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Abstract: Moran’s I (Moran’s coefficient) is one of the most prominent measures of spatial auto-
correlation. It is well known that Moran’s I has a representation that is similar to a Fourier series
and is therefore useful for characterizing spatial data. However, the representation needs to be
modified. This paper contributes to the literature by showing the necessary modification and pre-
senting some further results. In addition, we provide the required MATLAB/GNU Octave and R
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1. Introduction

Spatial autocorrelation, which describes the similarity between signals at adjacent
vertices, is central to geographical and spatial analysis ([1]). It is also closely related to
Tobler’s first law of geography ([2]). As listed in [1], many measures of it have been
proposed. Among them, Moran’s I is one of the most prominent measures. In addition,
the popular eigenvector spatial filter (ESF), which was developed by Daniel A. Griffith and
his co-authors ([3–10]) is based on Moran’s I (see also [11,12]). This paper contributes to
the literature by providing new insights into Moran’s I.

Dray [13] made an important contribution to the understanding of Moran’s I. More
specifically, he presented a remarkable representation of it that is similar to a Fourier
series. It is an expansion of Moran’s I into a linear combination of variables with different
degrees of spatial autocorrelation. However, the representation needs to be modified. In
this paper, after reviewing Dray’s representation, we show the necessary modification.
We then present some further results. Specifically, we show that Moran’s I is not just a
linear combination of variables with different degrees of spatial autocorrelation, but a
weighted average of such variables. A way to obtain the matrices needed for the modified
representation is also provided. In addition, we provide the required MATLAB/GNU
Octave and R user-defined functions.

We make four remarks on Moran’s I. First, Cliff and Ord [14–17] made today’s Moran’s
I ([18,19]). Second, there exists

positive spatial autocorrelation if I > − 1
n−1 ,

no spatial autocorrelation if I = − 1
n−1 ,

negative spatial autocorrelation if I < − 1
n−1 .

(1)

See [20] (Equation (5)). Third, Moran’s I can be regarded as a generalization of some
autocorrelation measures, such as Anderson’s [21] first circular serial correlation coefficient,
Orcutt’s [22] first serial correlation coefficient, and Moran’s [23] r11 ([19]). Thus, our results
apply to these as well. Fourth, Anselin [24] developed a spatial autocorrelation coefficient
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called local Moran’s I. In contrast, Moran’s I, which is the subject of this paper, is sometimes
referred to as global Moran’s I.

Two more remarks follow. First, we will refer to Moran’s I as Moran’s coefficient. The
reason for this is that this is what Dray [13] called it. In addition, we will use the same
notation as [13] as much as possible. Second, Geary’s [25] c is another prominent measure
of spatial autocorrelation. Yamada [26,27] provided some results on the coefficient. The
current paper can be seen as a companion to [27].

The organization of this paper is as follows. In Section 2, we provide some preliminar-
ies. In Section 3, we briefly review some results in [13]. In Section 4, we present the main
results of this paper. In Section 5, we add to the results in Section 4. Section 6 concludes
the paper. In Appendices A and B, we provide proofs and MATLAB/GNU Octave and R
user-defined functions, respectively.

Some of the Notations

For a matrix A, the transpose of A is denoted by A⊤. Let x = [x1, . . ., xn]⊤, In be the
identity matrix of order n, 1 be the n-dimensional column vector of ones, i.e., 1 = [1, . . ., 1]⊤,
and ek be the k-th column of In, i.e., In = [e1, . . ., en]. Let

H = In − 1(1⊤1)−11⊤ = In −
1
n

11⊤. (2)

Then, H is a symmetric and idempotent matrix, such that 1 belongs to its null space,
i.e., H⊤ = H, H2 = H, and H1 = 0. For an n × m full column rank matrix A, denote the
column space of A and its orthogonal complement by S(A) and S⊥(A), respectively. For a
column vector η, ∥η∥2 = η⊤η. Let cor(η1, η2) denote the correlation coefficient between η1
and η2, i.e.,

cor(η1, η2) =
η⊤1 Hη2√

η⊤1 Hη1

√
η⊤2 Hη2

, (3)

where η1 and η2 are n-dimensional column vectors that do not belong to S(1), i.e., η1, η2 ∈
Rn\S(1).

2. Preliminaries

Following [20], we treat the problem of spatial autocorrelation in terms of a graph (see,
for example, [28] for details on linear algebraic graph theory). Let G = (V, E) denote a
directed/undirected graph, where V = {v1, . . ., vn} is a set of vertices and E ⊂ V × V is a
set of ordered pairs of distinct vertices. Here, n ≥ 2 and E ̸= ∅. For i, j = 1, . . ., n, let{

wi,j > 0 if (vi, vj) ∈ E,
wi,j = 0 otherwise,

(4)

and W = [wi,j] ∈ Rn×n. Here, (vi, vj) denotes the directed edge from vi to vj. If both
(vi, vj) and (vj, vi) belong to E, then the edge between vi and vj is undirected. Given that
(vi, vi) /∈ E, wi,i = 0 for i = 1, . . ., n, i.e., the diagonal entries of W are all zero. In addition,
given that E ̸= ∅, ∑n

i=1 ∑n
j=1 wi,j > 0.

Let xi denote the realization of a variable on a vertex vi for i = 1, . . ., n. Here, we
exclude the case where x1 = · · · = xn. That is, we assume that x /∈ S(1). Accordingly,
under the assumption, ∑n

k=1(xk − x̄)2 > 0, where x̄ = 1
n ∑n

i=1 xi.
Following [14–17], the Moran’s coefficient for x, denoted by MC(x), is defined by

MC(x) =
n

∑n
i=1 ∑n

j=1 wi,j

∑n
i=1 ∑n

j=1 wi,j(xi − x̄)(xj − x̄)

∑n
k=1(xk − x̄)2 . (5)
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Incidentally, a local Moran’s coefficient, [24] (Equation (7)), is

MCi(x) = (xi − x̄)
n

∑
j=1

wi,j(xj − x̄), i = 1, . . ., n. (6)

According to this construction, it follows that ∑n
i=1 MCi(x) = ∑n

i=1 ∑n
j=1 wi,j(xi − x̄)(xj − x̄),

which appears in the numerator of MC(x) in (5).
Given that x⊤HW Hx = ∑n

i=1 ∑n
j=1 wi,j(xi − x̄)(xj − x̄), x⊤Hx = ∑n

k=1(xk − x̄)2,
and 1⊤W1 = ∑n

i=1 ∑n
j=1 wi,j, as shown in, for example, [13,20], MC(x) in (5) can be

represented in matrix notation as

MC(x) =
n

1⊤W1
x⊤HW Hx

x⊤Hx
. (7)

By definition, W is not necessarily symmetric. However, since η⊤Wη = (η⊤Wη)⊤ =
η⊤W⊤η for any η ∈ Rn, it follows that

η⊤Wη = η⊤Wη, (8)

where W = W+W⊤
2 . Note that W is symmetric even if W is not symmetric. Accordingly,

as is well known, MC(x) in (7) can be represented with a symmetric matrix W as

MC(x) =
n

1⊤W1
x⊤HWHx

x⊤Hx
. (9)

3. Brief Review of a Closely Related Study

In this section, we briefly review some results in [13].

Let z = [z1, . . ., zn]⊤, where zi =
xi−x̄

s for i = 1, . . ., n. Here, s =
√

1
n ∑n

k=1(xk − x̄)2.

Then, given that s =
√

1
n x⊤Hx, z can be represented in matrix notation as

z =
1√

1
n x⊤Hx

Hx. (10)

Accordingly, it follows that

MC(x) =
1

1⊤W1
x⊤HHWHHx

1
n x⊤Hx

=
z⊤HWHz

1⊤W1
. (11)

Here, we note that the first equality in (11) follows because H is a symmetric and idempo-
tent matrix.

Given that HWH is a real symmetric matrix, it can be spectrally decomposed as

HWH = UΛU⊤, (12)

where Λ = diag(λ1, . . ., λn) and U = [u1, . . ., un] is an orthogonal matrix (e.g., [29] (page 342)).
Here, (λk, uk) denotes an eigenpair of HWH for k = 1, . . ., n such that λ1, . . ., λn are in
descending order, i.e., λ1 ≥ · · · ≥ λn. Incidentally, the ESF is a spatial analysis that uses a
submatrix of U (for more details, see, for example, [30] (Section 7)).

From (9), (11), and (12), Dray [13] derived

MC(x) =
n

1⊤W1
∑n

k=1 λkx⊤uku⊤
k x

x⊤Hx
, (13)

MC(x) =
∑n

k=1 λkz⊤uku⊤
k z

1⊤W1
. (14)



Mathematics 2024, 12, 253 4 of 14

(13) and (14), respectively, correspond to Equations (3) and (4) of [13]. In addition, Dray [13]
demonstrated that

MC(x) =
n

1⊤W1

n

∑
k=1

λkcor2(uk, z), (15)

cor2(uk, z) =
β2

k
n

, k = 1, . . ., n, (16)

where βk = arg minϕk ∥z − ϕ1u1 − · · · − ϕnun∥2 = arg minϕk ∥z − ϕkuk∥2. Among them,
(15) corresponds to [13] (Equation (5)). Finally, by combining (15) and the result given by

MC(uk) =
n

1⊤W1
λk, k = 1, . . ., n, (17)

from [20], [3] (Equation (3)), [31] (Equation (5)), and [6] (page 1200), Dray [13] derived

MC(x) =
n

∑
k=1

MC(uk)cor2(uk, z), (18)

which corresponds to [13] (Equation (6)).
Although (18) as well as (17) are remarkable results, they need to be modified. This

is because 1 belongs to the null space of HWH, i.e., HWH1 = 0 = 0 · 1. Accordingly,
when the nullity (the dimension of the null space) of HWH is one, 1√

n 1 or − 1√
n 1 must

be one of the normalized eigenvectors of HWH. Denote such normalized eigenvectors
by u∗. Then, both MC(u∗) and cor2(u∗, z) cannot be defined because u⊤

∗ Hu∗ = 0. Even
in the case where the nullity is greater than one, to avoid such a situation, care must be
taken to ensure that u∗ is not selected as one of the normalized eigenvectors. In the next
two sections, we present a way to avoid this problem.

Example 1. We provide a simple W such that the nullity of HWH is one. It is W = Jn + J⊤n ,
where Jn = [e2, . . ., en, e1]. This W is the binary adjacency matrix of a cycle graph with n vertices.
The right side of Figure 1 shows a cycle graph with six vertices. In this case, it follows that

rank(HWH) = n − 1, (19)

unless n is a multiple of 4. A proof of (19) is provided in Appendix A.1.

1

2

3

4

5

6

1

2

3

4

5

6

Figure 1. A cycle graph with 6 vertices (left). A complete graph with 6 vertices (right).

4. Main Results

In this section, we present the main results of this paper.
Let

HWH = PQP⊤, (20)

be another spectral decomposition of HWH, where Q = diag(q1, . . ., qn) and
P = [p1, . . ., pn] is an orthogonal matrix. Here, (qk, pk) denotes an eigenpair of HWH
for k = 1, . . ., n. As stated, given that HWH1 = 0,

(
0, 1√

n 1
)

is an eigenpair of HWH,
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we let (q1, p1) =
(

0, 1√
n 1
)

. For the other eigenvalues, we suppose that q2, . . ., qn are in
descending order, i.e., q2 ≥ · · · ≥ qn. Let Q2 = diag(q2, . . ., qn) and P2 = [p2, . . ., pn]. We
present the way to obtain P2 as well as Q2 from W in Section 5.

Given that p1 = 1√
n 1 and P = [p1, P2] is an orthogonal matrix, H can be represented

by P2 as

H = In − p1(p⊤
1 p1)

−1 p⊤
1 = P2(P⊤

2 P2)
−1P⊤

2 . (21)

See Appendix A.2 for details on (21). In addition, S(P2) is identical to S⊥(1). (In [20]
S(1) and S⊥(1) are, respectively, represented as Rc and R+

c ). That is, H is the orthogonal
projection matrix onto S⊥(1). Accordingly, given that p1 ∈ S(1) and pk ∈ S⊥(1) for
k = 2, . . ., n, it follows that

H pk =

{
0, k = 1,
pk, k = 2, . . ., n.

(22)

Moreover, we note that the smallest eigenvalue is negative, i.e.,

qn < 0. (23)

This is because, as shown in, for example, [32] (page 4),

n

∑
k=2

qk =
n

∑
i=1

qk = tr(HWH) = tr(WH) = tr(W)− 1
n

tr(W11⊤)

= − 1
n

tr(1⊤W1) = −1⊤W1
n

= −
∑n

i=1 ∑n
j=1 wi,j

n
< 0. (24)

Here, note that tr(W) = tr
(

W+W⊤
2

)
= 0 because tr(W) = tr(W⊤) = 0. If qn ≥ 0, then

it follows that ∑n
k=2 qk ≥ 0, which contradicts (24). (Although λn is negative, λ2 is not

necessarily positive. See Examples 3 and 5).
Given that pk ∈ S⊥(1) for k = 2, . . ., n, we can consider

cor(pk, z) =
p⊤

k Hz√
p⊤

k H pk
√

z⊤Hz
, k = 2, . . ., n. (25)

Then, given that Hz = z, p⊤
k H pk = p⊤

k pk = 1 for k = 2, . . ., n, and z⊤Hz = z⊤z = n,
we obtain

cor(pk, z) =
p⊤

k z
√

n
, k = 2, . . ., n. (26)

Given that H is a symmetric and idempotent matrix and P is an orthogonal matrix,
MC(x) in (7) can be represented as

MC(x) =
n

1⊤W1
x⊤HPQP⊤Hx
x⊤HPP⊤Hx

. (27)

Let α = [α1, . . ., αn]⊤ = P⊤Hx. Then, from (22), αk for k = 1, . . ., n are

αk = p⊤
k Hx =

{
0, k = 1,
p⊤

k x, k = 2, . . ., n.
(28)

Accordingly, MC(x) in (27) can be represented as follows:
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MC(x) =
n

1⊤W1
α⊤Qα

α⊤α
=

n
1⊤W1

∑n
k=2 qkα2

k

∑n
l=2 α2

l
. (29)

Here, we note that α is

α = P⊤Hx ∈ S⊥(e1)\{0} (30)

and α⊤Qα
α⊤α

in (29) is a Rayleigh quotient because Q is symmetric and α ̸= 0. For a proof
of (30), see Appendix A.3.

Now, consider MC(pk) for i = 1, . . ., n. Among them, MC(p1) cannot be defined.
This is because p⊤

1 H p1 = 0. For k = 2, . . ., n, given that p⊤
k HPQP⊤H pk = p⊤

k PQP⊤pk =

e⊤k Qek = qk and p⊤
k HPP⊤H pk = p⊤

k PP⊤pk = e⊤k ek = 1, it follows that

MC(pk) =
n

1⊤W1
qk, k = 2, . . ., n. (31)

Hence, from the inequalities given by q2 ≥ · · · ≥ qn, it follows that

MC(p2) ≥ · · · ≥ MC(pn). (32)

In addition, from (23), it follows that MC(pn) < 0 and from (24), it follows that

1
n − 1

n

∑
k=2

MC(pk) =
1

n − 1
n

1⊤W1

n

∑
k=2

qk

=
1

n − 1
n

1⊤W1
×
(
−1⊤W1

n

)
= − 1

n − 1
. (33)

If MC(p2) = · · · = MC(pn) = µ, then µ = − 1
n−1 from (33). In addition, MC(x) =

∑n
k=2 ψk MC(pk) = µ ∑n

k=2 ψk = µ. Accordingly, if MC(p2) = · · · = MC(pn), then
MC(x) = − 1

n−1 . Hence, if MC(p2) = · · · = MC(pn), then, given (1), there is always
no spatial autocorrelation measured by Moran’s coefficient.

Combining (29) and (31), we obtain

MC(x) =
∑n

k=2

(
n

1⊤W1 qk

)
α2

k

∑n
l=2 α2

l
=

∑n
k=2 MC(pk)α

2
k

∑n
l=2 α2

l

=
n

∑
k=2

MC(pk)

(
α2

k

∑n
l=2 α2

l

)
=

n

∑
k=2

ψk MC(pk), (34)

where

ψk =
α2

k

∑n
l=2 α2

l
, k = 2, . . ., n. (35)

Here, given that (p⊤
k pk)

−1 = 1 and p⊤
k pl = 0 if k ̸= l, αk in (35), such that

αk = p⊤
k x = arg min

ϕk
∥x − ϕk pk∥2 = arg min

ϕk
∥x − ϕ1 p1 − · · · − ϕn pn∥2. (36)

In addition, from (35), it immediately follows that ψk ≥ 0 for k = 2, . . ., n and ∑n
k=2 ψk = 1.

Moreover, concerning ψk, we have the following result.

Lemma 1. It follows that

cor2(pk, z) =
α2

k

∑n
l=2 α2

l
, k = 2, . . ., n. (37)
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Proof of Lemma 1. See Appendix A.4.

The next proposition summarizes the abovementioned results.

Proposition 1. (a) MC(x) can be represented as ∑n
k=2 ψk MC(pk), where

ψk =
α2

k

∑n
l=2 α2

l
= cor2(pk, z), k = 2, . . ., n. (38)

Here, ψk for k = 2, . . ., n are nonnegative and sum to one. (b) It follows that MC(p2) ≥ · · · ≥
MC(pn), MC(pn) < 0, and 1

n−1 ∑n
k=2 MC(pk) = − 1

n−1 . (c) If MC(p2) = · · · = MC(pn),
then MC(x) = − 1

n−1 .

Remark 1. Concerning Proposition 1, we make four remarks.

(i) Proposition 1(a) implies that Moran’s coefficient in (5) can be represented as a weighted
average of MC(p2), . . ., MC(pn). Concerning the weights, ψk for k = 2, . . ., n, the larger
|αk| = |p⊤

k x| = |(p⊤
k pk)

−1 p⊤
k x| is, the larger ψk is. Likewise, for k = 2, . . ., n, the larger

|cor(pk, z)| is, the larger ψk is. Recall that, from (26), cor(pk, z) = βk√
n .

(ii) Proposition 1(b) implies that the eigenvectors, p2, . . ., pn, are in order of spatial autocorrelation.
Accordingly, for example, if {ψk} is a monotonically decreasing sequence, then MC(x) is
likely to be positive. Of course, from Proposition 1(c), if MC(p2) = · · · = MC(pn), then
MC(x) = − 1

n−1 < 0, even if {ψk} is a monotonically decreasing sequence.
(iii) From Lemma 1, it immediately follows that

n

∑
k=2

cor2(pk, z) = 1. (39)

We provide a more direct proof of (39) in Appendix A.5.
(iv) The MATLAB/GNU Octave and R user-defined functions to compute ψ2 = [ψ2, . . ., ψn]⊤

(psi2) are provided in Appendix B.

Example 2. Consider two extreme cases. First, suppose that ψ2 = 1 and ψ3 = · · · = ψn = 0.
Then, since ψ2 is the coefficient of MC(p2), which is larger or equal to MC(pk) for k = 3, . . ., n,
y is considered to be highly positively autocorrelated. Second, suppose that ψ2 = · · ·ψn−1 = 0
and ψn = 1. Then, since ψn is the coefficient of MC(pn), which is negative and smaller or equal
to MC(pk) for k = 2, . . ., n − 1, y is considered to be highly negatively autocorrelated. Note that,
as mentioned, these do not hold if MC(p2) = · · · = MC(pn).

Example 3. We give an example such that MC(p2) = · · · = MC(pn). Consider the case where
W(= W) = 11⊤ − In, which is the binary adjacency matrix of the complete graph with n vertices.
The left side of Figure 1 shows a complete graph with six vertices. We note that this case is also
considered in [32]. Then, it follows that

HWH = H(11⊤ − In)H = −H. (40)

Given that H is a symmetric and idempotent matrix whose rank equals n − 1, its eigenvalues
are 0 with multiplicity 1 and 1 with multiplicity n − 1 (e.g., [29] (page 167)). Then, since
q2 = · · · = qn = −1, it follows that MC(p2) = · · · = MC(pn). Here, it is noteworthy that,
in this case, q2 is not the largest eigenvalue of HWH. This is because q2 = −1 is less than q1 = 0.

From Proposition 1, it immediately follows that

MC(x) =
n

∑
k=2

ψk MC(pk) ≤
n

∑
k=2

ψk MC(p2) = MC(p2)
n

∑
k=2

ψk = MC(p2). (41)
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Likewise, MC(pn) ≤ MC(x) follows.
The next corollary summarizes the above results.

Corollary 1. MC(x) belongs to the interval given by [MC(pn), MC(p2)].

Remark 2. Concerning Corollary 1, we make three remarks.

(i) If MC(p2) = · · · = MC(pn), then the interval given by [MC(pn), MC(p2)] reduces to a
singleton. For example, as stated, if W = 11⊤ − In, then

MC(x) ∈
{
− 1

n − 1

}
. (42)

(ii) De Jong et al. [20] and [32] (Theorem 2.1) showed that

MC(x) ∈
[ n

1⊤W1
qn,

n
1⊤W1

q2

]
. (43)

Given (31), Corollary 1 is its equivalent.
(iii) The MATLAB/GNU Octave and R user-defined functions to compute the bounds of Moran’s

coefficient (MoranIbounds) are provided in Appendix B.

Let χ = χ1 + χ2, where χ1 ∈ S(1) and χ2 ∈ S(x)\{0}. Maruyama [32] discussed that
MC(χ) equals MC(x). That is, for all c1 ∈ R and c2 ∈ R\{0}, MC(c11 + c2x) and MC(x)
are identical. Given this result, from Proposition 1, we immediately obtain the following
extended result.

Corollary 2. MC(χ) can be represented as ∑n
k=2 ψk MC(pk), where ψk =

α2
k

∑n
l=2 α2

l
= cor2(pk, z)

for k = 2, . . ., n.

Example 4. Given that Hx = x − x̄1, Hx is an example of χ. Of course, this result is quite
reasonable because H in (7) is a symmetric and idempotent matrix. Accordingly, from Corollary 2,
MC(Hx) can be represented as ∑n

k=2 ψk MC(pk).

5. Additional Results

In this section, we add results to those in the previous section. More specifically, we
document the useful results for obtaining P2 = [p2, . . ., pn] as well as Q2 = diag(q2, . . ., qn)
from W . Recall that αk = p⊤

k x for k = 2, . . ., n and the bounds of Moran’s coefficient are
described with q2 and qn. Although (qk, pk) for k = 2, . . ., n are the eigenpairs of HWH, it is
not easy to obtain them from it. When the nullity of HWH is one, the location of

(
0, 1√

n 1
)

is unknown. Moreover, when the nullity is greater than one, 1√
n 1 is not necessarily selected

as one of the eigenvectors.
Let G = [g1, G2], where g1 = 1√

n 1 and G2 = [g2, . . ., gn] such that {g2, . . ., gn} is an

orthonormal basis of S⊥(1). Accordingly, G is an n × n orthogonal matrix. In addition, let
V = G⊤P and Ξ be an (n − 1)× (n − 1) submatrix of V such that

V =

[
v1,1 v1,2
v2,1 Ξ

]
. (44)

Then, we have the following results:

Proposition 2. Let Ξ = [ξ2, . . ., ξn]. Then, (qk, ξk) for k = 2, . . ., n are the eigenpairs of
G⊤

2 WG2. In addition, P2 is equal to G2Ξ.

Proof. See Appendix A.6.
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Remark 3. Concerning Proposition 2, we make two remarks.

(i) The candidates for G2 are numerous. One of them is the following n × (n − 1) matrix:

E2 =

√
2
n


cos{(2 − 1)θ1} · · · cos{(n − 1)θ1}
cos{(2 − 1)θ2} · · · cos{(n − 1)θ2}

...
...

cos{(2 − 1)θn} · · · cos{(n − 1)θn}

, (45)

where θi =
(i−0.5)π

n for i = 1, . . ., n. Here,

E =

[
1√
n

1, E2

]
(46)

is the matrix used for the discrete cosine transform ([33] and [34]). The following n × (n − 1)
matrix is another candidate:

F2 = Γ−1



1 · · · · · · 1

−1
. . .

...

0 −2
. . .

...
...

. . . . . . 1
0 · · · 0 −(n − 1)


, (47)

where Γ = diag(
√

1 · 2, . . .,
√
(n − 1) · n). (The use of F2 is inspired by [32]). Here,

F =

[
1√
n

1, F2

]
(48)

is a Helmert orthogonal matrix ([35]).
(ii) The MATLAB/GNU Octave and R user-defined functions to compute Q2 and P2 (Q2P2) and

E (Emat) are provided in Appendix B.

Example 5. We provide an example of the use of user-defined function Q2P2. Consider the case
such that

W = J4 + J⊤4 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

, (49)

which is the binary adjacency matrix of a cycle graph with f our vertices. In this case, as shown in
Appendix A.1, the spectrum of W is as follows:{

2, 2 cos
(π

2

)
, 2 cos(π), 2 cos

(
3π

2

)}
= {2, 0,−2, 0}. (50)

In addition, again from Appendix A.1, the spectrum of HWH is {0, 0,−2, 0}. By applying Q2P2,
we obtain the corresponding P2 as

0.3607 −0.6082 −0.5000
0.6082 0.3607 0.5000

−0.3607 0.6082 −0.5000
−0.6082 −0.3607 0.5000

, (51)

from which it is easy to see that all column vectors of P2 belong to S⊥(1) and are orthogonal to
each other.
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6. Concluding Remarks

In this paper, we contributed to the literature by showing that the Moran’s coefficient can
be represented as a weighted average of MC(p2), . . ., MC(pn). Here, MC(p2), . . ., MC(pn) are
in descending order, and thus pi+1 is more positively autocorrelated than or equal to pk for
k = 2, . . ., n − 1. Therefore, the representation is somewhat similar to a Fourier series. This
is useful because we can characterize spatial data based on it. We then presented the theory
of how to obtain the matrices, such as P2 = [p2, . . ., pn], and provided MATLAB/GNU
Octave and R user-defined functions for analysis. The theoretical results we obtained are
summarized in Propositions 1 and 2 and Corollaries 1 and 2.
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Appendix A. Proofs

In this section, we provide some proofs.

Appendix A.1. Proof of (19)

Proof of (19). The spectrum of W = Jn + J⊤n is {γ1, . . ., γn}, where γk = 2 cos
{ 2π

n (k − 1)
}

for k = 1, . . ., n (see, for example, [36,37]). Denote a normalized eigenvector of W associated
with γk by νk for k = 1, . . ., n. Given that γ1 = 2 cos(0) = 2 and W1 = 2 · 1, it follows
that W1 = γ11, and thus we may let ν1 = 1√

n 1. In addition, given that W is symmetric

and γk ̸= γ1 for k = 2, . . ., n, νk ∈ S⊥(1) for k = 2, . . ., n. Accordingly, the eigenvectors are
such that

Hνk =

{
0, k = 1,
νk, k = 2, . . ., n.

(A1)

Consequently, it immediately follows that HWHν1 = 0 = 0 · ν1, from which (0, ν1) is an
eigenpair of HWH. In addition, it also follows that

HWHνk = HWνk = H(γkνk) = γkνk, k = 2, . . ., n. (A2)

Therefore, (γk, νk) for k = 2, . . ., n are also eigenpairs of HWH. Finally, γk ̸= 0 for
k = 2, . . ., n, unless n is a multiple of 4.

Appendix A.2. Proof of (21)

Proof of (21). The first equality follows from p1(p⊤
1 p1)

−1 p⊤
1 = 1√

n 1
(

1
n 1⊤1

)−1 1√
n 1⊤ =

1(1⊤1)−11⊤. Next, since P is nonsingular, it follows that P(P⊤P)−1P⊤ = In. In addition,
since p⊤

1 P2 = 0, P⊤P is a block diagonal matrix, we then have

P(P⊤P)−1P⊤ = p1(p⊤
1 p1)

−1 p⊤
1 + P2(P⊤

2 P2)
−1P⊤

2 . (A3)

Combining these results proves the second equality.
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Appendix A.3. Proof of (30)

Proof of (30). Given that x /∈ S(1) by assumption, x can be represented by p1ζ1 + P2ζ2,
where ζ1 ∈ R and ζ2 ∈ Rn−1\{0}. Then, from (22), it follows that Hx = H(p1ζ1 + P2ζ2) =
P2ζ2, which results in

a = P⊤Hx =

[
p⊤

1 P2ζ2
P⊤

2 P2ζ2

]
=

[
0
ζ2

]
∈ S⊥(e1)\{0}. (A4)

Appendix A.4. Proof of Lemma 1

Proof of Lemma 1. From (10), (22), and (26), it follows that

cor(pk, z) =
p⊤

k z
√

n
=

1√
n

p⊤
k Hx√

1
n x⊤Hx

=
p⊤

k x
√

x⊤Hx
, k = 2, . . ., n. (A5)

Here, αk = p⊤
k x for k = 2, . . ., n and x⊤Hx = x⊤HPP⊤Hx = ∑n

l=2 α2
l . Thus, we obtain

cor(pk, z) =
αk√

∑n
l=2 α2

l

, k = 2, . . ., n, (A6)

which results in (37).

Appendix A.5. Proof of (39)

Proof of (39). From (26), it follows that ∑n
k=2 cor2(pk, z) = 1

n ∑n
k=2(p⊤

k z)2. In addition,
p⊤

1 z = 1√
n 1⊤Hz = 0. Combining these yields

n

∑
k=2

cor2(pk, z) =
1
n

n

∑
k=1

(p⊤
k z)2. (A7)

Here, we have ∑n
k=1(p⊤

k z)2 = z⊤PP⊤z = z⊤z = n. Therefore, ∑n
k=2 cor2(pk, z) is equal

to one.

Appendix A.6. Proof of Proposition 2

Proof of Proposition 2. The following equalities hold:

G⊤HWHGV = G⊤HWHGG⊤P = G⊤PQP⊤GG⊤P = VQ. (A8)

The first equality immediately follows from the definition of V , i.e., V = G⊤P. The second
equality follows from (20). The third equality follows from the definition of V and both G
and P are orthogonal matrices.

Given that g1 = p1, it follows that v1,1 = g⊤1 p1 = 1, v1,2 = g⊤1 P2 = 0, and v2,1 =
G⊤

2 p1 = 0, which results in

V = G⊤P =

[
g⊤1 p1 g⊤1 P2
G⊤

2 p1 G⊤
2 P2

]
=

[
1 0
0 Ξ

]
. (A9)

Here, Ξ is an orthogonal matrix because VV⊤ = G⊤PP⊤G = In. In addition, given that
HG = [0, G2], it follows that

G⊤HWHG =

[
0 0
0 G⊤

2 WG2

]
. (A10)
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Then, from (A9) and (A10), (A8) can be represented as[
0 0
0 G⊤

2 WG2

][
1 0
0 Ξ

]
=

[
1 0
0 Ξ

][
q1 0
0 Q2

]
, (A11)

from which we obtain

G⊤
2 WG2Ξ = ΞQ2. (A12)

Here, recall that Ξ is an orthogonal matrix and Q2 is a diagonal matrix. In addition, given
that G is an orthogonal matrix, premultiplying (A9) by G = [g1, G2] yields

[p1, P2] = P = GV = [g1, G2]

[
1 0
0 Ξ

]
= [g1, G2Ξ], (A13)

which yields P2 = G2Ξ.

Appendix B. User-Defined Functions

In this section, we provide the MATLAB/GNU Octave and R user-defined functions to
compute ψ2 = [ψ2, . . ., ψn]⊤ (psi2), the bounds of Moran’s coefficient (MoranIbounds), Q2,
P2 (Q2P2), and E (Emat). Of the input arguments, x is an n-dimensional column vector and W
is an n × n matrix. Of the output arguments, Psi2 is an (n − 1)-dimensional column vector.

Appendix B.1. MATLAB/GNU Octave Functions

1 function [Psi2]=psi2(x,W)
2 [Q2 ,P2]=Q2P2(W);
3 c=(P2 ’*x).^2;
4 Psi2=c/sum(c);
5 end

1 function [Ilb ,Iub]= MoranIbounds(W)
2 W=(W+W’)/2; n=size(W,1); m=sum(sum(W));
3 [Q2 ,P2]=Q2P2(W);
4 Iub=(n/m)*Q2(1,1); Ilb=(n/m)*Q2(n-1,n-1);
5 end

1 function [Q2,P2]=Q2P2(W)
2 W=(W+W’)/2; n=size(W,1);
3 G=Emat(n); G2=G(:,2:n); A=G2 ’*W*G2;
4 [X,L]=eig((A+A’)/2);
5 [l,ind]=sort(diag(L),’descend ’);
6 Q2=diag(l); Xi=X(:,ind);
7 P2=G2*Xi;
8 end

1 function [E]=Emat(n)
2 E=zeros(n,n);
3 E(:,1)=ones(n,1)/sqrt(n);
4 for i=1:n
5 for j=2:n
6 E(i,j)=sqrt (2/n)*cos((j-1)*(i -0.5)*pi/n);
7 end
8 end
9 end

Note that (A+A’)/2 in Q2P2 is to ensure symmetry. In addition, G=Emat(n) in Q2P2 can
be replaced by G=Fmat(n), where Fmat is a function to make F and is provided in [27].
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Appendix B.2. R Functions

1 psi2=function(x,W){
2 Q2P2_result=Q2P2(W)
3 c=(t(Q2P2_result$P2)%*%x)^2
4 Psi2=c/sum(c)
5 return(Psi2)
6 }

1 MoranIbounds=function(W){
2 W=(W+t(W))/2; n=dim(W)[1]; m=sum(W)
3 Q2P2_result=Q2P2(W); Q2=Q2P2_result$Q2; P2=Q2P2_result$P2
4 Iub=(n/m)*Q2[1 ,1]; Ilb=(n/m)*Q2[n-1,n-1]
5 return(list(Ilb=Ilb ,Iub=Iub))
6 }

1 Q2P2=function(W){
2 W=(W+t(W))/2; n=nrow(W)
3 G=Emat(n); G2=G[,2:n]; A=t(G2)%*%W%*%G2
4 eig_result=eigen ((A+t(A))/2)
5 l=eig_result$values; ind=order(l,decreasing=TRUE)
6 Q2=diag(l[ind]); Xi=eig_result$vectors[,ind]
7 P2=G2%*%Xi
8 return(list(Q2=Q2 ,P2=P2))
9 }

1 Emat=function(n){
2 E=matrix(0,n,n)
3 E[,1]=rep (1/ sqrt(n),n)
4 for (i in 1:n){
5 for (j in 2:n){
6 E[i,j]=sqrt (2/n)*cos((j-1)*(i -0.5)*pi/n)
7 }
8 }
9 return(E)

10 }

Note that (A+t(A))/2 in Q2P2 is to ensure symmetry.
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