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Abstract: This study investigated non-instantaneous deteriorating items because not all products
deteriorate immediately. In the high-tech product life cycle, the product demand increases linearly
substantially in the growth stage and maintains a near-constant level in the maturity stage. This is a
ramp-type demand rate. To satisfy the demand as shortages occur, partial backlogging is necessary.
The advance-cash-credit payment scheme, comprising advance, cash, and credit payments, has
gained popularity in business transactions to improve cash flow flexibility among supply chain
participants. This study explored a partial backlogging inventory model with ramp-type demand
for non-instantaneous deteriorating items under generalized payment. The proposed model also
incorporated discounted cash flow analysis to account for the time value of the profit function. This
study attempted to determine the optimal replenishment strategy to maximize the present value of
the total profit. Finally, we conducted a sensitivity analysis to examine the efficacy of the proposed
model and gain managerial insights. The optimal total profit rises with an increase in the permissible
delay period and sale price but decreases with an increase in ordering and purchase costs. Then, the
decision-maker can refer to the managerial insights to choose the appropriate parameter value for
the operation.

Keywords: supply chain; inventory; advance-cash-credit payment; non-instantaneous; ramp-type demand
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1. Introduction

Deterioration refers to the degradation or damage items may sustain while in stor-
age. Many products deteriorate, such as fish, vegetables, and light bulbs. However,
not all products deteriorate immediately when stored. They may deteriorate after a cer-
tain period because of superior preservation. These are non-instantaneous deteriorating
items. In contrast to the assumptions of existing models, this study considered non-
instantaneous deteriorating items, which is a crucial factor in inventory management. The
three-parameter Weibull distribution deterioration is a general deterioration distribution,
where W(t) =∝ β(t − γ)β−1 indicates the deterioration rate at time t, and ∝, β, γ are
the scale, shape, and location parameters of the distribution, respectively (Walpole and
Myers [1]). For simplicity, we used only a single time point in this study: the time point
at which items begin deteriorating. Previous scholars have also explored the topic of non-
instantaneous deteriorating items. For a detailed literature discussion, refer to Section 2.1
in the manuscript (see [2–11]).
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The economic order quantity (EOQ) model, in which the demand rate is constant, re-
mains the model most popularly applied by researchers. However, in practice, the demand
for items such as fashionable products or new mobile phones typically increases substan-
tially, either linearly or exponentially, in the growth stage and stabilizes to a near-constant
level in the maturity stage, producing a ramp-type demand pattern. Thus, investigating
this demand type is more practical. Previous scholars have also explored the issue of
ramp-type demand rate. For a detailed literature discussion, refer to Section 2.2 in the
manuscript (see [12–21]).

In the competitive market, making and receiving timely payments is critical for compa-
nies to uphold positive cash flow and effectively manage their liquidity. Sellers and buyers
utilize diverse payment terms to settle their business transactions. Typically, suppliers may
allow retailers to settle the balances due by using various payment methods, including
cash in advance (advance payment), cash on delivery (cash payment), a deferred payment
period of 30 days or more (credit payment), and other comparable arrangements.

In cases of advance payment, the seller benefits by earning interest and avoiding
default risk. The seller is also assured that the buyer will not cancel the order. Suppliers may
require buyers to pay the total purchase cost before delivery to mitigate order cancellation
risk. In addition, in case of strong demand and insufficient supply, when market instability
occurs for a product, buyers may prefer to prepay a portion or all the total purchase cost
to ensure that items are received on time. However, requiring buyers to pay in advance
may reduce sales because this is the least attractive option to buyers encountering cash
flow problems and having insufficient money to complete payments. To sustain sales,
suppliers may offer alternative payment options such as paying portions of the purchase
cost in multiple installments of equal amounts at equal time intervals or paying a portion
of the purchase cost before delivery and receiving replenishment only after paying the
remaining purchase cost. This is an advance-cash transaction. Suppliers may also offer
a permissible delay in payment to retailers for the remaining total purchase cost in an
advance-credit transaction.

In the case of cash payment, suppliers require retailers to pay the total purchase cost
upon the receipt of products. The cash payment benefits for the supplier are that they may
earn revenue and some interest. Moreover, cash payment is convenient for small businesses
because the purchaser does not require a credit card, and credit card processing fees can be
avoided. Retailers with inadequate cash flow may ask suppliers to accept delayed payment
of a part of the total purchase cost in a cash-credit transaction.

In the case of credit payment, a supplier may provide a credit period to retailers to
stimulate sales. Permitting delayed payment, in which a retailer is granted a grace period
to pay for a purchase, is an alternative incentive policy to quantity discounts. Concurrently,
a retailer may also provide a credit period to their customers. A two-level trade credit
policy is used. This policy can reduce buyer costs, attract new customers, and prevent price
competition. The seller provides the buyer with several interest-free short-term loans. No
interest is levied if the buyer settles the full purchase amount within the permissible delay
period. Alternatively, if the buyer fails to pay the total balance within the permissible delay
period, the seller charges interest on the remaining balance. Longer credit periods generally
lead to higher sales volumes, but also increase the risk of default compared with shorter
credit periods. Occasionally, sellers require buyers to make a partial payment upon delivery
and pay the remaining balance before the end of the credit period to reduce the default
risk associated with long credit periods and maintain positive cash flow. This cash-credit
payment policy is called partial trade credit.

Occasionally, sellers may permit buyers to make advance-cash-credit (ACC) payments.
This policy involves paying a part of the total purchase cost in advance when placing an
order, paying a portion in cash upon receiving the order, and paying the remainder within
a permissible delay period. This is mutually beneficial for sellers and buyers in a supply
chain network; sellers avoid order cancellation and increase sales to remain competitive,
whereas buyers avoid inadequate cash flow and earn interest before balance settlement. To
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maximize profit or minimize costs, suppliers and retailers can use various payment policies
to settle transactions. Such policies can increase sales and enhance cash flow flexibility
among supply chain members.

In summary, as mentioned previously, scholars have also explored the topic of various
payment policies. For a detailed literature discussion, refer to Section 2.3 in the manuscript
(see [22–57]).

As a result, through the introduction above, we develop a partial backlog inventory
model for non-instantaneous items with ramp-type demand (such as high-tech product
demand) under an ACC payment. The problem is to find the optimal replenishment
strategy to maximize the present value of the total profit per unit of time when the ACC
payment is employed. The relevant research is provided in the next section.

2. Literature Review

This manuscript addresses three topics: (1) non-instantaneous deteriorating items,
(2) ramp-type demand rate, and (3) ACC payment. The related articles are stated as follows.

2.1. Research on Non-Instantaneous Deteriorating Items

Many products, such as fish, meat, vegetables, pharmaceuticals, chemical substances,
light bulbs, and high-tech fashion items, deteriorate. Ouyang et al. [2] studied an inventory
model for non-instantaneous deteriorating items with a permissible delay in payments.
Geetha and Uthayakumar [3] provided an economical design for an inventory policy for
non-instantaneous deteriorating items with a permissible delay in payments. Maihami and
Kamalabadi [4] established joint pricing and inventory control for non-instantaneous dete-
riorating items with partial backlogging and time- and price-dependent demands. Soni and
Patel [5] proposed a fuzzy expected value model to identify the optimal pricing and inven-
tory policies for non-instantaneous deteriorating items with a permissible delay in payment.
Chang et al. [6] presented optimal pricing and ordering policies for non-instantaneous
deteriorating items with an order size-dependent payment delay. Tiwari et al. [7] presented
the impact of trade credit and inflation on retailer ordering policies for non-instantaneous
deteriorating items in a two-warehouse environment. Jaggi et al. [8] studied credit fi-
nancing in economic ordering policies for non-instantaneous deteriorating items with a
price-dependent demand and two storage facilities. Lashgari et al. [9] developed ordering
policies for non-instantaneous deteriorating items with simultaneous hybrid partial pre-
payment, partial trade credit, and partial backordering. Tavassoli et al. [10] suggested a
lot-sizing model for non-instantaneous deteriorating products with advance payment and
nonlinear partial backlogging. Pathak et al. [11] implemented a two-warehouse inventory
system for shelf-life stock, characterized by time-varying bi-quadratic demand, to explore
optimal replenishment strategies under conditions of shortages and inflation.

2.2. Research on Ramp-Type Demand

The demand rate for many new products, such as high-tech or seasonal products,
increases considerably, either linearly or exponentially, in the growth stage of the product
lifecycle, and the rate remains near constant in the maturity stage (ramp-type demand).
Manna and Chaudhuri [12] developed an EOQ model with a ramp-type demand rate, in
which time-dependent deterioration rate and shortages were considered. Deng et al. [13]
provided a note on inventory models for deteriorating items with a ramp-type demand
rate. Panda et al. [14] examined an optimal replenishment policy for perishable seasonal
products during a season with ramp-type dependent demand. Agrawal and Banerjee [15]
established a two-warehouse inventory model with ramp-type demand and partially
backlogged shortages. Skouri et al. [16] described inventory models with a ramp-type
demand rate, time-dependent deterioration rate, unit production cost, and shortages.
Agrawal et al. [17] provided an inventory model for deteriorating items with ramp-type
demand and partially backlogged shortages in a two-warehouse system. Halim [18]
proposed a Weibull-distributed inventory distribution model with a ramp-type demand
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rate and fully backlogged shortages. Shi et al. [19] explored optimal ordering policies
for a single deteriorating item with a ramp-type demand rate and a permissible delay in
payments. Yang [20] established an inventory model for ramp-type demand with two-level
trade credit financing linked to order quantity. Viswanath et al. [21] conducted an analysis
of instantaneous items featuring fully backlogged shortages, ramp-type demand, and a
constant deterioration rate.

2.3. Research on Generalized Payments

An ACC payment is one of several payment options. Thus, in this subsection, in order
to make the literature discussion more complete, we explore not only the literature related
to ACC payments but the kinds of literature related to generalized payments.

1. Cash or cash-credit payment: In 1913, Harris [22] proposed the EOQ model, in
which the buyer must pay cash on delivery (i.e., cash payment). However, in the
existing competitive market, most companies offer their products with various credit
terms (i.e., credit payment) to stimulate sales and remain competitive. Teng [23]
presented cash-credit payments for retailers with poor-credit customers, in which
partial cash payment reduces default risk and partial credit payment stimulates sales.
Yang et al. [24] explored the optimal retailer order and credit policies when suppliers
offer either a cash discount or delayed payment based on the order quantity.

2. Credit payment: Substantial research has investigated credit payment, which involves
the provision of a permissible delay in payment. In 1985, Goyal [25] developed an
EOQ model for credit payment circumstances that neglected differences in the sale
price and purchase cost. Shah [26] considered a stochastic inventory model with
permissible delay in payments. Teng [27] presented an EOQ ordering policy with
a conditionally permissible delay in payments. Gupta and Wang [28] explored a
stochastic inventory model with trade credit. Taleizadeh et al. [29] investigated an
EOQ model with partially delayed payment and partial backordering. Mahata and
De [30] proposed an EOQ inventory system for items with a price-dependent demand
rate under a retailer partial trade credit policy to reduce default risk. Huang [31]
extended Goyal’s model to develop an EOQ model, in which the supplier offers the
retailer a permissible delay period (i.e., upstream trade credit), and the retailer, in
turn, provides a trade credit period (i.e., downstream trade credit) to its customers.
This is a two-level trade credit policy. Since then, many models have been developed
in numerous directions. For example, Yang explored an inventory model for a ramp-
type demand with two-level trade credit financing linked to order quantity [20].
Subsequently, Yang [32] presented an optimal ordering policy for deteriorating items
with limited storage capacity under two-level trade credit linked to the order quantity
using a discounted cash flow (DCF) analysis. Relevant articles can be found in
the references of these studies. Moradi et al. [33] proposed an inventory model for
imperfect quality items, integrating the impacts of learning effects and partial trade
credit. Lin et al. [34] focused on optimizing ordering policies and credit terms for
items whose demand varies with inventory levels under the condition of a trade
credit limit. Pal et al. [35] examined a two-warehouse inventory model that accounts
for non-instantaneous deterioration, incorporating credit policy, inflation, demand
dependent on price and time, and partial backlogging.

3. Advance or advance-credit payment: Inventory models with advance payment have
rarely been studied. Zhang [36] proposed an optimal advance payment scheme involv-
ing fixed prepayment costs. Gupta et al. [37] presented an application of a genetic algo-
rithm for producing an inventory model with advance payment and interval-valued
inventory costs. Maiti et al. [38] considered advance payment in an inventory model
with a stochastic lead time and price-dependent demand. Taleizadeh [39] proposed an
EOQ model with partial backordering and advance payments for evaporating items.
Teng et al. [40] adopted an inventory lot size policy for deteriorating items with expi-
ration dates as well as advance payment. Khan et al. [41] explored the effects of full
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and partial advance payments with discount facilities for deteriorating products when
the demand is both price- and stock-dependent. Zhang et al. [42] developed an EOQ
model with full advance payment and partial-advanced–partial-delayed payment.
Zia and Taleizadeh [43] devised a lot sizing model with back-ordering under hybrid
linked-to-order multiple advance payments and delayed payment. Diabat et al. [44]
proposed an advance-credit payment for a lot sizing model with partial downstream
delayed payment, partial upstream advance payment, and partial backordering for
deteriorating items. Duary et al. [45] explored a price discount inventory model with
advance and delayed payments for deteriorating items under capacity constraints
and partially backlogged shortages.

4. Advance-cash-credit payment: In addition to the aforementioned studies, Li et al. [46]
presented pricing and lot sizing policies for perishable products with an ACC pay-
ment, which were examined using a DCF analysis. Li et al. [47] considered an ACC
payment with a time-dependent demand. Wu et al. [48] provided inventory policies
for perishable products with expiration dates and ACC payment schemes. Li et al. [49]
studied optimal pricing, lot sizing, and back-ordering decisions for when a seller de-
mands an ACC payment. Li et al. [50] proposed lot sizing and pricing decisions for
perishable products with three-echelon supply chains and ACC payments when the
demand depends on the price and stock age. Li et al. [51] developed EOQ-based
pricing and customer credit decisions for generalized supplier payments (i.e., ACC
payments). Tsao et al. [52] provided a supply chain network design for an ACC
payment. Feng et al. [53] investigated the optimal sale price, replenishment cycle,
and payment time for ACC payments from a seller’s perspective. Feng et al. [54]
explored pricing and lot sizing for fresh goods when the demand depends on the unit
price, displayed stock, and product age under generalized payment. Shi et al. [55]
also used ACC payment schemes to demonstrate an optimal retailer strategy for
perishable products with increasing demand under a two-level trade credit. Recently,
Tsao et al. [56] developed a model for a single supplier–manufacturer chain to identify
the optimal replenishment cycle time and predictive maintenance effort needed to
minimize the total cost’s present value, given that the manufacturer receives an ACC
payment from the supplier. Chang and Tseng [57] formulated EOQ models to analyze
how ACC payment schemes and carbon emission policies affect replenishment and
pricing strategies for perishable goods.

To summarize the above, the major characteristics of our study of selected articles are
shown in Table 1.

Table 1. The major characteristic of inventory models in selected articles.

References Demand
Pattern

Deterioration
(Instantaneous/

Non-Instantaneous/ Others)

Payment Policy Discounted
Cash-Flow

Advance Cash Credit

Agrawal and
Banerjee [15] Ramp-type

Agrawal et al. [17] Ramp-type V Instantaneous

Chang et al. [6] Price-dependent Non-instantaneous V

Chang and Tseng [57] Price and stock-age
dependent Instantaneous V V V V

Diabat et al. [44] Stock-dependent Instantaneous V V

Duary et al. [45] Time-dependent Instantaneous V V

Feng et al. [53] Price and payment
time-dependent V V V
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Table 1. Cont.

References Demand
Pattern

Deterioration
(Instantaneous/

Non-Instantaneous/ Others)

Payment Policy Discounted
Cash-Flow

Advance Cash Credit

Feng et al. [54] Price, stock, product
age dependent V V V

Geetha and
Uthayakumar [3] Constant Non-instantaneous V

Gupta et al. [37] Constant V

Gupta and Wang [28] Stochastic demand V

Halim [18] Ramp-type Weibull distributed
deterioration

Huang [31] Constant V

Jaggi et al. [8] Price-dependent Non-instantaneous V

Khan et al. [41] Price and stock- dependent Instantaneous V

Lashgari et al. [9] Constant Non-instantaneous V V

Li et al. [46] Price-dependent Instantaneous V V V V

Li et al. [47] Payment time- dependent V V V

Li et al. [49] Price-dependent V V V

Li et al. [50] Price and stock-age Instantaneous V V V V

Li et al. [51] Price and credit
period dependent V V V

Lin et al. [34] Stock-dependent V

Maihami and
Kamalabadi [4] Price-dependent Non-instantaneous

Mahata and De [30] Price-dependent Instantaneous V

Maiti et al. [38] Price-dependent V

Manna and
Chaudhrui [12] Ramp-type Time-dependent

deterioration

Ouyang et al. [2] Price-dependent Non-instantaneous V

Panda et al. [14] Ramp-type Instantaneous

Pal et al. [35] Price and time dependent Non-instantaneous V V

Pathak et al. [11] Biquadratic
time-dependent Non-instantaneous V

Shah [26] Stochastic demand Instantaneous V

Shi et al. [55] Increasing demand Instantaneous V V V

Shi et al. [19] Ramp-type Instantaneous V

Skouri et al. [16] Ramp-type Instantaneous

Soni and Patel [5] Price-dependent Non-instantaneous V

Taleizadeh [39] Constant V

Tavassoli et al. [10] Constant Non-instantaneous V

Teng et al. [40] Constant Instantaneous V

Tiwari et al. [7] Constant Non-instantaneous V V

Tsao et al. [56] Constant Instantaneous V V V V

Viswanath et al. [21] Ramp-type Instantaneous V

Wu et al. [48] Constant Instantaneous V V V
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Table 1. Cont.

References Demand
Pattern

Deterioration
(Instantaneous/

Non-Instantaneous/ Others)

Payment Policy Discounted
Cash-Flow

Advance Cash Credit

Yang et al. [24] Credit period-dependent V V

Yang [20] Ramp-type V

Yang [32] Time-varying Instantaneous V V

Zhang et al. [42] Constant V

Zia and Taleizadeh [43] Constant V V

Present paper Ramp-type Non-instantaneous V V V V

In view of these, an ACC payment is a generalized payment scheme involving several
types of payment (e.g., advance, cash, credit, advance-cash, advance-credit, and cash-credit).

Therefore, this study investigated a partial backlogging inventory model for non-
instantaneous deteriorating items with the ramp-type demand under ACC payment and
DCF. The contributions of this study are as follows: First, to the best of our knowledge,
the ramp-type demand and non-instantaneous deteriorating items under ACC payment
have not been simultaneously investigated. Thus, in this research, we developed a partial
backlogging inventory model for non-instantaneous deteriorating items with a ramp-type
demand under ACC payment. Second, we conducted a DCF analysis of the time value
of the profit function. Finally, we used numerical examples and sensitivity analysis to
determine the effects of system parameters on the total profit function and decision-making
and to provide managerial insights. These are the differences between this article and
others. It’s an innovation.

The remainder of this paper is organized as follows: We describe the assumptions and
define the notations used throughout the paper in Section 3. We develop the mathematical
models for different scenarios in Section 4. In Section 5, we derive the necessary conditions
in each scenario for arrival at the optimal solution. Sections 6 and 7 provide numerical
examples and discuss managerial insights obtained from sensitivity analysis. Section 8
provides the conclusion.

3. Assumptions and Notation

The mathematical models for inventory problems were based on the following assumptions:

1. Items can deteriorate after being in stock for a period. No replacement or repair of
deteriorating items is assumed to occur during the period.

2. Each cost considered is assumed to be continuously compounded throughout the analysis.
The cash flows associated with product transactions are assumed to be instantaneous.

3. Allowance for shortages is permitted. Unfulfilled demand is stored for later fulfill-
ment, and the proportion of backlogged shortages is a continuously differentiable and
decreasing function of t, which is denoted by δ(t), where t represents the time until
the next replenishment, 0 ≤ δ(t) ≤ 1, δ(0) = 1 and lim

t→∞
δ(t) = 0. If δ(t) = 1 (or 0) for

all t values, then shortages are completely backlogged (or lost). If 0 < δ(t) < 1, then
the shortage is partially backlogged and partially lost.

4. The buyer pays the seller a fraction α of the total purchase cost in advance as a
deposit for L years. The buyer then pays another fraction β of the total purchase
cost in cash upon receiving the order quantity Q units at time 0. The seller grants an
upstream credit period of M for the remainder fraction χ of the total purchase cost
(i.e., χ = 1 − α − β).

The following notations are also used throughout this paper:
Parameters:
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D(t) = demand rate at time t, we assume that D(t) is constant and deterministic after
the length of demand growth stage µ (in years), and D(t) is an increasing linear function of
time t during the growth stage. That is

D(t) =
{

f (t) t < µ
f (µ), t ≥ µ

, where f (t) = a + bt, a > 0, b > 0.

td = time at which deterioration starts; product quality is stable before td (in years),
this is defined as the stable quality period

θ = deterioration rate, where 0 < θ < 1
δ(t) = backlogging rate, which is a decreasing function of waiting time t, without loss

of generality, we assume that δ(t) = e−σ t where σ ≥ 0, and t is the waiting time
L = fixed prepayment period in years, L > 0
M = permissible delay period in years
α = fraction of total purchase cost to be paid to the seller in advance, 0 ≤ α ≤ 1. If

α = 0, the ACC payment scheme becomes a cash-credit payment. If α = 1, payment is an
advance payment.

β = fraction of total purchase cost to be paid to the seller upon receiving items,
0 ≤ β ≤ 1. If β = 0, the ACC payment scheme is an advance-credit payment. If β = 1,
the payment is a cash payment.

χ = fraction of total purchase cost granted an upstream credit period M by the seller to
the buyer, 0 ≤ χ ≤ 1, and α + β + χ = 1. If χ = 0, the ACC payment scheme becomes an
advance-cash payment. If χ = 1, the payment is a credit payment.

r = annual compound interest rate per dollar per unit of time
Ic = interest charged per dollar per unit of time
Ie = interest earned per dollar per unit of time
co = ordering cost per order in dollars
ch = holding cost per unit time in dollars
cb = backlogging cost per unit time if the shortage is backlogged in dollars
cl = unit opportunity cost due to lost sale if the shortage is lost in dollars
cp = purchase cost per unit in dollars
p = unit sale price in dollars

Variables:
S = initial inventory level at the time t = 0
Q = order quantity in units
I(t) = inventory level at time t
B(t) = backlogged level at time t
TP = present value of the total profit per unit of time

Decision variables:
t1 = time at which the inventory level reaches zero in years, where t1 > 0 and is

defined as the stock period. Without loss of generality, we assume that µ < t1.
T = replenishment cycle in years; the time at which the shortage level reaches the

minimum point during the replenishment cycle, where T > t1

4. Mathematical Models

The difference between the length of the stable quality period td and the length of the
demand growth period µ is considered. Two scenarios exist: (1) µ ≤ td and (2) µ ≥ td.

4.1. Scenario 1. µ ≤ td (i.e., the Demand Growth Period Is Not Longer than the Stable
Quality Period)

In the growth and stable quality interval (0, µ), we assume that no deterioration occurs
and that the inventory level gradually decreases because of demand, where 0 ≤ t ≤ µ.
Next, the inventory level depletes because of constant demand in the maturity and stable
quality interval (µ, td), where µ ≤ t ≤ td. After the stable quality period td, the items begin
to deteriorate, and the inventory level also gradually decreases because of both constant
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demand and deterioration in the interval (td, t1), where td ≤ t ≤ t1. The inventory level at
time t is governed by the following differential equation:

dI11(t)
dt

= − f (t), 0 ≤ t ≤ µ. (1)

dI12(t)
dt

= − f (µ), µ ≤ t ≤ td. (2)

dI13(t)
dt

+ θ I13(t) = − f (µ), td ≤ t ≤ t1. (3)

with the boundary condition I11(0) = S and I13(t1) = 0. The solutions to (1)–(3) are
as follows:

I11(t) = S −
∫ t

0
f (ν)dν, 0 ≤ t ≤ µ. (4)

I12(t) = S −
∫ µ

0
f (ν)dν − f (µ)(t − µ), µ ≤ t ≤ td. (5)

and

I13(t) = f (µ)e−θt
∫ t1

t
eθνdν, td ≤ t ≤ t1. (6)

respectively. Using the continuity of I11(t) and I12(t) at time t = µ and I12(t) and I13(t) at
time t = td, (4)–(6) produces

S =
∫ µ

0
f (t)dt + f (µ) · (td − µ) + f (µ)e−θtd

∫ t1

td

eθtdt. (7)

In summary, in this case: (i) From time 0 to time µ, the demand is increasing, and the
items do not deteriorate. (ii) From time µ to time td, the demand is constant, and the items
still do not deteriorate. However, (iii) after the time td, the items begin to deteriorate, and
the demand remains constant. (iv) The inventory level at time t1 is zero, and then shortages
occur, including back-ordered quantity and lost sales during the time interval [t1, T]. A
graphical representation is depicted in Figure 1.
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 𝑡𝑑
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 + 𝑒−𝜃𝜇 ∫   𝑒𝜃𝑡𝑓(𝑡)𝑑𝑡
𝜇

𝑡𝑑
+ 𝑓(𝜇)𝑒−𝜃𝜇 ∫  𝑒𝜃𝑡𝑑𝑡

𝑡1
𝜇

. (14) 

Figure 1. Graphical representation of the research model, where µ ≤ td.
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4.2. Scenario 2. µ ≥ td (i.e., the Demand Growth Period Is Not Shorter than the Stable
Quality Period)

During the growth and stable quality interval (0, td), no deterioration occurs, and
the inventory decreases gradually because of demand. After the stable quality period td,
the inventory level depletes because of both the demand and deterioration in the demand
growth interval (td, µ), and the inventory level then depletes because of both deteriorated
and constant demand in the maturity and deterioration interval (µ, t1). The inventory level
at time t is governed by the following differential equation:

dI21(t)
dt

= − f (t), 0 ≤ t ≤ td. (8)

dI22(t)
dt

+ θ I22(t) = − f (t), td ≤ t ≤ µ. (9)

dI23(t)
dt

+ θ I23(t) = − f (µ), µ ≤ t ≤ t1. (10)

with the boundary condition I21(0) = S and I23(t1) = 0. The solutions to (8)–(10) are
as follows:

I21(t) = S −
∫ t

0
f (ν)dν, 0 ≤ t ≤ td. (11)

I22(t) = S −
∫ td

0
f (ν)dν − e−θt

∫ t

td

eθν f (ν)dν, td ≤ t ≤ µ. (12)

and

I23(t) = f (µ)e−θt
∫ t1

t
eθνdν, µ ≤ t ≤ t1. (13)

respectively. Using the continuity of I21(t) and I22(t) at time t = td and I22(t) and I23(t) at
time t = µ, (11)–(13) produces

S =
∫ td

0
f (t)dt + e−θµ

∫ µ

td

eθt f (t)dt + f (µ)e−θµ
∫ t1

µ
eθtdt. (14)

In summary, in this case: (i) From time 0 to time td, the demand increases, and the
items do not deteriorate. (ii) From time td to time µ, the demand is still increasing, and the
items begin to deteriorate. However, (iii) after the time µ, the demand is constant, and the
items still deteriorate. (iv) The inventory level at time t1 is zero, and then shortages occur,
including backordered quantity and lost sales during the time interval [t1, T]. A graphical
representation is depicted in Figure 2.

Thus, based on Figures 1 and 2, the cumulative inventory during (0, t1) is
∫ t1

0 I(t)dt.
Therefore, the present value of the holding cost is

CH1(0, t1) = ch

[∫ µ
0 e−rt I11(t)dt +

∫ td
µ e−rt I12(t)dt +

∫ t1
td

e−rt I13(t)dt
]

= ch


∫ µ

0 e−rt
(

S −
∫ t

0 f (ν)dν
)

+
∫ td

µ e−rt[S −
∫ µ

0 f (ν)dν − f (µ)(t − µ)
]
dt

+ f (µ)
∫ t1

td
e−(θ+r)t ∫ t1

t eθνdνdt
]

,

if min(td, µ) = µ.

(15)

or
CH2 (0, t1) = ch

[∫ td
0 e−rt I21(t)dt +

∫ µ
td

e−rt I22(t)dt +
∫ t1

µ e−rt I23(t)dt
]

= ch


∫ td

0 e−rt
(

S −
∫ t

0 f (ν)dν
)

+
∫ µ

td
e−rt

[
S −

∫ td
0 f (t)dt − e−θt ∫ t

td
eθν f (ν)dν

]
dt

+ f (µ)
∫ t1

µ e−(θ+r)t ∫ t1
t eθνdνdt

]
,

if min(td, µ) = td.

(16)
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respectively.

Mathematics 2024, 12, x FOR PEER REVIEW 11 of 25 
 

 

In summary, in this case: (i) From time 0 to time 𝑡𝑑, the demand increases, and the 

items do not deteriorate. (ii) From time 𝑡𝑑 to time 𝜇, the demand is still increasing, and 

the items begin to deteriorate. However, (iii) after the time 𝜇, the demand is constant, and 

the items still deteriorate. (iv) The inventory level at time 𝑡1 is zero, and then shortages 

occur, including backordered quantity and lost sales during the time interval [𝑡1, T]. A 

graphical representation is depicted in Figure 2. 

 

Figure 2. Graphical representation of the research model, where 𝜇 ≥ 𝑡𝑑. 

Thus, based on Figures 1 and 2, the cumulative inventory during (0, 𝑡1) is ∫ 𝐼(𝑡)𝑑𝑡
𝑡1
0

. 

Therefore, the present value of the holding cost is 

𝐶𝐻1(0, 𝑡1) = 𝑐ℎ [∫ 𝑒−𝑟𝑡𝐼11(𝑡)𝑑𝑡 + ∫ 𝑒−𝑟𝑡𝐼12(𝑡)𝑑𝑡
 𝑡𝑑

𝜇 

+∫ 𝑒−𝑟𝑡𝐼13(𝑡)𝑑𝑡
 𝑡1

  𝑡𝑑

𝜇 

 0

] 

= 𝑐ℎ

{
 
 
 

 
 
 ∫ 𝑒−𝑟𝑡

𝜇

0

 (𝑆 − ∫  𝑓(𝜈)𝑑𝜈
𝑡

0

)

+∫ 𝑒−𝑟𝑡
𝑡𝑑

 𝜇

[𝑆 − ∫  𝑓(𝜈)𝑑𝜈
𝜇

0

 − 𝑓(𝜇)(𝑡 − 𝜇)] 𝑑𝑡 

+𝑓(𝜇)∫ 𝑒−(𝜃+𝑟)𝑡∫ 𝑒𝜃𝜈𝑑𝜈
𝑡1

𝑡

𝑑𝑡
𝑡1

𝑡𝑑

]
}
 
 
 

 
 
 

, 

if 𝑚𝑖𝑛( 𝑡𝑑 , 𝜇) = 𝜇. 

(15) 

or 

𝐶𝐻2 (0, 𝑡1) = 𝑐ℎ [∫ 𝑒−𝑟𝑡𝐼21(𝑡)𝑑𝑡 + ∫ 𝑒−𝑟𝑡𝐼22(𝑡)𝑑𝑡
𝜇 

𝑡𝑑 

+∫ 𝑒−𝑟𝑡𝐼23(𝑡)𝑑𝑡
 𝑡1

𝜇 

𝑡𝑑

 0

] 

= 𝑐ℎ

{
 
 
 

 
 
 ∫ 𝑒−𝑟𝑡

𝑡𝑑

0

 (𝑆 − ∫  𝑓(𝜈)𝑑𝜈
𝑡

0

)

+∫ 𝑒−𝑟𝑡
𝜇

 𝑡𝑑

[𝑆 − ∫  𝑓(𝑡)𝑑𝑡
𝑡𝑑

0

 − 𝑒−𝜃𝑡∫  𝑒𝜃𝜈𝑓(𝜈)
𝑡

𝑡𝑑

𝑑𝜈] 𝑑𝑡 

+𝑓(𝜇)∫ 𝑒−(𝜃+𝑟)𝑡∫ 𝑒𝜃𝜈𝑑𝜈
𝑡1

𝑡

𝑑𝑡
𝑡1

𝜇

]
}
 
 
 

 
 
 

, 

if 𝑚𝑖𝑛( 𝑡𝑑 , 𝜇) = 𝑡𝑑 . 

(16) 

respectively. 

Figure 2. Graphical representation of the research model, where µ ≥ td.

According to Figures 1 and 2, at time t1, the stock is zero; thereafter, shortages occur.
The quantity that is not immediately available to customers is backordered and offered
at the start of the next cycle. At time T, the replenishment cycle restarts. During the
shortage interval (t1, T), the backlogged level B(t) at time t is governed by the following
differential equation:

dB(t)
dt

= δ(T − t) f (µ), t1 ≤ t ≤ T, (17)

with the boundary condition B(t1) = 0. The solution to (17) is

B(t) = f (µ)
∫ t

t1

δ(T − ν)dν, t1 ≤ t ≤ T. (18)

The number of lost sales at time t is

L(t) = f (µ)
∫ t

t1

[1 − δ(T − ν)]dν, t1 ≤ t ≤ T. (19)

The present values of the backlogging cost and the opportunity cost due to lost sales are

CB(t1, T) = cb f (µ)
∫ T

t1

e−rt
∫ t

t1

δ(T − ν)dν dt =
cb
r

f (µ)
∫ T

t1

(
e−rt − e−rT

)
δ(T − t)dt, (20)

and

CL(t1, T) = cl f (µ)
∫ T

t1

e−rt[1 − δ(T − t)]dt. (21)

respectively. Equation (18) demonstrates that the backordered quantity is B(T), denoted by
R, that is,

R = B(T) = f (µ)
∫ T

t1

δ(T − t)dt. (22)

Thus, the order size is Q = S + R, and the present value of the total purchasing cost of
each cycle is

CP = cp

(
αQerL + βQ + χQe−rM

)
. (23)
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The present value of the sales revenue of each cycle is

SR = p
[

R +
∫ µ

0
e−rt f (t)dt +

∫ t1

µ
e−rt f (µ)dt

]
. (24)

The present value of the ordering cost is

CO = coerL. (25)

Next, for advance payment and cash payment, the present value of interest charged is
as follows:

IC = cp Ic

{
α
∫ 0
−L e−rtQdt

+(α + β)
[∫ µ

0 e−rt ∫ µ
t f (ν)dνdt +

∫ t1
µ e−rt ∫ t1

t f (µ)dνdt
]}. (26)

A graphical representation is depicted in Figure 3 as follows: the black slash region
represents the interest charged on the advance payment, while the blue slash region
illustrates the interest charged on the cash payment.
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Figure 3. The interest charged for the advance and cash payments.

The interest charged and earned on the credit payment discussed must be based on the
values µ, t1, and M. Three cases must be discussed: (i) M ≤ µ; (ii) µ ≤ M ≤ t1 (iii) t1 ≤ M.

(i) M ≤ µ.
The retailer is charged at rate Ic, and the interest paid is

IC1 = χcp Ic

[∫ µ

M
e−rt

∫ µ

t
f (ν)dνdt +

∫ t1

µ
e−rt

∫ t1

t
f (µ)dνdt

]
.

The interest earned is

IE1 = χpIe

[∫ M

0
e−rtRdt +

∫ M

0
e−rt

∫ t

0
f (ν)dνdt

]
.

A graphical representation is depicted in Figure 4 as follows: the region with black
slashes indicates the interest charged on the credit payment, and the region with red
vertical lines combined with yellow horizontal lines indicates the interest earned on the
credit payment.
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Figure 4. The interest charged and earned for the credit payment when M ≤ µ.

The capital cost is calculated as

CC1= IC + IC1 − IE1

= cp Ic

[
α
∫ 0
−L e−rtQdt + (α + β)

∫ µ
0 e−rt ∫ µ

t f (ν)dνdt

+χ
∫ µ

M e−rt ∫ µ
t f (ν)dνdt +

∫ t1
µ e−rt f (µ)(t1 − t)dt

]
−χpIe

[∫ M
0 e−rtRdt +

∫ M
0 e−rt ∫ t

0 f (ν)dνdt
]
.

(27)

(ii) µ ≤ M ≤ t1.
The retailer is charged at rate Ic, and the interest paid is

IC2 = χcp Ic

∫ t1

M
e−rt

∫ t1

t
f (µ)dνdt.

The interest earned is

IE2 = χpIe

[∫ M

0
e−rtRdt +

∫ µ

0
e−rt

∫ t

0
f (ν)dνdt +

∫ M

µ
e−rt

∫ t

µ
f (µ)dνdt

]
.

A graphical representation is depicted in Figure 5 as follows: the area covered by black
slashes denotes the interest charged on the credit payment, while the area with red vertical
and yellow horizontal lines denotes the interest earned on the credit payment.
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The capital cost is calculated as

CC2 = IC + IC2 − IE2

= cp Ic

{
α
∫ 0
−L e−rtQdt

+(α + β)
[∫ µ

0 e−rt ∫ µ
t f (ν)dνdt +

∫ t1
µ e−rt f (µ)(t1 − t)dt

]}
+χcp Ic

∫ t1
M e−rt f (µ)(t1 − t)dt

−χpIe

[∫ M
0 e−rtRdt +

∫ µ
0 e−rt ∫ t

0 f (ν)dνdt +
∫ M

µ e−rt f (µ)(t − µ)dt
]
.

(28)

(iii) t1 ≤ M.
After the permissible delay period M, no interest is charged, that is,

IC3 = 0.

The interest earned is

IE3 = χpIe

[∫ M
0 e−rtRdt +

∫ µ
0 e−rt ∫ t

0 f (ν)dνdt

+
∫ t1

µ e−rt ∫ t
µ f (µ)dνdt +

∫ M
t1

e−rt(
∫ µ

0 f (ν)dν +
∫ t1

µ f (µ)dν)dt
]
.

A graphical representation is depicted in Figure 6 as follows. The red vertical and
yellow horizontal lines represent the interest earned for the credit payment.
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The capital cost is calculated as

CC3 = IC + IC3 − IE3

= cp Ic

{
α
∫ 0
−L e−rtQdt

+(α + β)
[∫ µ

0 e−rt ∫ µ
t f (ν)dνdt +

∫ t1
µ e−rt f (µ)(t1 − t)dt

]}
−χpIe

[∫ M
0 e−rtRdt +

∫ µ
0 e−rt ∫ t

0 f (ν)dνdt

+
∫ t1

µ e−rt f (µ)(t − µ)dt +
∫ M

t1
e−rt(∫ µ

0 f (ν)dν + f (µ)(t1 − µ)
)
dt
]
.

(29)

Consequently, the present values of the total profit per unit time for the research model
during the cycle [0, T] in the three cases are given by

Total profit = sales revenue − ordering cost − purchasing cost − holding cost −
backlogging cost − lost sales cost − capital cost.

Therefore, the present value of the total profit per unit time is as follows, for i = 1, 2, 3
:

TP1i(t1, T) =
[SR − CO − CP − CH1(0, t1)− CB(t1, T)− CL(t1, T)− CCi]

T
, if min(td, µ) = µ (30)
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TP2i(t1, T) =
[SR − CO − CP − CH2(0, t1)− CB(t1, T)− CL(t1, T)− CCi]

T
, if min(td, µ) = td. (31)

Thus, the research model was used to determine the optimal time points t1 and T for
maximization of the present value of total profit per unit time in the inventory system.

5. Solutions to Proposed Models
5.1. Scenario 1: µ ≤ td

The necessary conditions for TP1i(t1, T) in (30) to be maximized can be written as
follows, where i = 1, 2, 3:

∂TP1i
∂t1

(t1, T) = 1
T
{

f (µ)
{

p
[
−δ(T − t1) + e−rt1

]
−cp

(
αerL + β + re−rM)[

eθ(t1−td) − δ(T − t1)
]

−ch

[∫ td
0 e−rteθ(t1−td)dt +

∫ t1
td

e−(θ+r)teθt1 dt
]

+e−rt1
[

cb
r

(
1 − e−r(T−t1)

)
δ(T − t1) + cl(1 − δ(T − t1))

]}
− ∂CCi

∂ t1

}
= 1

T
{

f (µ)
{

p
[
−δ(T − t1) + e−rt1

]
−cp

(
αerL + β + re−rM)[

eθ(t1−td) − δ(T − t1)
]

−
ch

[
(θ+r)eθ(t1−td)−θeθ(t1−td)e−rtd−re−rt1

]
[r(θ+r)]

+e−rt1
[

cb
r

(
1 − e−r(T−t1)

)
δ(T − t1) + cl(1 − δ(T − t1))

]}
− ∂CCi

∂ t1

}
= 0,

(32)

where
∂CC1

∂t1
=

f (µ)cp Ic

{
α(erL−1)

[
eθ(t1−td)−δ(T−t1)

]
+(e−rµ−e−rt1)

}
r

+
f (µ)χpIeδ(T−t1)(1−e−rM)

r .
∂CC2

∂t1
= 1

r

{
f (µ)cp Ic

{
α
(
erL − 1

)[
eθ(t1−td) − δ(T − t1)

]
+(α + β)

(
e−rµ − e−rt1

)
+ χ

(
e−rM − e−rt1

)}}
+

f (µ)χpIeδ(T−t1)(1−e−rM)
r .

and
∂CC3

∂t1
= 1

r

{
f (µ)cp Ic

{
α
(
erL − 1

)[
eθ(t1−td) − δ(T − t1)

]
+(α + β)

(
e−rµ − e−rt1

)}}
− f (µ)χpIe

[
−δ(T−t1)(1−e−rM)

r

−e−rt1
∫ µ

0 f (ν)dν +
(e−rt1−e−rM)

r

]
.

∂TP1i
∂T (t1, T) = 1

T

{
f (µ)

{[
p − cp

(
αerL + β + re−rM)][

1 +
∫ T

t1
δ′(T − t)dt

]
−
∫ T

t1
e−rT

[
cbδ(T − t) +

(
cb
r

(
er(T−t) − 1

)
− cler(T−t)

)
δ′(T − t)

]
dt

− αcp Ic(erL−1)−χpIe(1−e−rM)
r

[
1 +

∫ T
t1

δ′(T − t)dt
]}

−TP1i} = 0.

(33)

5.2. Scenario 2: µ ≥ td

The necessary conditions for TP2i(t1, T) in (31) to be maximized can be written as
follows, where i = 1, 2, 3:
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∂TP2i
∂t1

(t1, T) = 1
T
{

f (µ)
{[

−δ(T − t1) + e−rt1
]

−cp
(
αerL + β + re−rM)[

eθ(t1−µ) − δ(T − t1)
]

+e−rt1
[

cb
r

(
1 − e−r(T−t1)

)
δ(T − t1) + cl(1 − δ(T − t1))

]}
− ∂CCi

∂ t1

}
= 1

T
{

f (µ)
{[

−δ(T − t1) + e−rt1
]

−cp
(
αerL + β + re−rM)[

eθ(t1−µ) − δ(T − t1)
]

− ch[(θ+r)eθ(t1−µ)−θeθ(t1−µ)e−rµ−re−rt1 ]
[r(θ+r)]

+e−rt1
[

cb
r

(
1 − e−r(T−t1)

)
δ(T − t1) + cl(1 − δ(T − t1))

]}
− ∂CCi

∂ t1

}
= 0,

(34)

where
∂CC1

∂t1
=

f (µ)cp Ic

{
α(erL−1)[eθ(t1−µ)−δ(T−t1)]+(e−rµ−e−rt1)

}
r

+
f (µ)χpIeδ(T−t1)(1−e−rM)

r
∂CC2

∂t1
= 1

r

{
f (µ)cp Ic

{
α
(
erL − 1

)[
eθ(t1−µ) − δ(T − t1)

]
+(α + β)

(
e−rµ − e−rt1

)
+ χ

(
e−rM − e−rt1

)}}
+

f (µ)χpIeδ(T−t1)(1−e−rM)
r .

and
∂CC3

∂t1
= 1

r

{
f (µ)cp Ic

{
α
(
erL − 1

)[
eθ(t1−µ) − δ(T − t1)

]
+(α + β)

(
e−rµ − e−rt1

)}}
− f (µ)χpIe

[
−δ(T−t1)(1−e−rM)

r

−e−rt1
∫ µ

0 f (ν)dν − (e−rt1−e−rM)
r

]
∂TP2i

∂T (t1, T) = 1
T

{
f (µ)

{[
p − cp

(
αerL + β + re−rM)][

1 +
∫ T

t1
δ′(T − t)dt

]
−
∫ T

t1
e−rT

[
cbδ(T − t) +

(
cb
r

(
er(T−t) − 1

)
− cler(T−t)

)
δ′(T − t)

]
dt

− αcp Ic(erL−1)−χpIe(1−e−rM)
r

[
1 +

∫ T
t1

δ′(T − t)dt
]}

−TP2i} = 0.

(35)

Note: The corresponding Hessian matrix for the present value of the total profit function

H =

 ∂2TPji

∂t2
1

∂2TPji
∂t1∂T

∂2TPji
∂t1∂T

∂2TPji
∂T2

 is negative definite,

if
∂2TPji

∂t2
1

< 0 and |H| > 0, for j = 1, 2 and i = 1, 2, and 3.

Due to the complexity of the problem, it is not easy to express the second-order partial
derivatives in a closed form, and so the joint concavity of the present value of total profit
per unit time over t1 and T does not appear straightforward. Thus, we use the first-order
derivative of TPji(t1, T) for i = 1, 2, 3 and j = 1, 2, (i.e., Equations (32)–(35)) to determine the
optimal solution. Then, check the sufficient condition that the Hessian is negative-definite
by applying the software Mathematica 13.1 to numerical examples. In addition, graphs
of TP12(t1, T) and TP22(t1, T), as shown in Figures 7 and 8 below, indicate that TP12(t1, T)
and TP22(t1, T) are jointly concave over both t1 and T.
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6. Numerical Examples

In the following examples, the values used have been modified based on previous
articles for reference, see Yang (2019a) [20].

For deteriorating items, the demand rate is f (t) = 200 + 150t, the deterioration rate
is θ = 0.02, and the backlogging rate δ(t) = e−0.6t. The other parameters are as follows:
α = 0.3, β = 0.3, χ = 0.4; fixed prepayment period L = 0.08, r = 0.06; ordering cost co = 40,
ch = 3, cb = 2, cl = 5, cp = 10, p = 30; permissible delay period M = 0.25; interest rate
charged Ic = 0.06; and interest rate earned Ie = 0.05. The following numerical examples
are provided for µ ≤ td and µ ≥ td:

(1) Example 1: Let µ = 0.15 and td = 0.25, where µ ≤ td and M > µ. Using
Equations (32) and (33) and Mathematica 13.1, we obtained the following optimal solutions:

The optimal stock period t1 = 0.3055, optimal replenishment cycle T = 0.4079, optimal
present value of the total profit per unit time TP12(t1, T) = 4115.93, optimal order quantity
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Q = 88.39, and optimal backordered quantity R = 22.08. The determinant of the Hessian
matrix of TP12(t1, T) at (t1, T) is as follows:∣∣∣∣−11689 8662.2

8662.2 −8645.51

∣∣∣∣ = 2.6035 × 107 > 0.

This equation demonstrates that the value of TP12(t1, T) is maximized at (t1, T) = (0.3055,
0.4079). A graph of TP12(t1, T) is shown in Figure 7, where the red dot represents the
optimal solution. The graph exhibits concavity at both t1 and T.

(2) Example 2: Let µ = 0.15 and td = 0.10, where µ ≥ td and M > µ. Using
Equations (34) and (35) and Mathematica 13.1, we obtained the following optimal solutions:

The optimal stock period t1 = 0.3016, optimal replenishment cycle T = 0.4046, optimal
present value of the total profit per unit time TP22 = 4113.71, optimal order quantity
Q = 87.73, and optimal backordered quantity R = 22.21. The determinant of the Hessian
matrix of TP22(t1, T) at (t1, T) is as follows:∣∣∣∣−11782.1 8729.7

8729.7 −8713.79

∣∣∣∣ = 2.6459 × 107 > 0.

This equation demonstrates that the value of TP22(t1, T) is maximized at (t1, T) = (0.3016,
0.4046). A graph of TP22(t1, T) is shown in Figure 8, where the red dot represents the
optimal solution. The graph exhibits concavity at both t1 and T.

7. Sensitivity Analysis

This section elucidates the numerical analyses performed to gain managerial insights.
The primary focus was examining financial parameters’ effects on buyer decision-making and
profits. Similarly, a sensitivity analysis was performed for µ ≤ td and µ ≥ td, respectively.

As shown in Table 2, as µ increases, each of the decision variables t1, T, TP, Q, and R
increases. This observation indicates that the longer the demand growth period µ is, the
larger the stock period t1, the replenishment cycle T, the optimal profit TP, the ordered
quantity Q, and the backordered quantity R are.

Table 2. Numerical results for different µ values.

Parameters Decision Variables Optimal Solution
M td µ t1 T TP Q R

0.25 0.25

0.05 0.2351 0.3167 3906.80 65.12 16.52
0.10 0.2672 0.3573 4018.80 75.56 18.86
0.15 0.3055 0.4079 4115.93 88.39 22.08
0.20 0.3499 0.4667 4202.62 103.44 25.94
0.25 0.3973 0.5298 4282.00 119.97 30.24
0.30 0.4502 0.5997 4353.45 138.69 35.03
0.35 0.5038 0.6707 4420.27 158.29 40.11

Trend ↗ ↗ ↗ ↗ ↗
Note: ↗ is increasing.

As shown in Table 3, three scenarios occur as the permissible delay period M increases.

1. When M ≤ µ, the optimal profit TP and the backordered quantity R are greater,
whereas the stock period t1, the replenishment cycle T, and the ordered quantity Q
are lower.

2. When µ ≤ M ≤ t1, the replenishment cycle T, the optimal profit TP, the ordered
quantity Q, and the backordered quantity R are all greater, whereas the stock period
t1 is shorter.

3. When t1 ≤ M, the stock period t1, the replenishment cycle T, the optimal profit TP,
and the ordered quantity Q are all greater, whereas the backordered quantity R is
lower when µ ≤ td but greater when µ ≥ td.
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In summary, the optimal profit TP increases as the permissible delay period M in-
creases, regardless of whether the value of µ or t1 is greater or lower than that of M. This
observation indicates that the change in the permissible delay period M significantly affects
the optimal profit TP.

Table 3. (a) Numerical results for different M values (µ ≤ td) (b) Numerical results for different M
values (µ ≥ td).

Parameters Decision Variables Optimal Solution
µ td M t1 T TP Q R

(a)

0.15 0.25

0.05 0.3116 0.4106 4092.63 89.05 21.40
0.10 0.3091 0.4090 4098.38 88.66 21.58
0.15 0.3062 0.4068 4104.62 88.16 21.72

M ≤ µ ↘ ↘ ↗ ↘ ↗
0.20 0.3061 0.4076 4110.04 88.33 21.92
0.25 0.3055 0.4079 4115.93 88.39 22.08

µ ≤ M ≤ t1 ↘ ↗ ↗ ↗ ↗
0.30 0.2900 0.3928 4122.43 85.04 22.21
0.35 0.2902 0.3930 4131.34 85.07 22.19
0.40 0.2904 0.3931 4140.23 85.09 22.17

Trend t1 ≤ M ↗ ↗ ↗ ↗ ↘
(b)

0.15 0.10

0.05 0.3077 0.4074 4090.31 88.41 21.53
0.10 0.3052 0.4057 4096.10 88.02 21.71
0.15 0.3022 0.4035 4102.37 87.51 21.86

M ≤ µ ↘ ↘ ↗ ↘ ↗
0.20 0.3021 0.4043 4107.80 87.68 22.05
0.25 0.3016 0.4046 4113.71 87.73 22.21

µ ≤ M ≤ t1 ↘ ↗ ↗ ↗ ↗
0.30 0.2861 0.3896 4120.41 84.38 22.35
0.35 0.2863 0.3897 4129.32 84.41 22.45
0.40 0.2865 0.3899 4138.24 84.43 22.52

Trend t1 ≤ M ↗ ↗ ↗ ↗ ↗
Note: ↗ is increasing; ↘ is decreasing.

We here used the parameter values from Examples 1 and 2 to perform sensitivity
analyses and investigate how each critical parameter affects the optimal solution. The
numerical results of the sensitivity analyses are shown in the following tables:

As shown in Table 4, as co increases, t1, T, Q, and R all increase, whereas TP12 or TP22
decreases. This observation indicates that the greater the ordering cost co, the greater
the stock period t1, the replenishment cycle T, the order quantity Q, and the backordered
quantity R. However, the larger the ordering cost co, the smaller the optimal profit TP12
or TP22.

As shown in Table 5, as cp increases, t1, T, TP12 or TP22, and Q all decrease, whereas R
increases. This means that the greater the purchase cost cp, the smaller the stock period t1,
the replenishment cycle T, the optimal profit TP12 or TP22, and the order quantity Q, but
the larger the backorder quantity R.



Mathematics 2024, 12, 3160 20 of 23

Table 4. (a) Numerical results for different co values (µ ≤ td); (b) Numerical results for different co

values (µ ≥ td).

(a)

Parameters Decision variables Optimal solution
µ td M co t1 T TP12 Q R

0.15 0.25 0.25

20 0.2623 0.3496 4169.00 75.60 18.92
30 0.2847 0.3798 4141.45 82.23 20.56
40 0.3055 0.4079 4115.93 88.39 22.08
50 0.3250 0.4342 4092.07 94.15 23.51
60 0.3434 0.4590 4069.57 99.59 24.85

Trend ↗ ↗ ↘ ↗ ↗
(b)

Parameters Decision variables Optimal solution
µ td M co t1 T TP22 Q R

0.15 0.10 0.25

20 0.2580 0.3458 4167.28 74.79 19.02
30 0.2807 0.3763 4139.45 81.51 20.68
40 0.3016 0.4046 4113.71 87.73 22.21
50 0.3212 0.4311 4089.66 93.55 23.65
60 0.3397 0.4561 4067.01 99.04 25.00

Trend ↗ ↗ ↘ ↗ ↗
Note: ↗ is increasing; ↘ is decreasing.

Table 5. (a) Numerical results for different cp values (µ ≤ td); (b) Numerical results for different cp

values (µ ≥ td).

(a)

Parameters Decision variables Optimal solution
µ td M cp t1 T TP12 Q R

0.15 0.25 0.25

6 0.3290 0.4233 4983.05 91.93 20.39
8 0.3172 0.4153 4549.22 90.09 21.20

10 0.3055 0.4079 4115.93 88.39 22.08
12 0.2941 0.4012 3683.22 86.83 23.07
14 0.2829 0.3952 3251.11 85.43 24.18

Trend ↘ ↘ ↘ ↘ ↗
(b)

Parameters Decision variables Optimal solution
µ td M cp t1 T TP22 Q R

0.15 0.10 0.25

6 0.3266 0.4213 4981.48 91.57 20.47
8 0.3140 0.4126 4547.29 89.58 21.30

10 0.3016 0.4046 4113.71 87.73 22.21
12 0.2894 0.3972 3680.78 86.02 23.22
14 0.2774 0.3906 3248.53 84.46 24.35

Trend ↘ ↘ ↘ ↘ ↗
Note: ↗ is increasing; ↘ is decreasing.

As shown in Table 6, as p increases, t1, T, TP12 or TP22, and Q all increase, whereas R
decreases. This observation indicates that the greater the unit sale price p, the greater the
stock period t1, the replenishment cycle T, the optimal profit TP12 or TP22, and the order
quantity Q, but the smaller the backorder quantity R. A higher sale price clearly results in
greater profit.
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Table 6. (a) Numerical results for different p values (µ ≤ td); (b) Numerical results for different p
values (µ ≥ td).

(a)

Parameters Decision variables Optimal solution
µ td M p t1 T TP12 Q R

0.15 0.25 0.25

20 0.2775 0.4024 1962.26 86.83 26.76
25 0.2929 0.4043 3038.38 87.46 23.97
30 0.3055 0.4079 4115.93 88.39 22.08
35 0.3162 0.4121 5194.40 89.41 20.73
40 0.3254 0.4164 6273.49 90.42 19.70

Trend ↗ ↗ ↗ ↗ ↘
(b)

Parameters Decision variables Optimal solution
µ td M p t1 T TP22 Q R

0.15 0.10 0.25

20 0.2727 0.9384 1960.50 85.99 26.92
25 0.2886 0.4007 3036.36 86.72 24.11
30 0.3016 0.4046 4113.71 87.73 22.21
35 0.3126 0.4090 5192.01 88.81 20.85
40 0.3221 0.4136 6270.97 89.89 19.81

Trend ↗ ↗ ↗ ↗ ↘
Note: ↗ is increasing; ↘ is decreasing.

8. Conclusions

In this research, we explored an ACC payment for non-instantaneous deteriorating
items with a ramp-type demand rate with partial backlogging and using DCF analysis.
Some necessary conditions for optimal solutions were obtained. Using these necessary
conditions and the software Mathematica 13.1, we obtained numerical examples and
conducted a sensitivity analysis for scenarios in which (1) the demand growth period is
shorter than or equal to the stable quality period, or (2) the demand growth period is
greater than or equal to the stable quality period. Our findings indicate that optimal profit
rises with an increase in the permissible delay period and sale price but decreases with an
increase in order and purchase costs. Thus, to obtain optimal profit, the permissible delay
period and the unit sale price should be increased.

This model can be extended in various ways to advance research in this area. For
example, the model can be extended by incorporating a demand rate function that is a
function of the sale price or the retailer strategy of offering discounted prices to attract
more customers when an ACC payment is adopted. Storage capacity constraints should
also be incorporated into the model.
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