p(x, E)µ(dx), ∀µ ∈ ca(X, Σ), ∀E ∈ Σ.

Let µ0 ∈ Sca be the initial measure. Then the iterative sequence of countably additive
probability measures µn = Aµn−1 ∈ Sca, n ∈ N, is usually identified with the Markov chain.
We will call {µn} a Markov sequence of measures. Topologically conjugate to the space
B(X, Σ) is the (isomorphic) space of finitely additive measures: B∗(X, Σ) = ba(X, Σ) (see,
for example, [18]). In this case, the operator T∗ : ba(X, Σ) → ba(X, Σ) serves as topologically
conjugate to the operator T, which is uniquely determined by the well-known rule:

T∗µ(E) =
∫

X
p(x, E)µ(dx), ∀µ ∈ ba(X, Σ), ∀E ∈ Σ.
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The operator T∗ is the only bounded continuation of the operator A to the entire space
ba(X, Σ) while preserving its analytic form. The operator T∗ has its own invariant subspace
ca(X, Σ), i.e., T∗[ca(X, Σ)] ⊂ ca(X, Σ), on which it matches the original A operator. The
construction of the Markov operators T and T∗ is now functionally closed. We will use the
notation (T∗)ca, (T∗)ca = A, to restrict the operator T∗ to the subspace ca(X, Σ). The norms
of Markov operators on the corresponding spaces are ∥T∥ = 1, ∥A∥ = 1, ∥T∗∥ = 1. In
such a setting, it is natural to admit to consideration the Markov sequences of probabilistic
finitely additive measures: µ0 ∈ Sba, µn = T∗µn−1 ∈ Sba, n ∈ N, keeping the countable
additivity of the transition function p(x, ·) with respect to the second argument. Such a
Markov chain can have cycles consisting of finitely additive measures. The properties
of such cycles Markov chain are considered in detail in our paper [22]. You can change
the problem statement and allow the transition function p(x, ·) itself to be just a finitely
additive measure with respect to the second argument. Such Markov chains are also studied
(see [20,23]) and are called “finitely additive Markov chains”. In this article, we do not
consider such MC. Thus, in our case the following terminology is appropriate: we study
countably additive Markov chains with operators defined on the space of finitely additive
measures. Let us denote the sets of invariant probability measures of the Markov chain:

∆ba = {µ ∈ Sba : µ = T∗µ}, ∆ca = {µ ∈ Sca : µ = Aµ}, ∆p f a = {µ ∈ Sp f a : µ = T∗µ}.

Let Mba be the linear subspace of invariant measures of the Markov chain in the space
ba(X, Σ). Obviously, Mba is generated by the set ∆ba: Mba = Sp∆ba. We will also use the
notation Mca and Mp f a with similar meaning. The linear dimension of the set ∆ba will
mean the algebraic dimension of the linear space Mba generated by it and denote it by
dim∆ba = dimMba. Similarly, we talk about the dimension of the sets ∆ca and ∆p f a. The
classical countably additive Markov chain may or may not have invariant probability
countably additive measures, i.e., possibly ∆ca = ∅ (for example, for a symmetric walk
on Z). Šidak was one of the first to extend the Markov operator A to the space of finitely
additive measures in the framework of the operator approach and proved the following
two important theorems in [24] (1962).

Theorem 2 (Šidak [24] [Theorem 2.2]). Any countably additive Markov chain on an arbitrary
measurable space (X, Σ) has at least one invariant finitely additive probability measure, i.e., always
∆ba ̸= ∅.

This result was then briefly proved in the author’s paper [3] as a simple consequence
of the Krein–Rutman theorem ([25] [Theorem 3.1]).

Theorem 3 (Šidak [24] [Theorem 2.5]). If a finitely additive measure µ for an arbitrary Markov
chain is invariant Aµ = µ, and µ = µ1 + µ2 is its decomposition into countably additive and
purely finitely additive components, then each of them is also invariant: Aµ1 = µ1, Aµ2 = µ2.

4. Quasi-Compactness Conditions and Finitely Additive Measures

Definition 2 (see, for example, [18] [Definition VI.5.1]). A linear operator F, which transfers
the Banach space Y to itself, is called compact (completely continuous) if it transfers each bounded
set of space Y into a pre-compact (relatively compact) set, i.e., such that its closure is compact in Y.

It is well known (see, for example, [18] [Theorem VI.5.2, Schauder’s Theorem]) that
the operator F : Y → X is compact if and only if its conjugate operator F∗ : Y∗ → X∗

is compact.

Definition 3. A linear operator F : Y → Y, where Y is an arbitrary Banach space, is called quasi-
compact (quasi-completely continuous) if the following condition is satisfied

(KF)

{
there is a compact (completely continuous) operator F1

and an integer k ≥ 1 such that ||Fk − F1|| < 1
.
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The transition function of a general Markov chain generates three different Markov
operators:

T : B(X, Σ) → B(X, Σ), A : ca(X, Σ) → ca(X, Σ) and T∗ : ba(X, Σ) → ba(X, Σ). The
quasi-compactness condition (KF) can be applied to each of them with the appropriate
replacement of the symbol F by the symbols T, A, and T∗. Denote such conditions (KT),
(KA) and (KT∗), respectively. Next, we use one construction from [18]), which we present
here in our symbolism and edition. Let X be an arbitrary Banach space, B(X) be the space
of all linear continuous bounded operators F : X → X.

We denote:
X∗ is a Banach space topologically conjugate to X, F∗ is the operator F∗ : X∗ → X∗,

topologically conjugate to the operator F and B(X∗) is the space of all conjugate opera-
tors on X∗ (see [18] [Definition VI.2.1]). We introduce the mapping ψ : B(X) → B(X∗),
ψ(F) = F∗, F ∈ B(X) (note that in [18] no symbol is introduced for such a mapping). In [18]
[Lemma VI.2.2], it is proved that the mapping ψ is an isometric isomorphism of the space
B(X) into the space B(X∗). According to [18] [Definition II.3.17], the isometric isomorphism
ψ is assumed to be a linear mapping.

The mapping ψ, generally speaking, does not map the space B(X) onto the entire space
B(X∗), which is implied in the above Lemma VI.2.2 ([18]). Let B̃(X∗) be the subspace of
B(X∗) of all operators G : X∗ → X∗ for which there exists a pre-conjugate operator F : X →
X such that F∗ = G. Then, obviously, ψ(B(X)) = B̃(X∗) and on B̃(X∗) there exists an
inverse isometric and linear isomorphism ψ−1 : B̃(X∗) → B(X). Moreover, ψ−1(B̃(X∗)) =
B(X). We will also call the set B̃(X∗) the scope of definition of the isomorphism ψ−1.
Therefore, we prove the following general statement for arbitrary Markov operators.

Theorem 4. Let (X, Σ) be an arbitrary measurable space. An arbitrary Markov operator T : B(X, Σ)
→ B(X, Σ) is quasi-compact if and only if its conjugate Markov operator T∗ : ba(X, Σ)
→ ba(X, Σ) is quasi-compact, i.e., the conditions (KT) and (KT∗) are equivalent: (KT) ⇔ (KT∗).

Proof. First, we show that (KT) ⇒ (KT∗). Let the operator T be quasi-compact. Then there
are k ∈ N and a compact operator T1 such that ∥Tk − T1∥ < 1. Let us rewrite this inequality
in the following form: Tk = T1 + V, where ∥V∥ < 1. We pass to conjugate operators and
obtain (Tk)∗ = T∗

1 + V∗. By Schauder’s Theorem ([18]), the operator T∗
1 conjugate to a

compact operator T1 is also compact.
According to [18] (Lemma VI.2.2) and our analysis presented above the mapping ψ

that takes the original operators T : Y → Y (here Y is an arbitrary Banach space) to the
conjugate operators T∗ : Y∗ → Y∗ is a linear isometric isomorphism, i.e., preserves the
norms of the operators. Therefore, in our case, from the inequality ∥V∥ < 1 it follows that
∥V∗∥ = ∥V∥ < 1.

Next, we will show that the operator (Tk)∗ can have its superscripts swapped. To do
this, we will use Lemma from [18] [Lemma VI.2.4]. It proves that for two linear operators
Q1 and Q2 acting on the corresponding Banach spaces, the equality (Q1Q2)

∗ = Q∗
2Q∗

1
holds. In our case, we take the operators Q1 = T and Q2 = T and get the equality
(T2)∗ = (T∗)2. From here, by induction, we obtain the formula for arbitrary k ∈ N:
(Tk)∗ = (T∗)k. Let us substitute the right side of this equality into the general formula and
obtain: (T∗)k = T∗

1 + V∗. Thus, we have obtained that the operator T∗ conjugate to T is
also quasi-compact. This means that (KT) ⇒ (KT∗).

Let us prove the converse statement. Let for some Markov operator T its conjugate
operator T∗ be quasi-compact. This means that there are k ∈ N and a compact operator S1
such that ∥(T∗)k − S1∥ < 1. We write this inequality in the following form: (T∗)k = S1 +U,
where ∥U∥ < 1. The pre-conjugate operator to the operator T∗ is, by assumption, the
operator T, i.e., ψ(T) = T∗. Since (Tk)∗ = (T∗)k, then the pre-conjugate to the operator
(T∗)k is the operator Tk, i.e., ψ(Tk) = (T∗)k.
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Now we use the inverse isometric isomorphism ψ−1. Since the isomorphism ψ−1 is a
linear mapping and the operator (T∗)k = (Tk)∗ is included in the scope of definition B̃(X∗)
of mapping ψ−1, then we can do the following transformations:

Tk = ψ−1((Tk)∗) = ψ−1(S1 + U) = ψ−1(S1) + ψ−1(U).

Thus, the operators S1 and U also fall into the scope of definition B̃(X∗) of the inverse
isomorphism ψ−1. We denote the pre-conjugate operators T1 = ψ−1(S1) and V = ψ−1(U),
where T1

∗ = S1 and V∗ = U.
We have obtained the decomposition Tk = T1 + V.
Since, by assumption, the operator S1 is compact, then, by the already mentioned

Schauder’s Theorem ([18]), its pre-conjugate operator T1 = ψ−1(S1) is also compact. The
mapping ψ takes the original operator T to the conjugate operator T∗ and is an isometric
isomorphism. Therefore, if ∥U∥ < 1, then for the pre-conjugate operator V = ψ−1(U),
V∗ = U, ∥V∥ = ∥U∥ < 1 holds. Thus, we have obtained that the operator T pre-conjugate
to the quasi-compact operator T∗ is also quasi-compact, i.e., (KT∗) ⇒ (KT). This completes
the proof.

Remark 1. In our work [2], at the beginning of §12, it is noted that the quasi-compactness condition
(KT∗) for the operator T∗ is equivalent to the quasi-compactness condition (KT) for the operator T.
However, proof of this fact is not given there.

Remark 2. Herkenrach ([26] [Lemma 3.2]) showed (under certain conditions) that if some linear
operator special type F : Y → Y on a Banach space Y is quasi-compact, then the conjugate to
Therefore, the operator F∗ : Y∗ → Y∗ is also quasi-compact. However, the proof of this particular
statement is not given in the work [26]. There is no converse statement there, either.

Remark 3. Lin [11] considered Markov chains with operators P and P∗ defined on the left and right
sides of L1 and L∞, respectively. In Remark [11] [Section 2], it is argued that if P is quasi-compact,
then its conjugate P∗ may not be quasi-compact. A corresponding counterexample is given there to
support this. In this paper, in Section 6, we study this counterexample in detail. We show that if a
given concrete Markov chain is described using the construction of our Markov operators T, A, and
T∗, then the Markov operator T∗ is quasi-compact. Thus, this example of Lin does not refute our
proved Theorem 4 but only confirms it.

Let us prove one more general statement for any operators, not just Markov ones.

Theorem 5. Let a linear bounded operator F : Y → Y in a Banach space Y have a non-degenerate
invariant Banach subspace M ⊂ Y, F(M) ⊂ M. Then, if the operator F in the space Y is
quasi-compact, its restriction (F)M to the subspace M is also quasi-compact.

Proof. Let the operator F : Y → Y be quasi-compact. Then, by Definition 3, for some n ∈ N
and a compact operator F1, Fn = F1 + V holds, where ∥V∥ < 1. We restrict these operators
to the invariant subspace M and obtain (Fn)M = (F1)M + (V)M. From this equality, it
follows that for any set E ⊂ M, we have

(Fn)M(E) = (F1)M(E) + (V)M(E).

In addition, for any E ⊂ M the following holds: (F1)M(E) = F1(E). It is obvious that
an arbitrary bounded set E ⊂ M will remain bounded even if it is embedded in Y. A norm
in the subspace M is, by general definition, induced from the space Y (i.e., coinciding with
the norm from Y on the subspace M). Consequently, the closures of the sets (F1)M(E) and
F1(E), taken in their coinciding norms, coincide, i.e.,

(F1)M(E) = F1(E).
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Note that, by the assumptions of the theorem, the subspace M is Banach and therefore
closed in Y. By construction, the operator F1 is compact. Therefore, by Definition 2, for
a bounded set E ⊂ M, the set F1(E) is compact in the norm of the space Y. This means
that the set (F1)M(E) is compact in the norm of the subspace M induced from Y. Thus,
the operator (F1)M is compact in the subspace M. Let us now turn to the operator V in
the expansion of the operator Fn = F1 + V and to its restriction (V)M to the space M. The
norms of operators in normed spaces are calculated using the formulas:

∥V∥ = sup ∥V(x)∥, where ∥x∥ ≤ 1, x ∈ Y;

∥(V)M∥ = sup ∥(V)M(x)∥, where ∥x∥ ≤ 1, x ∈ M.

Since the subspace M is part of the space Y, then ∥(V)M∥ ≤ ∥V∥. By construction (and
by condition), ∥V∥ < 1. Consequently, ∥(V)M∥ < 1. Thus, the restriction of the operator
(F)M to the subspace M is quasi-compact. The proof is complete.

Corollary 1. Consider a general Markov chain on an arbitrary measurable space (X, Σ). If the
Markov operator T∗ : ba(X, Σ) → ba(X, Σ), conjugate to the operator T : B(X) → B(X) is
quasi-compact, then the Markov operator A : ca(X, Σ) → ca(X, Σ) (here A = (T∗)ca) is also
quasi-compact.

Now we write Doeblin condition (D) of ergodicity of the MC (see, for example, [27]):

(D)

{
there is a bounded measure φ ∈ ca(X, Σ), φ ≥ 0, ε > 0 and k ∈ N, k ≥ 1,
such that from φ(E) ≤ ε, E ∈ Σ, should pk(x, E) ≤ 1 − ε for all x ∈ X.

.

Remark 4. The superscript k in pk denotes the order of the integral convolution (iteration) of the
transition function, not its degree.

Theorem 6. Let (X, Σ) be an arbitrary measurable space on which a general Markov chain is
defined. Its Markov operator T∗ : ba(X, Σ) → ba(X, Σ) is quasi-compact, if and only if the Doeblin
condition (D) is satisfied, i.e., the conditions (KT∗) and (D) are equivalent: (KT∗) ⇔ (D).

Proof. Neveu in the book [14] [V.3.2] showed a scheme of proof that the condition KT of
quasi-compactness of the operator T : B(X, Σ) → B(X, Σ) is equivalent to the Doeblin con-
dition (D). In ([26] [Theorem 2.1]), Herkenrath gives his full proof (with reference to Yosida
and Kakutani [5] and Neveu [14]) that the Doeblin condition (D) is equivalent to the quasi-
compactness condition (KT) for the operator T : B(X, Σ) → B(X, Σ), i.e., (D) ⇔ (KT). In
our Theorem 4 above, it is proved that the quasi-compactness condition (KT) is equiv-
alent to the quasi-compactness condition (KT∗). Therefore, (KT∗) ⇔ (D). The theorem
is proved.

The following statement is obtained from the Herkenrath Theorem 2.2 [26] and
Theorem 2.1 [26].

Theorem 7 ([26]). The operator A : ca(X, Σ) → ca(X, Σ) is quasi-compact if and only if the
operator T : B(X, Σ) → B(X, Σ) is quasi-compact, i.e., (KA) ⇔ (KT).

Now we can formulate a summary statement obtained through the efforts of many
authors (including ours).

Proposition 1. For a general Markov chain on an arbitrary measurable space (X, Σ), the conditions
for the quasi-compactness of its three operators are equivalent to the Doeblin condition (D):

(KT) ⇔ (KA) ⇔ (KT∗) ⇔ (D).
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We emphasize that there are no restrictions or additional conditions for Markov chains
for the resulting diagram. If at least one of the three Markov operators T, A, or T∗ of MC is
quasi-compact, then we will call the Markov chain itself quasi-compact. We will now use
some of the results obtained in our paper [1].

In our articles [1,2] the following condition (∗) was introduced:

(∗) ∆ba ⊂ ca(X, Σ),

it means that all invariant finitely additive measures of the operator T∗ (and such measures
exist for any Markov chain) are countably additive.

Theorem 8. For an arbitrary MC, its Markov operator T∗ is quasi-compact if and only if the
condition (∗) is satisfied.

Proof. According to [1] [Theorem 7] the condition (∗) is equivalent to the Doeblin condition
(D). In Theorem 6 of this paper, it is proved that the Doeblin condition (D) is equivalent to
the quasi-compactness condition of the operator T∗. Therefore, (KT∗) ⇔ (∗). The theorem
is proved.

We introduce one more condition:

(∗̃) ∆p f a = ∅.

The fulfillment of the condition (∗̃) means that the Markov chain does not have invari-
ant purely finitely additive measures. Obviously, these conditions (∗) and (∗̃) coincide.

Let us repeat the previous Theorem 8 in a new formulation.

Theorem 9. For an arbitrary MC, its Markov operator T∗ is quasi-compact if and only if it does
not have invariant purely finitely additive measures.

Corollary 2. Conditions (∗) and (∗̃) are equivalent to the condition ∆ba = ∆ca and the condition
Mba = Mca.

Now, we can present a new version of theorem [1] [Theorem 9]—Theorem 10.

Theorem 10. Let a general MC be given on an arbitrary (X, Σ). Then, if the Markov operator T∗

is quasi-compact, then the set of its finitely additive invariant measures ∆ba is finite-dimensional,
i.e., dim∆ba = n, where 1 ≤ n < ∞.

Proof. In our article [3] in Theorems 8.1 and 8.2, it is proved that if the condition (∗) is
satisfied, then dim∆ba = n, where 1 ≤ n < ∞. According to the conditions of the theorem,
the operator T∗ is quasi-compact. Therefore, according to Theorem 8, the condition (∗) is
satisfied. The theorem is proved.

Now we will prove the reversal of Theorem 10 in the one-dimensional case for n = 1
(see, also, [1] [Theorem 10]).

Theorem 11. Let on an arbitrary (X, Σ) a MC be given for which the dimension dim∆ba = 1, i.e.,
its Markov operator T∗ has in Sba a unique invariant finitely additive measure µ = T∗µ ∈ Sba,
∆ba = {µ}. Then this invariant measure µ is countably additive, the Markov operator T∗ is
quasi-compact and the conditions (KT∗), (KT) and (KA), as well as (D), (∗) and (∗̃) are satisfied
for the considered MC.

Proof. In our theorem [3] [Theorem 8.3] we proved that if for some general MC, we have
dim∆ba = 1 and ∆ba = {µ}, µ ∈ Sba, then this invariant measure µ is countably additive,
i.e., µ ∈ Sca. This means that for this MC the condition (∗) : ∆ba ⊂ ca(X, Σ) is satisfied.
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Then, by Theorem 8, the Markov operator (T∗) of the considered MC is quasi-compact,
i.e., the condition (KT∗) is satisfied for it. From our Theorems 4 and 6–9 (see above), it
follows that the remaining conditions listed in this theorem are also satisfied for this MC.
The theorem is proved.

Please note that the proof of the theorem used above [3] [Theorem 8.3] is not simple; it
is carried out using the technique of weak topologies in the space ba(X, Σ).

Lemma 1. Let an arbitrary Markov chain be given on a measurable space (X, Σ). If for any finitely
additive measure µ ∈ Sba that is invariant for a Markov operator T∗ there exists a point xµ ∈ X
such that µ({xµ}) > 0, then the operator T∗ is quasi-compact and the condition (KT∗) is satisfied.

Proof. Let the conditions of the lemma be satisfied. Suppose that there exists a purely
finitely additive measure µ ∈ ∆p f a that is invariant for the Markov operator T∗. Then by
Lemma 1 from [20] on any one-point set µ({x}) = 0, x ∈ X. This contradicts the condition
of the Lemma about the existence of a point xµ ∈ X such that µ({xµ}) > 0. Therefore, this
Markov chain does not have invariant purely finitely additive measures, i.e., ∆p f a = ∅. It
follows from our Theorems 8 and 9 that such a Markov chain satisfies the condition (KT∗)
and it is quasi-compact. The Lemma is proven.

Corollary 3. If the condition of the Lemma 1 is satisfied, then all invariant finitely additive measures
of the operator T∗ are countably additive, i.e., ∆ba = ∆ca and dim∆ba = n < ∞.

Remark 5. Lemma 1, generally speaking, cannot be reversed. If the operator T∗ is quasi-compact
and if µ = T∗µ, µ ∈ Sca is its invariant countably additive measure, then it is possible (for an
infinite X) that µ({x}) = 0 for all x ∈ X.

5. Ergodic Theorem

In the book by Dunford and Schwartz [18], in Chapter VIII, paragraphs 4–6 and 8, the
history of ergodic theory and ergodic theorems is described in detail. Specific problems in
mechanics, physics and chemistry are given that can be solved using ergodic theorems of
various types. There, in Chapter VIII, Markov processes and Markov chains are singled out
in several places, and their classical ergodic properties and theorems are briefly analyzed.
We add that today, ergodic theorems for Markov chains are widely used in economics,
statistics and in the planning of experiments. In [18] and in many other sources, the
following non-rigorous interpretation of the ergodicity of a particular system is given: the
average over space is equal to the average over time. Please note that from a mathematical
point of view, ergodic theorems are more convenient (and useful) to formulate and prove
in the form of limit theorems, using current averages (Cesaro averages) over time. This is
what we do below in our Theorem 12.

The literature that studies various aspects of ergodic theory and its applications is
very extensive. However, to solve the problems in this section, we only need to use the
monograph [18] and several articles cited below.

Let us consider some ergodic properties of Markov operators following from the
statements obtained above for T, A, and T∗ (see, also, [17]). Lin [13] [Theorem 1] proved
a general strong uniform ergodic theorem for arbitrary linear positive quasi-compact
operators on a Banach lattice. Theorem [13] [Theorem 1] can also be applied to Markov
operators with different domains of their definition, which is noted by Lin [13]. An
important feature of this theorem is that it also contains a conversion (under certain
conditions) of classical uniform ergodic theorems: from the ergodic asymptotics of the
operator under consideration, it follows that it is quasi-compact.

In 1937, for the Markov operator T : B(X, Σ) → B(X, Σ), the quasi-compactness
conditions were introduced in the first paper on this topic by Kryloff and Bogoliouboff [4].
The first uniform ergodic theorem was also proved for this operator there. For this reason,
further study of quasi-compact Markov operators was most often carried out in function
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spaces. After the paper by Yosida and Kakutani ([5], 1941), quite a lot of papers appeared
in which quasi-compactness conditions were considered, and the corresponding ergodic
theorems were proved for Markov operators A : ca(X, Σ) → ca(X, Σ) defined on spaces
of countably additive measures (see, for example, [18] [VIII.8]). The Markov operators
T∗ : ba(X, Σ) → ba(X, Σ), defined on the space of finitely additive measures, are still
mentioned only in a few works. Taking this into account, in the next theorem, we will
consider the results of applying the theorem Lin [13] [Theorem 1] only for the Markov
operators T∗ and A and compare their ergodic properties.

Theorem 12. Let the general MC be given on an arbitrary measurable space (X, Σ). Then the
following three statements are true:

1. The Markov operator T∗ : ba(X, Σ) → ba(X, Σ) is quasi-compact (i.e., the condition (KT∗) is
satisfied) if and only if the following ergodic condition is satisfied:

(Erg, T∗)



there exists a finite-dimensional projection GT∗

onto the space of all invariant measures of the operator T∗

such that for n → ∞ the following holds:

||| 1
n

n
∑

i=1
(T∗)i − GT∗ ||| = sup

µ∈Sba

∥ 1
n

n
∑

i=1
(T∗)i(µ)− GT∗(µ)∥ → 0.

2. The Markov operator A : ca(X, Σ) → ca(X, Σ) is quasi-compact (i.e., the condition (KA) is
satisfied) if and only if the following ergodic condition is satisfied:

(Erg, A)



there exists a finite-dimensional projection GA

onto the space of all invariant measures of the operator A
such that for n → ∞ the following holds:

||| 1
n

n
∑

i=1
Ai − GA||| = sup

µ∈Sca

∥ 1
n

n
∑

i=1
Ai(µ)− GA(µ)∥ → 0.

3. Ergodicity conditions (Erg, T∗) and (Erg, A) are equivalent, i.e.,

(Erg, T∗) ⇔ (Erg, A).

Proof. Theorem [13] [Theorem 1] requires that the linear operator under consideration be
positive on some Banach lattice. Our measure spaces ba(X, Σ) and ca(X, Σ) are linear and
are vector Banach lattices (see, for example, [19]). The Markov operators T∗ and A are posi-
tive by construction. These conditions are satisfied for T∗ and A. In addition, the conditions
of [13] [Theorem 1] require that the operators T∗ and A satisfy the following properties:

∥(T∗)n∥
n

→ 0 and
∥An∥

n
→ 0 for n → ∞.

Since for Markov operators it is always true that ∥T∗∥ = 1, ∥(T∗)n∥ = 1 and ∥A∥ = 1,
∥An∥ = 1, for all n ∈ N, then the above conditions are also satisfied for them. Therefore,
the asymptotic formulas and statements [13] [Theorem 1] is also true for both operators
T∗ and A (in our notation). According to our Theorem 4 the conditions (KT) and (KT∗)
are equivalent, i.e., (KT) ⇔ (KT∗). By Theorem 7 the equivalence of (KT) ⇔ (KA) also
holds. Therefore, (KT∗) ⇔ (KA). It follows that the conditions (Erg, T∗) and (Erg, A) are
also equivalent, and statement 3 of this theorem is true. The theorem is proved.

Remark 6. Theorem 12, the operator GT∗ : ba(X, Σ) → ba(X, Σ) projects the space ba(X, Σ) onto
the subspace of all its invariant probability finitely additive measures Mba, i.e., GT∗ [ba(X, Σ)] = Mba
and G2

T∗ = GT∗ . According to Theorem 8 and Corollary 2 we have Mba = Mca. Therefore, the
restriction Gca of the projector GT∗ to the space ca(X, Σ) is also a projector of the space ca(X, Σ) to
the subspace Mca, i.e., Gca[ca(X, Σ)] = Mca and G2

ca = Gca.
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Remark 7. The substantive difference between conditions (Erg, T∗) and (Erg, A) is that in the
first condition, the supremum is taken over all initial finitely additive probability measures µ ∈ Sba,
including purely finitely additive probability measures µ ∈ Sp f a. And in the second condition
(Erg, A), the supremum is taken only over initial countably additive probability measures µ ∈ Sca.
However, the limit projections GT∗ and GA coincide in this case.

Below, in Section 6, when analyzing Lin’s Example, we will show how this looks in a simple case.

6. Example Michael Lin
6.1. Description of Special Markov Chains

The work by Michael Lin [11] considers the linear positive contraction operator P in
the space L1(X, Σ, µ) and its adjoint operator P∗ in the space L∞(X, Σ, µ), where L∞ = L1

∗.
The operator P is called Markovian. A general classical definition of a quasi-compact
operator is given. The equivalent Doeblin condition is also mentioned there with references
to Neveu [14] and to Doob [27]. The said work contains a Remark at the end of paragraph 2
([11], p. 467), which states that “If P is quasi-compact, then P∗ may fail to be quasi-compact”.
A corresponding counterexample is also given there. Theorem 4, which we proved above,
states that if the Markov operator T defined on the space B(X, Σ) is quasi-compact, then
so is the operator T∗ conjugate to it on the space ba(X, Σ), where ba(X, Σ) = B∗(X, Σ), is
also quasi-compact. The opposite is also true. Now, we will show, using the same example,
that there is no contradiction here. Studying this example will also allow us to illustrate the
possible applications of our theorems and methods. Let us give this example from Lin [11].
Given a Markov chain on a countable measurable space X = {0, 1, 2, . . .} = {0} ∪ N (in
fact, the example considers Σ = 2X) with an explicit the form of its transition function:

P(i, {0}) = 1
2

, for all i ∈ X, including P(0, {0}) = 1
2

, (1)

P(i, {i + 1}) = 1
2

, for all i ∈ X, including P(0, {1}) = 1
2

. (2)

The transition function of this Markov chain can be represented in other forms. For any
i ∈ X and E ⊂ X, we write:

P(i, E) =
1
2

δi+1(E) +
1
2

δ0(E), (3)

P(i, E) =
1
2

χE(i + 1) +
1
2

χE(0), (4)

where δi is the Dirac measure at point i, and χE is the characteristic function of the set E.
This definition of the transition function makes it possible to use our Markov operators T,
A, and T∗ on the spaces B(X, Σ), ca(X, Σ) and ba(X, Σ), respectively. As we have already
noted, in the work of Lin [11], other spaces L1 and L∞ are used, and, accordingly, other
Markov operators P and P∗. Next, we will consider step by step all three Markov operators
of this Markov chain T, A, and T∗, show their quasi-compactness, and reveal some of their
other interesting properties.

6.2. Operator T

Recall that the operator T : B(X, Σ) → B(X, Σ) in the general case is given by the
following integral formula:

g(x) = T f (x) =
∫

X
f (y)P(x, dy), where f , g ∈ B(X, Σ), x ∈ X. (5)

Let us substitute the formula (3) into equality (5), and after simple transformations,
we obtain for our MC:

g(i) = T f (i) =
1
2

f (i + 1) +
1
2

f (0), i ∈ X. (6)
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It is known that the unit function h(x) ≡ 1 is invariant for any MC and for the
corresponding operator Th(x) = h(x), ∀x ∈ X (this can be verified by simple substitution).
Invariant functions of the operator, T, are also called harmonic. Therefore, ∆B ̸= ⊘. We
use (6) to find all invariant functions of the operator T and solve the equation f (i) = T f (i),
i ∈ X. Simple transformations give us the answer: f (i) = f (0), for all i ∈ X. Let us rewrite
this equality in the equivalent form:

f (i) = f (0)h(i), f ∈ SB, i ∈ X. (7)

So, we have obtained that all invariant functions of a given operator T differ from
the function h only by a numerical coefficient. Consequently, the operator T has only a
one-dimensional space Mh of all its invariant functions

Mh = {α · h : α ∈ R1}, dim Mh = 1. (8)

Conclusion 1. We can consider function h to be the unique invariant function of a given
MC up to a numerical coefficient α. It is also obvious that this operator T does not have
cycles. Let f0 ∈ SB and fn = T fn−1 = Tn f0, n ∈ N. Using Equality (6), we obtain for all
i ∈ X:

f1(i) = T f0(i) =
1
2

f0(i + 1) +
1
2

f0(0)·h(i), (9)

f2(i) = T f1(i) =
1
22 f0(i + 2) +

3
22 f0(0) · h(i), (10)

Let us introduce the projector QT : B(X, Σ) → B(X, Σ) onto the one-dimensional space
Mh of invariant functions of operator T.

According to [18] [VI.9.18], there are infinitely many such projectors. For all such
operators the equality QT f = f (0) · h holds, where f ∈ SB and Q2

T = QT , i.e., QT( f (0) · h)
= f (0) · h. Every finite-dimensional projector is a compact operator ([18] [VI.9.20]).

Now we make the following estimates for all i ∈ X, f0 ∈ SB:

|(T2 f0)(i)− (QT f0)(i)| = | f2(i)− f0(0) · h(i)|

= | 1
22 f0(i + 2)− 22 − 1

22 f0(0) · h(i)− f0(0) · h(i)|

≤ 1
22 | f0(i + 2)|+ 1

22 | f0(0) · h(i)|

≤ 1
22 ∥ f0∥+

1
22 ∥ f0∥∥h∥ ≤ 1

22 +
1
22 =

1
2

.

(11)

The right side of this inequality does not depend on the initial function f0 and the
current ordinate i. Hence, in the operator norm we obtain

|||T2 − QT ||| = sup
f0∈Sb

sup
i∈X

|(T2 f0)(i)− (QT f0)(i)| ≤
1
2

. (12)

Conclusion 2. The Markov operator T for a given MC is quasi-compact.

6.3. Operator A

In [11], an invariant countably additive measure for this Markov chain is given. In [11],
it is not specified which measure is invariant. However, it is easy to check that for our
operator A it is invariant. However, within the framework of our approach, we need
all invariant (probabilistic) finitely additive measures µ ∈ Sba, including purely finitely
additive measures, if they exist. To do this, we need to solve the equation T∗µ = µ in the
class of finitely additive measures µ ∈ Sba. Let us write this equation in more detail:

µ(E) = T∗µ(E) =
∫

X
P(i, E)dµ(i), ∀E ∈ Σ.
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In this notation, we cannot go from the integral to an infinite sum (to a series) since
the measure µ can be purely finitely additive. We take a concrete set E = {0} ∈ Σ. Then,
from the general equation, we obtain:

µ({0}) =
∫

X
P(i, {0})dµ(i) =

∫
X

1
2
· dµ(i) =

1
2
· µ(X) =

1
2
· 1 =

1
2

.

Suppose that the invariant measure µ ∈ Sba is purely finitely additive. Then, on the
one-point set, we have µ({0}) = 0. However, above we obtained µ({0}) = 1

2 . From this
contradiction, we obtained a conclusion.

Conclusion 3. This MC does not have invariant purely finitely additive measures and all
its invariant measures are countably additive. Now, we need to make sure that the MC has
a unique invariant countably additive measure. We will do this by constructing it directly.
Given the above Conclusion 3, we can construct this measure in the class Sca using the
operator A instead of the operator T∗. We continue solving the equation:

µ(E) = Aµ(E) =
∫

X
P(i, E)dµ(i), ∀E ∈ Σ.

For E = {0} we have already received µ({0}) = 1
2
=

1
21 .

Now we will find µ({1}):
µ({1}) = Aµ({1}) =

∫
X

P(i, {1})dµ(i) =
∫
{0}

+
∫

N

= P(0, {1})µ({0}) +
∫

N
P(i, {1})dµ({i}) = 1

2
· µ({0}) + 0 =

1
2
· 1

2
=

1
22 .

For an arbitrary n ∈ N, by induction, we obtain

µ({n}) = 1
2
· µ({n − 1}) = 1

2n+1 .

We need to make sure that the sum of these quantities is equal to one. Since the
invariant measures µ are countably additive, then

µ(X) = µ(∪∞
i=0{i}) =

∞

∑
i=0

µ({i}) =
∞

∑
i=0

1
2i+1 = 1.

Conclusion 4. From the construction it follows that the found invariant measure µ for the
operators A and T∗ is unique, i.e., ∆ba = ∆ca = {µ}.

Lin [11] also gives the constructed invariant measure for a given Markov chain (in
our case, for operators A and T∗). We repeat this measure here to indicate the operators
to which it applies and to show its uniqueness in the class of finitely additive measures
and in the class of countably additive measures, which is what we have done. Now, we
prove the quasi-compactness of the operator A by direct methods without resorting to our
theorems and corresponding theorems from other sources. Above, we have already found
out that the operator A has a unique invariant countably additive measure µ∗ = Aµ∗. This
measure is the only invariant measure for the operator T∗ : ba(X, Σ) → ba(X, Σ) in the
class of finitely additive measures.

We introduce the following notation: Mm = {0, 1, 2, . . . , m − 1}, Nm = {m, m + 1, m +
2, . . . }.

Obviously, Mm ∪ Nm = X = {0, 1, 2, . . . }, X \ Mm = Nm, X \ Nm = Mm and
M1 = {0}, N1 = N. Let an arbitrary initial countably additive measure µ0 ∈ Sca be given.
It generates a Markov sequence of measures µn = Aµn−1 = Anµ0, µn ∈ Sca, n ∈ N. We will
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only need the first two measures µ1 and µ2 from this sequence. Let us study these measures.
Let µ0 ∈ Sca, and µ1 = Aµ0. Then for any E ⊂ X the following formula holds true:

µ1(E) = Aµ0(E) =
∫

X
p(i, E)dµ0(i).

We consider step by step the values of µ1(E) on some of the sets E ⊂ X we need.

(1). Let E = {0}. Then

µ1({0}) =
∫

X
p(i, {0})dµ0(i) =

∫
X

1
2

dµ0(i) =
1
2

µ0(X) =
1
21 , i.e., µ1({0}) = 1

2
.

(2). Let E = {1}. Then

µ1({1}) =
∫

X
p(i, {1})dµ0(i) =

∫
{0}

+
∫

N
= p(0, {1}) · µ0({0}) +

∫
N

0 · dµ0(i)

=
1
2

µ0({0}) + 0, i.e., µ1({1}) = 1
2

µ0({0}).

(3). Let E = {2}. Then µ1({2}) = 1
2 µ0({1}).

(4). Let E = {m}, m ∈ N. Then, by induction, µ1({m}) = 1
2 µ0({m − 1}).

(5). µ1(N) = 1
2 · µ0(X) = 1

2 .

Remark 8. For any initial measure µ0 ∈ Sca we have µ0(X) = 1. Consequently, the equality
µ1({0}) = 1

2 holds for any initial measure, i.e., they do not depend on µ0. This is also true for the
equality µ1(N) = 1

2 .

Now we will consider the second iteration in the Markov sequence of measures
µ2 = Aµ1 = A2µ0, where µ0 ∈ Sca and

µ2(E) = Aµ1(E) =
∫

X
p(i, E)dµ1(i), ∀E ⊂ X.

Let us take some concrete sets E ∈ Σ:

(1). Let E = {0}. Then

µ2({0}) =
∫

X
p(i, {0})dµ1(i) =

∫
X

1
2

dµ1(i) =
1
2

µ1(X) =
1
2
· 1, i.e., µ2({0}) = 1

2
µ1(X) =

1
2

.

(2). Let E = {1}. Then

µ2({1}) =
∫

X
p(i, {1})dµ1(i) =

∫
{1}

+
∫

N
= p(0, {1}) · µ1({0}) +

∫
N

1 · dµ1(i)

=
1
2

µ1({0}) = 1
2
· 1

2
+ 0 =

1
22 , i.e., µ2({1}) = 1

22 =
1
4

.

(3). Furthermore, by induction, for m ≥ 2 we obtain: µ2({m}) = 1
22 µ0({m − 2}).

(4). µ2(N) = 1
2 µ0(X) = 1

2 .
(5). µ2(M2) =

1
21 +

1
22 = 3

22 and µ2(N2) =
1
22 .

Remark 9. Here the values of the measures µ2({0}) = 1
21 and µ2({1}) = 1

22 are also not
dependent on the initial measure µ0 ∈ Sca. Similarly, the values of µ2(M2) =

3
22 and µ2(N2) =

1
22

do not depend on µ0.

Please note that µ1({0}) = µ∗({0}) = 1
21 , µ2({0}) = µ∗({0}) = 1

21 , and µ2({1})
= µ∗({1}) = 1

22 , where µ∗ is the invariant measure of the operator A. This process of



Mathematics 2024, 12, 3155 15 of 20

substitution of values µn(m) by values µ∗(m) (at m ≤ n) continues to occur at n → ∞.
However, now it is enough for us to track such substitutions only for n = 1 and n = 2,
which we have already done. Thus, |µ2({0})− µ∗({0})| = 0 and |µ2({1})− µ∗({1})| = 0,
i.e., |µ2(E)− µ∗(E)| = 0 when E = M2. We estimate the norms of measures:

∥µ2 − µ∗∥ = sup
E⊂X

|µ2(E)− µ∗(E)| = sup
E⊂N2

|µ2(E)− µ∗(E)|

≤ sup
E⊂N2

[|µ2(E)|+ |µ∗(E)|] ≤ sup
E⊂N2

|µ2(E)|+ sup
E⊂N2

|µ∗(E)|

= µ2(N2) + µ∗(N2) =
1
22 +

1
22 =

1
2

.

From the previous remarks, it follows that

∥µ2 − µ∗∥ = sup
µ0∈Sca

∥µ2 − µ∗∥ ≤ 1
2

,

i.e.,

∥A2µ0 − µ∗∥ = sup
µ0∈Sca

∥A2µ0 − µ∗∥ ≤ 1
2

.

Let us introduce the projector QA : ca(X, Σ) → ca(X, Σ) onto the one-dimensional
space L = {α · µ∗, α ∈ R1} of invariant measures for operator A.

According to [18] [VI.9.18], there are infinitely many such projectors. For all such
operators the equality QAµ = µ∗ holds, where µ ∈ Sca and Q2

A = QA. Every finite-
dimensional projector is a compact operator ([18] [VI.9.20]).

Now, from the obtained inequalities, it follows that in the operator norm, we obtained

|||A2 − QA||| ≤
1
2

.

Conclusion 5. The quasi-compactness condition from Definition 3 is satisfied. This means
that the Markov operator A : ca(X, Σ) → ca(X, Σ) of a given Markov chain is quasi-compact.

We proved this without using our theorems from this article. For the operator A, all
classical ergodic theorems are true.

6.4. Purely Finitely Additive Initial Measure

In the present subsection, we investigate the behavior of the Markov sequence of mea-
sures µn = T∗µn−1, n ∈ N for the case when the initial measure µ0 is purely finitely additive,
i.e., µ0 ∈ Sp f a. First, we note that such a measure µ0, like any other purely finitely additive
measure µ ∈ Sp f a on a given measurable space (X, Σ), has the following properties:

µ0({m}) = 0, µ0(Mm) = 0, µ0(Nm) = 1

for any m ∈ X, µ0(X) = µ0(N) = 1 and µ0(E) = 0, for any finite set E ⊂ X. Let us take
the measure µ1 = T∗µ0 and find its value µ1(E) for some important sets E ⊂ X. For an
arbitrary set E ⊂ X the following holds:

µ1(E) = T∗µ0(E) =
∫

X
P(i, E)dµ0(i) =

∫
{0}

+
∫

N

= P(0, E)µ0({0}) +
∫

N
= 0 +

∫
N

P(i, E)dµ0(i).
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Let E = {0}. Then

µ1({0}) =
∫

X
P(i, {0})dµ0(i) =

∫
X

1
2

dµ0(i) =
1
2

µ0(X) =
1
2
=

1
21 .

Let E = {1}. Then

µ1({1}) =
∫

X
P(x, {2})µ0(dx) = P(0, {1})µ0({0}) = 0.

Let E = {m}, m ∈ N. Then

µ1({m}) =
∫

X
P(i, {m})dµ0(i) = P(m − 1, {m})µ0({m − 1}) = 0.

Let E = N. Then

µ1(N) =
∫

X
P(i, N)dµ0(i) =

1
2
· µ0(N) =

1
2
· 1

2
=

1
22 .

Let us now consider the second iteration of the Markov sequence of measures µ2 =
T∗µ1 = (T∗)2µ0, where µ0 ∈ Sp f a. We find the value of the measure µ2 for some sets E ⊂ X
using the same scheme as for µ1 (omitting simple transformations):

µ2({0}) = 1
21 , µ2({1}) = 1

22 and µ2({m}) = 0, for all m ≥ 2.

Let E = Nm, where m ≥ 2. Then µ2(Nm) =
1
22 , for all m ≥ 2. Now, let us consider

the general case of the n-th iteration of a Markov sequence of measures {µn} for n ≥ 3
and µ0 ∈ Sp f a: µn = T∗µn−1 = (T∗)nµ0. From the formulas for µ1 and µ2 we obtain by
induction the following values for µn(E):

µn({0}) = 1
21 , µn({1}) = 1

22 , · · · , µn({n − 1}) = 1
2n ,

µn({m}) = 0 for all m ≥ n.

Since the measures {µn} are finitely additive, then

µn(Mn) =
k=n−1

∑
k=0

µn({k}) =
k=n

∑
k=1

1
2k = 1 − 1

2n+1 .

From this, we obtain that µn(Nn) = 1
2n+1 . Obviously, if m ≥ n, then µn(Mm) = µn(Mn)

and µn(Nm) = µn(Nn). We decompose finitely additive measures µn(E) into countably
additive components (µn)ca and purely finitely additive components (µn)p f a, for which
µn = (µn)ca + (µn)p f a. In this case, µ0 = (µ0)p f a and (µ0)ca = 0, by condition. From the
values of the measures µn(E) obtained above on some sets E ⊂ X, it is easy to see that

(µ1)ca =
1
2

δ0 and (µ1)p f a =
1
2

η1,

where δ0 is a countably additive Dirac measure at the point 0, and η1 is some purely finitely
additive measure (generated by the measure µ0), η1 ∈ Sp f a. Next,

(µ2)ca =
1
2

δ0 +
1
22 δ1 and (µ2)p f a =

1
22 η2,



Mathematics 2024, 12, 3155 17 of 20

where η2 is also some purely finitely additive measure, η2 ∈ Sp f a. Then,

(µn)ca =
1
2

δ0 +
1
22 δ1 + · · ·+ 1

2n δn−1 and (µn)p f a =
1
2n ηn,

where ηn ∈ Sp f a. Let us find the norms of the resulting components of the measures
µn(E). Since all the measures used in these components are positive, the Dirac measures
are pairwise singular and ∥δn∥ = 1, n ∈ N, then

∥(µn)ca∥ =
1
2
· 1 +

1
22 · 1 + · · ·+ 1

2n · 1 = 1 − 1
2n .

∥(µn)p f a∥ =
1
2n .

Conclusion 6. In the considered MC, for any initial purely finitely additive measure
µ0 ∈ Sp f a, the Markov sequence of measures µn generated by the measure µ0 has its
countably additive components tending to one in the norm, while its purely finitely additive
components tend to zero in the norm as n → ∞. Obviously, in both cases, this convergence
is uniform in the initial measure µ0 ∈ Sp f a:

sup
µ0∈Sp f a

∥(µn)ca∥ → 1 and sup
µ0∈Sp f a

∥(µn)p f a∥ → 0.

We also note that this convergence is exponentially fast.

6.5. Conjugate Operator T∗

Now, we describe the operator T∗ of our Markov chain, in general, defined on the entire
space of finitely additive measures ba(X, Σ). We want to prove by direct methods that the
Markov operator T∗ of this Markov chain is quasi-compact. Let the initial finitely additive
measure µ0 ∈ Sba be arbitrary. This measure generates a Markov sequence of measures
µn = T∗µn−1 = (T∗)nµ0, µn ∈ Sba, n ∈ N. Each such measure can be decomposed into a
countably additive component (µn)ca and a purely finitely additive component (µn)p f a:
µn = (µn)ca + (µn)p f a. Above, we have already considered Markov sequences of measures
µn for the cases where µ0 ∈ ca(X, Σ) and µ0 ∈ p f a(X, Σ). The same decomposition can be
used to consider the general case. However, it is more convenient to go the other way. To
prove the quasi-compactness of the operator T∗, we will use almost verbatim the proof of
the quasi-compactness of the operator A = (T∗)ca in Section 6.3. We replace the condition
µ0 ∈ Sca with the condition µ0 ∈ Sba in the corresponding formulas in Section 6.3 for µ1
and µ2. We also replace the notation of the operator A with the notation of the operator T∗.
It is easy to check that in all the corresponding transformations in Section 6.3, we never
used the countable additivity of the measures µ1 and µ2, but only the finite additivity of
these measures. As a result, we obtain the following statements: For µ0 ∈ Sba, µ1 = T∗µ0,
µ2 = T∗µ1, we have:

µ1({0}) = 1
2

, µ1({1}) = 1
2

µ0({0}), µ1(N) =
1
2

,

µ2({0}) = 1
2

, µ2({1}) = 1
22 ,

µ2(M2) = µ2({0} ∪ {1}) = 1
2
+

1
22 =

3
22 , µ2(N2) =

1
22 .

Note that the values of the measure µ2 do not depend on the initial measure on the
indicated sets µ0 ∈ Sba. Recall that the measure µ∗(m) = 1

2m+1 , for any m ∈ X, is invariant
for the operator A and for the operator T∗. The measure µ∗ is countably additive, but
we did not use this in our transformations above. Obviously, µ2({0}) = µ∗({0}) = 1

2 ,
µ2({1}) = µ∗({1}) = 1

22 and µ2(M2) =
3
22 , µ2(N2) =

1
22 . Now we can obtain estimates for
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the norm ∥µ2 − µ∗∥ for any initial measure µ0 ∈ Sba, repeating the corresponding estimates
for the same norm for any µ0 ∈ Sca (we omit the details):

∥µ2 − µ∗∥ ≤ µ2(N2) + µ∗(N2) =
1
22 +

1
22 =

1
2

.

Since this estimate does not depend on the initial measure µ0 ∈ Sba, then

∥µ2 − µ∗∥ = sup
µ0∈Sba

∥µ2 − µ∗∥ ≤ 1
2

,

i.e.,

∥(T∗)2µ0 − µ∗∥ = sup
µ0∈Sba

∥(T∗)2µ0 − µ∗∥ ≤ 1
2

.

Exactly as before for the operator A : ca(X, Σ) → ca(X, Σ), we introduce the projector
QT∗ : ba(X, Σ) → ba(X, Σ) onto the one-dimensional space L = {αµ∗ : α ∈ R1} of invariant
measures for the operator T∗. Obviously, a given projector QT∗ is a projector onto the same
one-dimensional space when it is restricted from the space ba(X, Σ) to the space ca(X, Σ).
From the estimates obtained above, we arrive at the operator norm

|||(T∗)2 − QT∗ ||| ≤ 1
2

.

Conclusion 7. According to Definition 3, the operator T∗ is quasi-compact on the space
ba(X, Σ) = B∗(X, Σ) for the considered MC. From classical general ergodic theorems, we
obtain that for the considered MC, the general strong uniform ergodic theorem is true:

(T∗)n ⇒ QT∗ at n → ∞,

in the class of all bounded finitely additive measures (and in the class of all bounded count-
ably additive measures). General Conclusion. An example of a Markov chain from Lin [11],
if its operators T and T∗ are considered on the spaces B(X, Σ) and B∗(X, Σ) = ba(X, Σ),
respectively, does not contradict our Theorem 4 proved above, and confirms it.

7. Discussion

1. The work of Foguel [8] (1966) is one of the first in which the following construction
of Markov operators is constructed for general Markov chains: P : B(X, Σ) → B(X, Σ)
and P∗ : ba(X, Σ) → ba(X, Σ), where ba(X, Σ) = B∗(X, Σ) is the space of finitely additive
measures (Foguel refers on [18]). We also use this construction in this paper and in our
other works. In our present paper, we have not found any direct intersections with the
results of [8]. In many of Fogel’s subsequent works (see, for example, [9,10]), the author
focuses on topological spaces X and Markov operators in the spaces L1 and L∞. We do not
consider such constructions in the present paper.

2. Horowitz [7] considers the construction of Markov operators P : L1 → L1 (left) and
P∗ : L∞ → L∞ (right). Theorem 4.1 in [7] proves the equivalence of 10 different conditions
for ergodic and conservative Markov chains. In particular, it is proved that the condition
“(a) there exists no invariant pure charge” is equivalent to the condition “(h) P is a quasi-
compact operator on L∞”. In the present paper, we use a different construction of Markov
operators. It is difficult to compare theorems proved within these two different approaches.
Therefore, we can say that our Theorems 8 and 9 are distant analogs of Horowitz Theorem
4.1 [7].

3. We want to compare the results of the present paper with those of Lin [12]. We have
already performed such an analysis in our paper [1] since the results of [1] are also close to
the results of [12] [Theorem 5]. We consider it appropriate to give here a large corrected
quotation from [1] [Section 7].
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In the second part of [12] (1975), Lin considered an arbitrary measurable space (X, Σ)
and investigated the properties of the Markov operator P defined on the space of func-
tions B(X, Σ) and the properties of the conjugate operator P∗ defined on the conjugate
space. It should be noted that the symbols B∗(X, Σ), ba(X, Σ), and also the isomorphism
B∗(X, Σ) = ba(X, Σ) were not used explicitly in the text of article [12]. We are also using
this formulation of the problem with the corresponding addition.

In Theorem 5 of [12], a number of assertions under some hard a priori condition of
“ergodicity” on the Markov chain are considered. In particular, it is proved that the Doeblin
condition (viii) is equivalent to the condition (vi): “The space of P∗ invariant functionals
(i.e., finitely additive measures) is one-dimensional”. But this is true only due to the a priori
“ergodicity” condition in [12] [Theorem 5]. In the general case, only the finite dimensionality
of the space of invariant finitely additive measures, and hence also of invariant countably
additive measures, follows from the Doeblin condition (see, for example, [27], and also our
theorems in Sections 4 and 5 from [1]).

In the same Theorem 5 from [12], it was proved (under the same a priori ergodicity con-
dition) that the Doeblin condition (viii) and the condition (vi) are equivalent to the condition
(v): “Every P∗-invariant functionals is a measure”, here it is countably additive measures.

If we translate these statements into the language we use, then we obtain a spe-
cial case of our Theorem 7 [1], but for a one-dimensional space of invariant finitely
additive measures.

Theorems 10 and 11 from [1] also generalize the corresponding assertions Theorem 5
from [12] since they do not assume that the Markov chain is ergodic (end of quote).

We can now add one more new remark to those given above. In our Theorem 4, it was
proved that the condition “the operator T∗ is quasi-compact” is equivalent to the condition
“the operator T is quasi-compact” (in [12] these operators are denoted by the symbols P∗

and P). There is no such statement in [12] [Theorem 5]. In [12], in point (i), it is written
only that the operator P is quasi-compact.

Thus, our Theorem 4 significantly strengthens Theorem 5 from [12].
4. Hernández-Lerma and Lasserre proved in [16] [Theorem 6.3.1] (2003) that for

a Markov chain defined on a separable metrizable phase space (X, Σ), under certain
assumptions, there exists an invariant finite additive measure. It is also shown that if a
finitely additive measure is invariant, then both its countably additive and purely finitely
additive components are invariant. In this article, we consider general Markov chains and
do not separately single out the particular case of the topological phase space.
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