
Citation: Wang, S. A New

Distance-Type Fuzzy Inference

Method Based on Characteristic

Parameters. Mathematics 2024, 12, 308.

https://doi.org/10.3390/

math12020308

Academic Editor: Hsien-Chung Wu

Received: 13 December 2023

Revised: 12 January 2024

Accepted: 16 January 2024

Published: 17 January 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A New Distance-Type Fuzzy Inference Method Based on
Characteristic Parameters
Shuoyu Wang

School of Systems Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada,
Kami City 782-0047, Japan; wang.shouyu@kochi-tech.ac.jp

Abstract: Reasoning is a cognitive activity that leverages knowledge to generate solutions to problems.
Knowledge representations in the brain require both symbolic and graphical information since visual
information is figurative and conveys a large amount of information. Consequently, graphical
knowledge representation is often employed in reasoning. Distance-type fuzzy inference utilizes the
distance information between the antecedent and the set of facts as the basis for inference. Compared
to Mamdani inference, the distance-type fuzzy inference method not only satisfies the convexity
and asymptotic properties of the inference results but also adheres to the separation rule (modus
ponens), a fundamental principle in inference. This paper discusses extensions of distance-type
fuzzy inference methods to handle spatial figures. In this paper, we first explain the distance-type
fuzzy inference method. Then, we discuss the concept representation in the feature space and
independent parameters that can completely express the characteristics of a figure in space, which are
defined as “characteristic parameters”. Furthermore, we describe the correspondence between figures
and vectors in the feature space, propose a new distance-type fuzzy inference method based on
characteristic parameters and describe its characteristics. Finally, an example is used to demonstrate
the inference results of this new distance-type fuzzy inference method.

Keywords: characteristic parameters; feature space; distance-type fuzzy inference; convexity of
inference results; separation rules; graphical information
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1. Introduction

Reasoning is a cognitive activity that leverages knowledge to generate solutions to
problems [1,2]. There are various forms of knowledge expression, with graphical knowl-
edge expression often employed in reasoning [3,4]. This is because visual information is
figurative and offers a large amount of information for representing knowledge in the brain;
hence, not only symbolic but also graphical information is important. In order to achieve
more human-like reasoning, research on inference methods capable of handling graphi-
cal information has been recognized in the fields of artificial intelligence and linguistics;
however, effective inference algorithms for this purpose have yet to be developed [5].

Fuzzy sets represent vague concepts and are characterized by membership functions [6–8].
By observing the shape of a fuzzy set drawn using a membership function, it is possible
to visually recognize whether it is a triangle, trapezoid, or some other shape not easily
expressible in words [9,10]. Ambiguous concepts can be quantified using graphical infor-
mation, with the horizontal axis taking values in the closed interval [0, 1]. If we consider the
figure drawn by the membership function as a general figure, the fuzzy inference method
can be seen as an inference method for figures on the horizontal axis taking values in the
closed interval [0, 1]. Recently, research has been carried out on the novel picture fuzzy set
(PFS) [11].
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The author previously proposed a distance-type fuzzy inference method based on the
distance information between fuzzy sets [12]. Compared to Mamdani inference, distance-
type fuzzy inference satisfies not only the convexity and asymptotic properties of the
inference results but also the separation rule (modus ponens), a major principle in infer-
ence [13–15]. Consequently, AI systems constructed using distance-type fuzzy inference
methods can be mathematically rigorous, as the validity of their antecedent-affirmative
inference is guaranteed, and the inference results are fuzzy numbers, extensions of real
numbers [16]. The latest applications of Mamdani fuzzy inference include intelligent
adjustment of weather conditions [17], short-term traffic flow prediction [18], intelligent
clinical decision support systems [19], improved information confidentiality [20], and
improved aircraft controllers [21], etc. The effectiveness of distance-type fuzzy inference
methods has been confirmed in applications, including, walking training using an omnidi-
rectional robot [22], independent life support robot for the lower-limb handicapped [23],
identification of the physiological needs of bedridden elderly [24], local path panning for
construction robots [25], obstacle avoidance [26], etc. This paper discusses extensions of
distance-type fuzzy inference methods that can handle not only fuzzy sets but also spatial
figures.

On a plane or in a space, meanings and concepts can be represented through infor-
mation about the shape and position of figures. Since the coordinate values of a figure
can quantify a concept, they correspond to a membership function that acts as a quan-
tification of an ambiguous concept. In other words, if mutually independent parameters
can represent the properties of figures in planes and in spaces, then a set of figures whose
elements are parameter values can be considered an extension of a fuzzy set. In this paper,
independent parameters that can completely represent the properties of figures in spaces
are called “characteristic parameters”, and the Euclidean space consisting of the same
number of independent variables as the characteristic parameters is called the “feature
space”. In this paper, we propose a distance-type fuzzy inference method based on the
representation of concepts in the feature space.

First, we describe a distance-type fuzzy inference method [12] based on distance
information between fuzzy sets. Next, we discuss the representation of concepts in the
feature space. Furthermore, we describe the correspondence between figures and vectors
in the feature space and propose a distance-type fuzzy inference method in the feature
space for handling spatial figures. This inference method inherits the main features of
distance-type fuzzy inference methods, allowing inference with less computational effort
and application to vague concepts quantified using graphics. Finally, a real-world example
is used to demonstrate the inference results of the distance-type fuzzy inference method in
the feature space.

2. Distance-Type Fuzzy Inference Method

In this section, we elucidate the algorithm of the distance-type fuzzy inference method [12]
along with its features.

We denote by R the whole set of real numbers and let F(R) be the entire fuzzy set in R.
It is important to note that when no subscript is added to R, F(R) represents general objects
without distinction. However, when different concepts are represented in a distinguishable
manner, a corresponding subscript is added to the lower right of R. We denote by F(R)
the entire bounded convex fuzzy set. We denote by Fn(R) the whole regular fuzzy set in
F(R). That is, Fn(R) represents all bounded and normal convex fuzzy sets. Clearly, the
relation, Fn(R) ⊆ F(R) ⊆ F(R) exists. We consider n fuzzy rules Ri(i = 1, 2, . . . , n) for m
antecedents and one consequent as

Ri : x1 = Ai1, x2 = Ai2, · · · , xm = Aim ⇒ y = Bi

Fact : x1 = A1, x2 = A2, · · · , xm = Am

Conclusion : y = B
(1)
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where i = 1, 2, . . . , n and j = 1, 2, . . . , m. Aij, Bi, Aj and B represent the antecedent and conse-

quent, given the fact and inference results, respectively, and Aij ∈ F
(
RAj

)
, Bi ∈ Fn(RB), Aj ∈

F
(
RAj

)
. Additionally, an inference was made under the following condition:

In Aij, Aj, and rules R1∼ Rn, there is no rule whose antecedents are exactly the same.
That is, for ∀q1, q2 ∈ {1, 2, . . . , n}, and q1 ̸= q2,

m

∑
l=1

d(Aq1l , Aq2l ) ̸= 0

This condition is used to eliminate rules that contradict each other.
The distance-type fuzzy inference method comprises the following three steps.
STEP 1: Using the general Formula (A1) shown in the Appendix A, calculate d1 ∼ dn

with Equation (2) using the distance dij
(

Aij, Aj) between the given Aij and factual Aj. If the
fuzzy sets are triangular or pi-type fuzzy sets, as is commonly used, the general formula
in the Appendix A is simplified, and the distance between the fuzzy sets can be easily
calculated [12].

di =
m

∑
j=1

dij

(
Aij, Aj

)
i = 1, 2, ., n. (2)

The obtained distances d1 ∼ dn satisfy the axiom of distance. Furthermore, according
to the inference condition, there is no case where two or more of d1 ∼ dn are 0.

STEP 2: Find the α-level set Bα for the inference result B as

Bα = [inf(Bα), sup(Bα)] (3)

inf(Bα) =

n
∑

i=1

[
inf

(
Bi

α

) n
∏

j=1,j ̸=i
dj

]
n
∑

i=1

n
∏

j=1,j ̸=i
dj

(4)

sup(Bα) =

n
∑

i=1

[
sup

(
Bi

α

) n
∏

j=1,j ̸=i
dj

]
n
∑

i=1

n
∏

j=1,j ̸=i
dj

(5)

where sup(Bα) is the upper limit of Bα and inf(Bα) is the lower limit. We write sup(Bα) as
Bα and inf(Bα) as Bα, except where this may cause confusion.

Bα =

n
∑

i=1

[
Bi

α

n
∏

j=1,j ̸=i
dj

]
n
∑

i=1

n
∏

j=1,j ̸=i
dj

=


n
∑

i=1

[
Bi

α

n
∏

j=1,j ̸=i
dj

]
n
∑

i=1

n
∏

j=1,j ̸=i
dj

,

n
∑

i=1

[
Bi

α

n
∏

j=1,j ̸=i
dj

]
n
∑

i=1

n
∏

j=1,j ̸=i
dj

 (6)

STEP 3: We obtain inference result B using the decomposition theorem below.

B = ∪
α

α · Bα (7)

Next, we describe the characteristics of distance-type fuzzy inference methods.
Feature 1: If Aj = Aqj for ∃q ∈ {1, 2, . . . , n} and ∀j ∈ {1, 2, . . . , m}, then B = Bq holds

for the inference result. That is, the distance-type fuzzy inference method satisfies the
separation rule (modus ponens).

Feature 2: Inference result B from distance-type fuzzy inference is a regular fuzzy set.
Feature 3: The inference result B obtained from the distance-type fuzzy inference

method is a convex fuzzy set.
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Feature 4: Let B be the inference result when the distances are d1, d2, . . . , dq, . . . , dn, and
B′ be the inference result when the distance is d1, d2, . . . , d′q, . . . , dn. For ∀k ∈ {1, 2, . . . , n}−
{q}, assuming dk ̸= 0, if dq < d′q, then d(B, Bq) < d(B′, Bq) holds. However, Bq is the result
of inference when dq = 0.

This property means that the closer a given fact is to the antecedent of a rule, the closer
the result of inference is to the consequent of that rule. Features 1 and 4 together are called
the “asymptotic properties” of inference.

Feature 5: For ∀i ∈ {1, 2, . . . , n}, if the consequent B′ ∈ Fn(RB) is a triangular fuzzy
set, the inference result B ∈ Fn(RB) is also a triangular fuzzy set.

3. Representation of Concepts in Feature Space
3.1. Quantification of Concepts Using Graphical Information

Fuzzy sets, delineating vague concepts, are defined by membership functions [6–8].
Ambiguous concepts are quantified through graphical information along a horizontal axis,
with values spanning the closed interval [0, 1]. For instance, in Figure 1, the graphical
representation of two triangles on a horizontal axis quantifies the ambiguous concepts of
“medium” and “slightly large”.
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On a plane or in a space, meanings and concepts can be conveyed through information
about the shape and position of a figure, along with other graphical details [27,28]. For
instance, concepts like “doll”, “animal”, “star”, “building”, “truck”, and “airplane” can
be visually represented by manipulating the coordinate values of line segments in a 20-
sided polygon. The information within these figures, represented by the coordinates of
the polygonal line segments, can then be utilized to quantify the aforementioned concepts.
Therefore, the coordinate values of the line segments serve to quantify the concept and
correspond to the function of the membership function used for quantifying ambiguous
concepts. In essence, if the characteristics of a figure in a plane or space can be expressed
through mutually independent parameters, a set of figures whose elements correspond to
these parameter values can be considered an extension of a fuzzy set.

3.2. Characteristic Parameters and Feature Space

The triangle in Figure 1 represents a regular triangular fuzzy set that can be entirely
characterized using three parameters

(
p1

A, p2
A, p3

A
)
, as shown in Figure 2. No additional

parameters are needed to articulate the features of this figure. Similarly, a polygon with
20 line segments can be fully expressed through the coordinates of its line segments,
requiring 40 parameters

(
p1

D, . . . , p40
D
)
. No extra parameters are necessary to convey the

characteristics depicted in this figure. In other words, there exists a one-to-one relationship
between the parameters

(
p1

A, p2
A, p3

A
)

and the regular triangular fuzzy set. Likewise, there
is a one-to-one relationship between the parameters

(
p1

D, . . . , p40
D
)

and a polygon with 20
line segments.
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Figure 2. Regular triangular fuzzy set.

In this paper, parameters that are mutually independent and can fully characterize
the features of a figure in a plane or in a space are termed “characteristic parameters”. A
Euclidean space with the same number of independent variables as characteristic parame-
ters is referred to as a “feature space”. When a figure representing a specific meaning is
projected onto the feature space, it transforms into a singular vector. In other words, this
vector can completely express the characteristics of the original figure. For instance, by
substituting the values (1, 3, 8) and (1, 5, 12) for the characteristic parameters

(
p1

A, p2
A, p3

A
)
,

two triangles, A(1, 3, 8) and A(1, 5, 12), representing “medium” and “slightly large”, re-
spectively, are formed, as depicted in Figure 1. When these two triangles are mapped to
the feature space, two vectors in the feature space, as illustrated in Figure 3, are generated.
These vectors entirely capture the characteristics of A(1, 3, 8) and A(1, 5, 12). Although the
feature space of a polygon with 20 line segments has more than four dimensions, making
its vectors challenging to visually confirm, it possesses the essential properties of a vector
and serves as a faithful representation of the original shape.
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Therefore, when a figure representing a specific concept is projected onto its feature
space, it materializes as a single vector within the mapping space. This concept is sym-
bolized by vectors in the feature space. A polygon with 20 line segments representing
the concepts of “doll”, “animal”, “star”, “building”, “truck”, and “airplane”, as described
above, transforms into vectors in the mapping space when projected onto the feature space.
These vectors can effectively articulate the concepts of “doll”, “animal”, “star”, “building”,
“truck”, and “plane”.

In general, a planar polygon with n line segments has 2n vertex coordinates. The
planar polygon is completely represented using 2n independent parameters

(
p1

D, . . . , p2n
D
)
.

No additional parameters are needed to articulate the features of this plane polygon. That is,
there is a one-to-one relationship between the parameters

(
p1

D, . . . , p2n
D
)

and a polygon with
a plane polygon. Here, we define the parameters

(
p1

D, . . . , p2n
D
)

as characteristic parameters
and the Euclidean space stretched by 2n variables as the feature space. The results of the
analysis in the feature space exhibit an equivalent correspondence, as demonstrated in the
figure. Therefore, depending on the problem, it is often more convenient to discuss the
feature space rather than directly study the geometry itself.
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4. Distance-Type Fuzzy Inference Method Based on Characteristic Parameters

Humans frequently resort to drawing diagrams during the process of reasoning to
solve problems [29]. Drawing diagrams serves a crucial role not only in creating easily
understandable representations but also in acquiring information that may not be explicitly
presented in problems and in regulating inferences [30]. Consequently, graphical knowl-
edge representation is often employed in reasoning [3,4]. In this section, we propose a
distance-type fuzzy inference method based on characteristic parameters using distance
information between figures. Since the fuzzy set represented by the membership function
is a form of the figure, the distance-type fuzzy inference method in the feature space can be
considered an extension of the method described in Section 2.

Here, we consider n inference rules for m antecedents and one consequent as follows:

Ri : x1 = Ci1, x2 = Ci2, · · · , xm = Cim ⇒ y = Di

Fact : x1 = C1, x2 = C2, · · · , xm = Cm

Conclusion : y = D
(8)

where i = 1, 2, . . . , n, j = 1, 2, . . . , m. The antecedent Cij, consequent Di, fact Cj and
conclusion D are sets of figures that are expressed by their characteristic parameters as
follows:

Cij =
(

p1
Cij , p2

Cij , . . . , p
n

Cj

Cij

)
Di =

(
p1

Di , p2
Di , . . . , pnD

ni

)
Cj =

(
p1

Cj , p2
Cj , . . . , p

n
Cj

Cj

)
D =

(
p1

D, p2
D, . . . , pnD

D
)

Let FCj
{

p1, p2, . . . , pn
Cj , Rn

Cj
}

be the entire set of figures in the nCj -dimensional
feature space Rn

Cj and FD
{

p1, p2, . . . , pnD , RnD
}

be the entire set of figures in the nD-
dimensional feature space RnD . The antecedent figure set Cij, fact figure set Cj, consequent
figure set Di and conclusion figure set D are the vectors in the feature space, as follows. In
other words, the number of sides of the j-th fact figure set Cj and j-th antecedent figure set
Cij are the same, and the number of sides of the consequent figure set Di and conclusion
set D are the same.

Cj, Cij ∈ FCj
{

p1, p2, . . . , pn
Cj , Rn

Cj
}

Di, D ∈ FD
{

p1, p2, . . . , pnD , RnD
}

i = 1, 2, . . . , n, j = 1, 2, . . . , m.

Accordingly, the distance-type fuzzy inference method in the feature space comprises
the following three steps:

STEP 1: In the feature space Rn
Cj , we calculate the distance d

(
Cij, Cj) between the j-th

fact variable figure set Cj and the j-th antecedent variable figure set Cij for the i-th rule,
where 1 ≤ p < ∞ and | · | denotes the absolute value.

d
(

Cij, Cj
)
=

 n
Cj

∑
q=1

∣∣∣(pq
Cij − pq

Cj

)∣∣∣p 1
p

(9)

STEP 2: Using d
(
Cij, Cj), we calculate the distance d1∼ dn between the fact and each

rule using (10).

dk =

n
∏

i=1,i ̸=k

m
∑

j=1
d
(
Cij, Cj)

n
∑

s=1

n
∏

i=1,i ̸=s

m
∑

j=1
d
(
Cij, Cj) (10)

where k = 1, 2, . . . , n.
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STEP 3: We calculate the set of shapes D of the inference result in feature space using
Equation (11).

D = [PH]T (11)

where

H = (d1, d2, . . . , dn)
T, P =


p1

D1 , p1
D2 , · · · , p1

Dn

p2
D1 , p2

D2 , · · · , p2
Dn

· · · , · · · , · · · , · · ·
pnD

D1 , pnD
D2 , · · · , pnD

Dn


i = 1, 2, . . . , n, T : transposition

Column i
(

p1
Di , p2

Di , . . . , pnD
Di

)
in matrix P represents the vector of the consequent Di

of the i-th rule, and (d1, d2, . . . , dn) represents the distance between the fact and each rule.
Because the process of the distance-type fuzzy inference method in the feature space

relies on computations between vectors in the feature space, there is no need to employ
a composition theorem, such as the one presented in Equation (7). When applying the
distance-type fuzzy inference method in the feature space to ordinary fuzzy sets, the
computational complexity is reduced compared to the method described in Section 2.

The distance-type fuzzy inference method of [12] is only applicable to fuzzy sets. The
new distance-type fuzzy inference method proposed in this paper, which is also based
on characteristic parameters, can be applied not only to fuzzy sets but also to shapes.
However, the shape is not an arbitrary shape but only a shape that can be represented
by a characteristic parameter. This inference method computes inferences in a character-
istic space. The characteristic space is a multidimensional Euclidean space stretched by
characteristic parameters.

5. Characteristics of This Inference Method

This section discusses the characteristics of distance-type fuzzy inference methods in
the feature space.

Theorem 1. The characteristic parameter representing the set of figures D resulting from the
inference method is bounded. Explicitly, for ∀q ∈ {1, 2, . . . , nD}, if

pqmin:=min
{

pq
D1 , pq

D2 , . . . , pq
Dn

}
pqmax:=max

{
pq

D1 , pq
D2 , . . . , pq

Dn

}
then Equation (12) holds.

pqmin ≤ pq
D ≤ pqmax (12)

Proof. For ∀q ∈ {1, 2, . . . , nD}, Inequality (13) is obtained from Equations (10) and (11).

pq
D =

n
∑

k=1
pq

Dk

n
∏

i=1,i ̸=k

m
∑

j=1
d
(
Cij, Cj)

n
∑

s=1

n
∏

i=1,i ̸=s

m
∑

j=1
d
(
Cij, Cj)

≤ pqmax∑n
k=1

n
∏

i=1,i ̸=k

m
∑

j=1
d
(
Cij, Cj)

n
∑

s=1

n
∏

i=1,i ̸=s

m
∑

j=1
d
(
Cij, Cj) = pqmax

(13)
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Similarly, Inequality (14) is obtained.

pq
D ≥ pqmin

n

∑
k=1

n
∏

i=1,i ̸=k

m
∑

j=1
d
(
Cij, Cj)

n
∑

s=1

n
∏

i=1,i ̸=s

m
∑

j=1
d
(
Cij, Cj) = pqmin (14)

Therefore, Inequality (12) holds true. □

Theorem 2. If for ∃k ∈ {1, 2, . . . , n} and ∀j ∈ {1, 2, . . . , m}, Cj = Ckj, then for ∀q ∈
{1, 2, . . . , nD}, the equation Pq

D = Pq
Dk holds true. That is, the inference result is D = Dk, which

satisfies the separation rule (modus ponens).

Proof. From Cj = Ckj, we obtain ds = 0 and dk = 0 for ∀s ∈ {1, 2, . . . , n} − {k}. Therefore,

from Equation (11) it can be seen that ∀q ∈ {1, 2, . . . , nD} and
→
P0

q =
→
Pk

q , that is, D = Dk. □

Theorem 3. For the inference result, if ∃k ∈ {1, 2, . . . , n} and D = Dk, then if vec-
tors (PD1 − PDk ), (PD2 − PDk ),. . .,(PDk−1 − PDk ), (PDk+1 − PDk ),. . ., (PDn − PDk ) are linearly
independent, then for ∀j ∈ {1, 2, . . . , m}, a given fact Cj = Ckj must be true.

Proof. D = Dk is equivalent to the following equation.

PD =
(

p1
Dk , p2

Dk , . . . , pnD
Dk

)
(15)

By substituting Equation (15) into Equation (11) and rearranging it, we get

n

∑
s=1,s ̸=k

(PDs − PDk )
n

∏
i=1,i ̸=s

m

∑
j=1

d
(

Cij, Cj
)
= 0 (16)

Furthermore, because (PD1 − PDk),(PD2 − PDk), . . ., (PDk−1 − PDk), (PDk+1 − PDk),. . .,
(PDn − PDk) are linearly independent vectors, and Equation (17) holds true from Equation (16).

n

∏
i=1,i ̸=s

m

∑
j=1

d
(

Cij, Cj
)
= 0 (17)

Additionally, because there are no mutually contradictory rules, we obtain

m

∑
j=1

d
(

Ckj, Cj
)
= 0 (18)

By the distance axiom, we can see that the equation Cj = Ckj holds for ∀j ∈ {1, 2, . . . , m}.
□

Theorems 1–3 denote characteristics of distance-type fuzzy inference methods in the
feature space applicable to all general spatial figures. When applied to fuzzy sets, this
inference method exhibits the following two characteristics.

Theorem 4. If the consequents D1∼ Dn are all regular fuzzy sets, then the result D deduced
using this inference method is also a regular fuzzy set.

Proof. In Equation (11), let the q-th element pq
D in the vector representing the inference

result D represent the maximum value of the membership function µD(y) of D. If the con-
sequents D1∼ Dn are regular fuzzy sets, then ∀k ∈ {1, 2, . . . , n}, pq

Dk = 1 holds. Therefore,
using Equation (11), pq

D = 1. □
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Theorem 5. If the consequents D1∼ Dn are all convex fuzzy sets, then the result D deduced using
this inference method is also a convex fuzzy set.

Proof. If all consequents are convex fuzzy sets, then the vectors must satisfy particular
topological relations in the feature space. Without loss of generality, by reordering, we
assume the following topological relationship:

P1
Dk ≤ P2

Dk ≤ . . . ≤ PnB−1
Dk ≤ PnB

Dk k = {1, 2, . . . , n} (19)

Using Equation (11), the qk-th element pq
D and the (q + 1)-th element pq+1

D in the vector
expressing the inference result D can be expressed as

pq
D =

n

∑
k=1

dk pq
Dk (20)

pq+1
D =

n
∑

k=1
dk pq+1

Dk

q = 1, 2, . . . , (nD − 1)
(21)

From Inequality (19), Equations (20) and (21) result in

pq+1
D − pq

D =
n

∑
k=1

dk

(
pq+1

Dk − pq
Dk

)
≥ 0 (22)

That is, because the elements in the vector expressing the inference result D satisfy the
following inequality, D is also a convex fuzzy set.

p1
D ≤ p2

D ≤ . . . ≤ pnD−1
D ≤ pnD

D

□

6. Specific Example

In this section, we use a specific example to show the inference results of the distance-
type fuzzy inference method in a feature space.

The Mamdani-type inference method uses the maximum membership of the product
set as the basis for inference; the product set of two sets is not applicable to the case of an
empty set. The distance-type fuzzy inference method uses distance information between
two sets as the basis for inference, so it can be applied even if the intersection set is empty
or not. This paper is an extension of the distance-type fuzzy inference method to shapes,
and it can be applied to fuzzy sets and shapes that are far from each other. The following
example is for figures that are far from each other.

Consider the following case: one triangular figure input, one pentagonal figure output
and three rules (Figure 4):

R1 : x = triangle C1 ⇒ y = pentagon D1

R2 : x = triangle C2 ⇒ y = pentagon D2

R3 : x = triangle C3 ⇒ y = pentagon D3

Fact : x = triangle C
Conclusion : y = pentagon D
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In this scenario, the fact figure C is moved towards the antecedent figure C3 and
superimposed, so that the two have exactly the same shape. As the result of the inference,
the set of figures D approaches and overlaps the pentagon D3 through the movement of
the fact figure C, as shown in Figures 5–7, and becomes exactly the same shape.

R1 : x = triangle C1 ⇒ y = pentagon D1

R2 : x = triangle C2 ⇒ y = pentagon D2

R3 : x = triangle C3 ⇒ y = pentagon D3

Fact : x = Triangle C approaching C3
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Figure 5. Inference results when fact C approaches antecedent C3.

R1 : x = triangle C1 ⇒ y = pentagon D1

R2 : x = triangle C2 ⇒ y = pentagon D2

R3 : x = triangle C3 ⇒ y = pentagon D3

Fact : x = Triangle C superimposed on C3

Conclusion : y = Pentagon D superimposed on D3
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Figure 6. Inference results when fact C is superimposed on the antecedent C3.

R1 : x = triangle C1 ⇒ y = pentagon D1

R2 : x = triangle C2 ⇒ y = pentagon D2

R3 : x = triangle C3 ⇒ y = pentagon D3

Fact : x = C3 and the same shape as triangle C
Conclusion : y = D3 and the same pentagon D

Mathematics 2024, 12, x FOR PEER REVIEW 12 of 14 
 

 

 

Figure 7. Inference result when fact � is the same as the antecedent ��. 

Compared to Mamdani inference, distance-type fuzzy inference satisfies not only the 

convexity and asymptotic properties of the inference results but also the separation rule 

(modus ponens), a major principle in inference. The new distance-type fuzzy inference 

method proposed in this paper inherits the above characteristics. From the above example, 

we can confirm that the results of this inference method satisfy the separation rule and 

asymptotic properties. 

7. Conclusions 

This paper discusses the extensions of distance-type fuzzy inference methods to handle 

spatial figures. To represent knowledge in the brain, both symbolic and graphical infor-

mation is crucial, as graphical information is figurative and conveys a substantial amount 

of information. On a plane or in a space, meanings and concepts can be expressed using 

information about the shape, position of a figure, and other graphical details. The coordinate 

values of a figure play a crucial role in quantifying a concept, serving as a membership func-

tion for ambiguous concepts. In this paper, we initially explored the quantification of con-

cepts using graphical information and the representation of concepts in feature spaces. Sub-

sequently, we introduced a distance-based fuzzy inference method in the feature space, uti-

lizing distance information between figures and the correspondence between figures and 

vectors in the feature space. We then further delineated the characteristics of this inference 

method. Finally, an example was employed to demonstrate the inference results of the dis-

tance-type fuzzy inference method based on characteristic parameters. 

Compared to Mamdani inference, distance-type fuzzy inference satisfies not only the 

convexity and asymptotic properties of the inference results but also the separation rule 

(modus ponens), a major principle in inference. The new distance-type fuzzy inference 

method proposed in this paper inherits the above characteristics. Furthermore, since the 

Mamdani-type inference method uses the maximum membership of the product set as 

the basis for inference, the product set of two sets is not applicable to the case of an empty 

set. The distance type fuzzy inference method uses distance information between two sets 

as the basis for inference, so it can be applied whether the intersection set is empty or not. 

This paper is an extension of the distance-type fuzzy inference method to shapes; it can 

be applied to fuzzy sets and shapes that are far from each other. 

This inference method retains the key characteristic of distance-type fuzzy inference 

methods while necessitating lower computational complexity. Possible applications of this 

Figure 7. Inference result when fact C is the same as the antecedent C3.

Compared to Mamdani inference, distance-type fuzzy inference satisfies not only the
convexity and asymptotic properties of the inference results but also the separation rule
(modus ponens), a major principle in inference. The new distance-type fuzzy inference
method proposed in this paper inherits the above characteristics. From the above example,
we can confirm that the results of this inference method satisfy the separation rule and
asymptotic properties.

7. Conclusions

This paper discusses the extensions of distance-type fuzzy inference methods to handle
spatial figures. To represent knowledge in the brain, both symbolic and graphical infor-
mation is crucial, as graphical information is figurative and conveys a substantial amount
of information. On a plane or in a space, meanings and concepts can be expressed using



Mathematics 2024, 12, 308 12 of 13

information about the shape, position of a figure, and other graphical details. The coordi-
nate values of a figure play a crucial role in quantifying a concept, serving as a membership
function for ambiguous concepts. In this paper, we initially explored the quantification of
concepts using graphical information and the representation of concepts in feature spaces.
Subsequently, we introduced a distance-based fuzzy inference method in the feature space,
utilizing distance information between figures and the correspondence between figures and
vectors in the feature space. We then further delineated the characteristics of this inference
method. Finally, an example was employed to demonstrate the inference results of the
distance-type fuzzy inference method based on characteristic parameters.

Compared to Mamdani inference, distance-type fuzzy inference satisfies not only the
convexity and asymptotic properties of the inference results but also the separation rule
(modus ponens), a major principle in inference. The new distance-type fuzzy inference
method proposed in this paper inherits the above characteristics. Furthermore, since the
Mamdani-type inference method uses the maximum membership of the product set as the
basis for inference, the product set of two sets is not applicable to the case of an empty set.
The distance type fuzzy inference method uses distance information between two sets as
the basis for inference, so it can be applied whether the intersection set is empty or not.
This paper is an extension of the distance-type fuzzy inference method to shapes; it can be
applied to fuzzy sets and shapes that are far from each other.

This inference method retains the key characteristic of distance-type fuzzy infer-
ence methods while necessitating lower computational complexity. Possible applications
of this inference method include automatic generation of figures, elucidation of brain
mechanisms of figure processing processes, production of animations and generation of
facial expressions.

This inference method can only be applied to figures that can be represented using a
finite number of feature parameters. In other words, the limitation of this method is that
it cannot be applied to figures that cannot be represented by a finite number of feature
parameters. In addition, in actual expert and other AI system configurations, there may
be a huge number of rules and factual uncertainties. In this case, tactics such as rule
prioritization are necessary.
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Appendix A. Method for Calculating the Distance Between Fuzzy Sets [12]

For any fuzzy set A, B ⊂ F(R), the real-valued function d(A, B) defined by the follow-
ing equation, is a distance function of F(R).

d(A, B):=
[∫ 1

0

∣∣infAMα−in f BMα

∣∣p
dα

] 1
p

+
[∫ 1

0

∣∣supAMα−supBMα

∣∣p
dα

] 1
p

+
[∫ 1

0

∣∣∣( 1
MA

− 1
)

µA(x)−
(

1
MB

− 1
)

µB(x)
∣∣∣p

dx
] 1

p

(A1)

where 1 ≤ p < ∞ and | · | denotes the absolute value. AM denotes the fuzzy set normalized
by the maximum value MA of the membership function of A. supAMα and in f AMα repre-
sent the upper and lower bounds of the α-level set AMα of the fuzzy set AM, respectively.
The same is true for the BM.
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