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Abstract: In the competitive landscape of online learning, developing robust and effective learning re-
source recommendation systems is paramount, yet the field faces challenges due to high-dimensional,
sparse matrices and intricate user–resource interactions. Our study focuses on geometric matrix
completion (GMC) and introduces a novel approach, graph-based truncated norm regularization
(GBTNR) for problem solving. GBTNR innovatively incorporates truncated Dirichlet norms for both
user and item graphs, enhancing the model’s ability to handle complex data structures. This method
synergistically combines the benefits of truncated norm regularization with the insightful analysis
of user–user and resource–resource graph relationships, leading to a significant improvement in
recommendation performance. Our model’s unique application of truncated Dirichlet norms dis-
tinctively positions it to address the inherent complexities in user and item data structures more
effectively than existing methods. By bridging the gap between theoretical robustness and practical
applicability, the GBTNR approach offers a substantial leap forward in the field of learning resource
recommendations. This advancement is particularly critical in the realm of online education, where
understanding and adapting to diverse and intricate user–resource interactions is key to developing
truly personalized learning experiences. Moreover, our work includes a thorough theoretical analy-
sis, complete with proofs, to establish the convergence property of the GMC-GBTNR model, thus
reinforcing its reliability and effectiveness in practical applications. Empirical validation through
extensive experiments on diverse real-world datasets affirms the model’s superior performance over
existing methods, marking a groundbreaking advancement in personalized education and deepening
our understanding of the dynamics in learner–resource interactions.

Keywords: geometric matrix completion; graph-based truncated norm regularization; learning
resource recommendation; intelligent education technology and application

MSC: 68T01; 97P80; 15A83

1. Introduction

The digital revolution in education has necessitated the development of intelligent
learning resource recommendation systems that can navigate the complex landscape of
online learning [1–5]. Central to these systems is the technique of matrix completion, which
predicts user preferences by reconstructing a sparsely filled matrix representing user–item
interactions [6,7]. While effective, this approach is not without its challenges: the matrices
in question are typically high-dimensional and suffer from severe sparsity, which can
lead to overfitting and a lack of robustness in the presence of noisy and incomplete data.
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Furthermore, conventional matrix completion methods often fail to capture the nuanced
relationships and patterns inherent in educational data, which are vital for producing
meaningful recommendations that can truly enhance the learning experience [8,9].

From the perspective of real-world application, learning resource recommendation
systems often grapple with sparse and high-dimensional data, which can impede the
accuracy of recommendations. Traditional recommendation techniques may fall short
in effectively leveraging the limited user–item interaction data. To overcome these ob-
stacles, researchers have begun exploring the potential of graph-based methods, which
introduce a new dimension to the problem by considering the geometric structure of the
data [10–14]. By employing a graph-based framework, geometric matrix completion (GMC)
can discern the complex and often subtle relationships within the data, offering a nuanced
understanding of user preferences and item characteristics. This graph-centric approach
is particularly adept at navigating the sparsity of data, enabling the system to make more
informed and accurate predictions, thus significantly enhancing the user experience in
educational settings. Technically, this kind of methodology acknowledges that user–item
interactions are not merely discrete points within a matrix but are instead part of a rich,
interconnected graph that represents the complex relationships between users and learning
resources. By integrating this graph structure into the matrix completion process, GMC
seeks to leverage the additional information to produce more accurate and relevant rec-
ommendations [11,15]. The benefits of this method are manifold, including improved
recommendation quality in the face of data sparsity and a more profound understanding
of the underlying data geometry. It is within this innovative framework that the next
generation of learning resource recommendation systems is being developed, promising a
more personalized and insightful approach to online learning.

In our study, we introduce a novel model-driven framework for geometric matrix com-
pletion (GMC), with a dedicated focus on the task of learning resource recommendation.
Central to our methodology (i.e., GMC-GBTNR) is the introduction of graph-based trun-
cated norm regularization (termed GBTNR; see Definitions 2 and 3 in Section 4.1), a novel
technique that redefines the GMC problem and offers a fresh perspective on the underlying
geometry of user–learning resource interactions. This regularization framework not only
captures the complex topological structures within the data but also adeptly handles the in-
herent noise and sparsity. We propose a new algorithm that operates within this framework,
and we provide a rigorous theoretical analysis of its convergence properties, ensuring that
our approach is grounded in solid mathematical principles. Through a series of experi-
ments on five real-world learning resource datasets, we validate the effectiveness of our
method. Our findings demonstrate a marked improvement over several established matrix
completion techniques, showcasing the practical advantages and theoretical soundness of
our proposed model-driven framework. We further substantiate the convergence capability
of the GMC-GBTNR model with empirical evidence derived from its performance across
five distinct datasets.

In summary, our contributions are as follows:

• We introduce the entirely novel concept of graph-based truncated norm regulariza-
tion (GBTNR), which lays the foundation for a redefined GMC problem statement,
enriching the analytical landscape of recommendation systems.

• In response to the optimization challenges presented by the new GMC formulation,
we develop an iterative solution algorithm based on the alternating direction method
of multipliers (ADMM), tailored to navigate the complexities of the proposed model.

• We present a thorough theoretical proof that underpins the convergence of our model,
ensuring its reliability and efficacy.

The remainder of this paper is organized as follows: Section 2 reviews the related
studies, encompassing existing methods for both matrix completion and geometric matrix
completion. Section 3 introduces the preliminaries, establishing the necessary background
and notations. Section 4 details our proposed method and the corresponding theoreti-
cal analysis, presenting the novel graph-based truncated norm regularization (GBTNR)
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approach. Section 5 discusses the experiments conducted to validate the efficacy of our
approach, including comparisons with established methods. Finally, Section 6 concludes
the paper, summarizing our contributions and suggesting avenues for future research.

2. Related Work

This section provides an in-depth review of the existing literature in the areas of matrix
completion and its geometric extensions, highlighting seminal studies and recent advancements.

2.1. Matrix Completion

Matrix completion has emerged as a pivotal technique in the realm of machine learning,
particularly for its applications in collaborative filtering and recommendation systems [6,7].
The field gained significant momentum following the influential work of Koren et al. [16],
who demonstrated its potent capabilities in the Netflix Prize competition. Their approach
addressed the inherent challenge of extremely sparse datasets, characteristic of many
real-world scenarios, particularly those involving user–item interactions with millions
of dimensions. The essence of matrix completion lies in its ability to predict the missing
entries of a partially observed matrix with the assumption that the matrix is of low rank.
Candès and Recht [17] provide one of the first theoretical guarantees for matrix completion,
showing that under certain conditions, it is possible to perfectly reconstruct low-rank
matrices from a sample of their entries. This groundbreaking work laid the mathematical
foundation for many subsequent algorithms and applications. Subsequent studies have
aimed to improve upon the scalability and accuracy of these methods, with some focusing
on the use of auxiliary information [18], and others on algorithmic innovations like singular
value decomposition (SVD) for enhancing computational efficiency [16]. For example,
Hu et al. [19] propose a fast and accurate approach to matrix completion via truncated
nuclear norm regularization. Their method balances computational efficiency with the
accuracy of reconstruction, contributing to the practical applicability of matrix completion
in large-scale problems. Similarly, Li et al. [20] study the error characteristics of matrix
elastic-net regularization algorithms, providing valuable insight into the trade-offs involved
in regularization parameter selection. Furthering the development of regularization tech-
niques, Liu et al. [21] introduce a truncated nuclear norm regularization method based
on weighted residual error, which enhances the matrix completion process. Their work
underscores the importance of developing tailored regularization methods to deal with
the nuances of matrix completion. In recent years, the realm of matrix completion has wit-
nessed extensions into more intricate formulations. These include challenging variants such
as quaternion matrix completion, which proves valuable in addressing large-scale color
image and video inpainting tasks [22]. Additionally, there is the exploration of low-rank
high-order tensor completion, particularly relevant in handling complex visual data scenar-
ios [23]. An alternative direction delves into inductive matrix completion, with promising
applications in the domain of wireless communications [24].

2.2. Geometric Matrix Completion

Recent strides in matrix completion have been influenced by the integration of geomet-
ric structures, which offer a nuanced perspective on user–item interactions. Ma et al. [25]
are among the first to suggest the use of manifold learning techniques to exploit the ge-
ometric relationships within the data. By borrowing ideas from the field of manifold
learning [26,27], Kalofolias et al. [10] extend this by utilizing graph-based approaches to
encode similarities, thereby harnessing the inherent structure of the data for improved
matrix completion. Rao et al. [28] and Kuang et al. [29] further explored the potential
of graph regularization, underscoring the importance of preserving local structures and
smoothness in the recommendation process. These contributions are deeply rooted in the
field of signal processing on graphs, where Shuman et al. [30] have provided extensive
insights into extending classical signal processing techniques to graph-structured data.
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The concept of smoothness on graphs has been particularly influential, suggesting
that similar users and items (learning resources) are likely to have similar preferences or
characteristics. This notion has been operationalized through the development of graph
Laplacian regularization techniques, which have been shown to enhance the performance
of recommender systems by promoting smoothness over the graph [31,32]. Such techniques
have also been instrumental in the formulation of graph convolutional networks [33], which
have successfully adapted deep learning methods to data represented on irregular domains.
Furthermore, certain research endeavors delve into the matrix completion problem while
considering the underlying geometric or topological relationships among rows and/or
columns. This is approached from various angles, including spectral viewpoints as explored
in the work in [34], a Riemannian manifold perspective as investigated in [35], and the
utilization of Plücker coordinates as highlighted in [36].

Summary. Technically, our work represents a distinctive stride in the landscape of
matrix completion research, particularly in the realm of geometric matrix completion. We
introduce a novel approach, graph-based truncated norm regularization (GBTNR), which
combines truncated nuclear norm regularization with graph information. This integration
is specifically tailored to address the challenges of learning resource recommendation.
GBTNR is designed to adeptly mine and utilize the latent relationships not only between
users but also among learning resources themselves. Our methodology transcends tradi-
tional limitations of matrix completion techniques, such as their vulnerability to noise and
propensity to overestimate the matrix rank. By leveraging the strengths of both graph-
based structures and truncated norm regularization, we present a solution that is not
only robust and theoretically sound but also uniquely suited to enhance recommendation
systems in the e-learning sector. This work, therefore, stands as a significant contribution
to the ongoing evolution of matrix completion strategies, particularly in their application
to educational technologies.

3. Preliminaries

This section lays the groundwork for understanding the intricacies of matrix com-
pletion and geometric matrix completion problems. We delve into the theoretical and
methodological preliminaries essential for addressing the challenge of deducing the un-
known entries of a matrix from a sparse subset of its observed elements. The ensuing
discussion bifurcates into two principal domains: the classical matrix completion frame-
work, which harnesses the power of low-rank matrix assumptions, and the more nuanced
geometric matrix completion approach, which incorporates the geometry of the data into
the recovery process.

Matrix completion problem. The challenge of inferring the missing elements of a
matrix from a subset of its entries necessitates additional mathematical stipulations to
define a solvable problem space. A common approach is to posit that the data are restricted
to a lower-dimensional subspace, indicative of the matrix’s low rank:

min
X

rank(X) s.t. xij = yij, ∀ij ∈ Ω, (1)

where X represents the matrix under reconstruction, Ω encapsulates the indices of known
values, and yij are the corresponding known values. To accommodate noise and variations,
the strict equality can be substituted with a penalization term:

min
X

rank(X) +
µ

2
∥Ω ◦ (X − Y)∥2

F, (2)

where Ω denotes the indicator matrix, and ◦ signifies the Hadamard product.
Yet, minimizing the rank is an NP-hard problem, rendering it unsolvable for large-scale

applications. The most effective convex surrogate for this is:

min
X

∥X∥∗ +
µ

2
∥Ω ◦ (X − Y)∥2

F, (3)
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with ∥ · ∥∗ denoting the nuclear norm, summing up the singular values of the matrix, as es-
tablished in the seminal study [17]. Theoretically and empirically, Candès and Recht [17]
demonstrate that employing the ℓ1 norm as a relaxation technique in singular value de-
composition significantly enhances the likelihood of accurately reconstructing the original
matrix with low-rank characteristics.

Geometric matrix completion. An alternative formulation applies a geometric perspec-
tive to the rank minimization (see Equation (1)), constraining the solution space to adhere
to an inherent geometric structure among the matrix’s rows and columns [10,25,28,37].
The fundamental model is based on the concept of proximity, characterized as an undi-
rected weighted graph for columns, denoted as Gc = (1, . . . , n, Ec, Wc), which is defined
by an adjacency matrix Wc. The elements of this matrix, wc

ij, are symmetric and only
non-zero if an edge exists between nodes i and j within the edge set Ec, representing a
connection in the graph. Similarly, the row graph Gr, which encapsulates item similarities,
is constructed in a like manner and can be represented by Gr = (1, . . . , m, Er, Wr). In the
context of recommending learning resources, the row graph can be perceived as analogous
to a social network where the edges mirror the relationships between individual students
and the affinities they share. Conversely, the column graph represents the intricate web
of connections between various learning resources, capturing the similarities or thematic
overlaps between them. This dual-graph structure can provide useful auxiliary information
for recommendation algorithms, where student–student ties potentially reflect common
learning interests and resource–resource links represent curricular similarities.

For both graphs, one can formulate the unnormalized graph Laplacian, a symmetric
positive-semidefinite matrix ∆ = I − D−1/2WD−1/2, with D being the degree matrix, cal-
culated as diag(∑j ̸=i wij). The Laplacians pertinent to the row and column graphs are sym-
bolized as ∆r and ∆c, respectively. This allows us to measure the smoothness of the matrix’s
columns or rows seen as functions on the respective graphs. This smoothness is quantified
by the Dirichlet form: ∥X∥2

Gr
= trace(X⊤∆rX) (respecitvely, ∥X∥2

Gc
= trace(X∆cX⊤)).

The geometric matrix completion aims to minimize:

min
X

∥X∥2
Gr
+ ∥X∥2

Gc
+

µ

2
∥Ω ◦ (X − Y)∥2

F, (4)

Definition 1. The singular value decomposition (SVD) of a matrix X ∈ Rm×n takes the form
(see [38,39]):

X = UΣVT , Σ = diag
(
{σi}1≤i≤min(m,n)

)
,

where U and V have orthonormal columns, and Σ is diagonal with singular values. For α > 0,
the singular value shrinkage operator Sα is defined via:

Sα(X) = USα(Σ)VT ,

where Sα(Σ) = diag
(
{max(σi − α, 0)}1≤i≤min(m,n)

)
.

Proposition 1. Given any α > 0 and matrix Q ∈ Rm×n, the singular value shrinkage operator
satisfies (see [38,39]):

Sα(Q) = arg min
X

α∥X∥∗ +
1
2
∥X − Q∥2

F.

4. Geometric Matrix Completion via Hybrid Truncated Norm Regularization
4.1. Proposed Method

Basics. Given a matrix X ∈ Rm×n, we assume that its geometric information, that
is, the row graph Gr and the row graph Gc, are available. Let Ar ∈ Rm×m denote
the adjacency matrix of Gr and Ac ∈ Rn×n denote the adjacency matrix of Gc. Their
(normalized) graph Laplacian matrices are expressed as Lr := I − D−1/2

r ArD−1/2
r and

Lc := I − D−1/2
c AcD−1/2

c , respectively, where Dr (and Dc) is the degree matrix of Gr (and
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Gc). Based on spectral graph theory [40], we can have their Laplacian eigendecompositions:
Lr = ΦrΛrΦr

T and Lc = ΦcΛcΦc
T , respectively, where Φ· denotes the matrix of orthonor-

mal eigenvectors and Λ· is the diagonal matrix of the corresponding eigenvalues. Λr
1/2

(and Λc
1/2) is well-defined due to the positive-semidefiniteness of Lr (and Lc).

New Definitions. With these notations, we define the truncated Dirichlet norms for
the row and column graphs as follows.

Definition 2. The truncated Dirichlet norm for the row graph Gr is defined as

∥X∥Gr ,η =

√√√√min(m,n)

∑
i=η+1

σ2
i

(
Λr

1/2Φr
TX
)

. (5)

Definition 3. The truncated Dirichlet norm for the column graph Gc is defined as

∥X∥Gc ,η =

√√√√min(m,n)

∑
i=η+1

σ2
i

(
XΦcΛ1/2

c

)
. (6)

Our proposed GMC-GBTNR. Our proposed method can be formulated as:

min
X

∥X∥η,∗ + λ1∥X∥2
Gr ,η + λ2∥X∥2

Gc ,η

s. t. PΩ(X) = PΩ(M),
(7)

where λ1 > 0, λ2 > 0 are regularization parameters.
As shown in Equation (7), our GBTNR approach leverages truncated Dirichlet norms

as regularization terms in the optimization problem for matrix completion. Specifically,
these norms act on the row and column graphs, incorporating the geometric structure of the
data into the learning process. They contribute to the regularization by emphasizing only
the significant singular values, as represented by the sum of the squared singular values
multiplied by their corresponding truncated eigenvectors, starting from the (η + 1)-th
smallest one, as per the truncation parameter η.

Theoretically, the truncated Dirichlet norms in the GBTNR approach encapsulate the
graph information of users and items, enhancing the model performance. These terms,
acting as regularization in the optimization framework, exploit the relational structure
inherent in the user–item interactions. This is particularly beneficial in situations with
sparse rating data, where traditional collaborative filtering might struggle. By integrating
user and item graph information, the GBTNR method can discern underlying patterns and
relationships, which are crucial for accurate matrix completion. The technique effectively
harnesses these relational data, often leading to more precise recommendations.

Proposition 2. For any given matrix X ∈ Rm×n, any matrices A ∈ Rη×m, B ∈ Rη×n satisfying
AAT = I (I is the unit matrix of η × η and η ≤ min(m, n)), we have (see [19])

Tr(AXBT) ≤
η

∑
i=1

σi(X). (8)

Proposition 3. For any given matrix X ∈ Rm×n, any matrix A ∈ Rη×m satisfying AAT = I (I
is the unit matrix of η × η and η ≤ min(m, n)), we have (see [41])

∥AX∥2
F ≤

η

∑
i=1

σ2
i (X). (9)
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For simplicity, we denote Tr := Λr
1/2Φr

T as a transform matrix induced by row graph
Gr and Tc := ΦcΛ1/2

c as a transform matrix induced by the column graph Gc. Suppose
ŨΣ̃ṼT is the SVD of TrX and ÛΣ̂V̂T is the SVD of XTc with Ũ = [ũ1, ũ2, · · · , ũm] ∈ Rm×m,
Û = [û1, û2, · · · , ûm] ∈ Rm×m. Given the SVD of X, i.e, UΣVT , where
U = [u1, u2, · · · , um] ∈ Rm×m, Σ ∈ Rm×n, and V = [v1, v2, · · · , vn] ∈ Rn×n, we can take

A = [u1, u2, · · · , uη ]
T , B = [v1, v2, · · · , vη ]

T ,

C = [ũ1, ũ2, · · · , ũη ]
T , D = [û1, û2, · · · , ûη ]

T .
(10)

Based on Propositions 2 and 3, it is easy to verify that

max
AAT=I
BBT=I

Tr(AXBT) =
η

∑
i=1

σi(X),

max
CCT=I

∥CTrX∥2
F =

η

∑
i=1

σ2
i (TrX),

max
DDT=I

∥DXTc∥2
F =

η

∑
i=1

σ2
i (XTc)

Then the objective function (7) can be reformulated as:

min
X

∥X∥∗ − max
AAT=I
BBT=I

Tr(AXBT)

+ λ1(∥TrX∥2
F − max

CCT=I
∥CTrX∥2

F)

+ λ2(∥XTc∥2
F − max

DDT=I
∥DXTc∥2

F)

s. t. PΩ(X) = PΩ(M).

(11)

Using the alternative optimization scheme used in [19,42], we can solve the optimiza-
tion problem (11) via two steps. First, we initialize X1 = MΩ. In the l-th iteration, we fix
Xl and calculate two intermediate matrices TrXl and XlTc, then conduct SVDs of Xl , TrX,
and XTc, respectively, to obtain Al , Bl , Cl , Dl as formulated in (10). Second, we fix Al , Bl ,
Cl , and Dl to update Xl+1 based on the following problem:

min
X

∥X∥∗−Tr(AlXBT
l )+λ1(∥TrX∥2

F −∥ClTrX∥2
F)

+ λ2(∥XTc∥2
F − ∥DlXTc∥2

F)

s. t. PΩ(X) = PΩ(M).

(12)

Algorithm 1 presents the detailed pseudo-code for these two steps. It should be noted
that we assume Tr, Tc are given as inputs for the algorithm implementation, provided that
both the row graph Gr and the column graph Gc are known in advance. In practice, it is
possible to only consider one transform matrix, i.e., Tr or Tc for the case where only Gr or Gc
is available by setting λ2 = 0 or λ1 = 0. The extreme case in which both Tr and Tc are not
provided does not fit our problem formulation, which relies on the basis of geometric matrix
completion. In the next section, will discuss how to solve the optimization problem (12).
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Algorithm 1 GMC-GBTNR: Geometric Matrix Completion via Graph-Based Truncated
Norm Regularization

Require: Original incomplete data MΩ, Tr, Tc, regularization parameters λ1 > 0 and
λ2 > 0, tolerance ε0 > 0;

Ensure: The recovered matrix X∗;
Initialize: X1 = PΩ(M) = MΩ;
repeat

Step 1: Given Xl , calculate TrXl and XlTc, then
calculate the SVDs of Xl , TrXl , and XlTc, respectively:

[Ul , Σl , Vl ] = SVD(Xl),

[Ũl , Σ̃l , Ṽl ] = SVD(TrXl),

[Ûl , Σ̂l , V̂l ] = SVD(XlTc),

where
Ul = [u1, u2, · · · , um], Vl = [v1, v2, · · · , vm],

Ũ = [ũ1, ũ2, · · · , ũm], Û = [û1, û2, · · · , ûm].

Take Al , Bl , Cl , Dl as
Al = [u1, u2, · · · , uη ]T , Bl = [v1, v2, · · · , vη ]T ;
Cl = [ũ1, ũ2, · · · , ũη ]T , Dl = [û1, û2, · · · , ûη ]T .

Step 2: Solve the following optimization problem:

Xl+1 = arg min
X

∥X∥∗ − Tr(AlXBT
l ) + λ1(∥TrX∥2

F

− ∥ClTrX∥2
F) + λ2(∥XTc∥2

F − ∥DlXTc∥2
F)

s. t. PΩ(Xl) = PΩ(M).

until ∥Xl+1 − Xl∥F ≤ ε0.
Return X∗ = Xl+1

4.2. Optimization Algorithms

In this subsection, an efficient iterative optimization scheme is created to optimize (12).
According to the augmented Lagrangian multiplier method, a common strategy is to
approximately minimize the augmented Lagrangian function by adopting an alternating
scheme and we use it to solve the model (12). To this end, we introduce the auxiliary
variable Z and then (12) is equivalent to the following form:

min
X

∥X∥∗−Tr(AlWBT
l )+λ1(∥TrX∥2

F −∥ClTrX∥2
F)

+ λ2(∥XTc∥2
F − ∥DlXTc∥2

F)

s. t. X = W, PΩ(W) = PΩ(M).

(13)

Note that X = W and PΩ(W) = PΩ(M) are two linear constraints. To handle the
two constraints simultaneously, we reformulate the model (13) as follows:

min
X

∥X∥∗−Tr(AlWBT
l )+λ1(∥TrX∥2

F −∥ClTrX∥2
F)

+ λ2(∥XTc∥2
F − ∥DlXTc∥2

F)

s. t. AX + BW = Z,

(14)

where A, B: Rm×n → R2m×2n are two linear operators denoted by

AX =

[
X 0
0 0

]
,BW =

[
−W 0

0 PΩ(W)

]
, (15)
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and

Z =

[
0 0
0 PΩ(M)

]
, (16)

respectively.
Given a matrix Y with the following block representation,

Y =

[
Y11 Y12
Y21 Y22

]
, (17)

where Yij ∈ Rm×n (i, j = 1, 2), it is easy to verify that the adjoint operators of A and B, that
is, A∗ and B∗, respectively, can be evaluated by (see [19,42])

A∗Y = Y11, B∗Y = −Y11 + PΩ(Y22). (18)

Then, the augmented Lagrange function of (14) can be written as:

£µ(X, W, Y) = ∥X∥∗ − Tr(AlWBT
l ) + λ1(∥TrX∥2

F

− ∥ClTrX∥2
F) + λ2(∥XTc∥2

F − ∥DlXTc∥2
F)

+ ⟨Y,AX + BW − Z⟩+ µ

2
∥AX + BW − Z∥2

F,

(19)

where Y is the Lagrange multiplier matrix and µ > 0 is the penalty parameter. Thus, we can
adopt the alternating iteration strategy, i.e., fix some variables and solve the remaining one.

Initially, we compute Xk+1. We can give the following solution by ignoring the
constant term:

X(k+1) = arg min
X

£µ(X, W(k), Y(k))

= arg min
X

∥X∥∗ − Tr(AlWBT
l ) + λ1(∥TrX∥2

F −∥ClTrX∥2
F)

+ λ2(∥XTc∥2
F − ∥DlXTc∥2

F) + ⟨Y(k),AX + BW(k) − C⟩

+
µ

2
∥AX + BW(k) − Z∥2

F

= arg min
X

∥X∥∗ + λ1(∥TrX∥2
F −∥ClTrX∥2

F) + λ2(∥XTc∥2
F

− ∥DlXTc∥2
F) +

µ

2
∥AX + BW(k) − Z +

Y(k)

µ
∥2

F.

(20)

Denote a differentiable real function with respect to its matrix argument X as follows:

F (X) =λ1(∥TrX∥2
F −∥ClTrX∥2

F) + λ2(∥XTc∥2
F

− ∥DlXTc∥2
F) +

µ

2
∥AX + BW(k) − Z +

Y(k)

µ
∥2

F.

Then, F (X) can be approximated by the Taylor series

F (X) = F (X(k)) +∇F (X(k))(X − X(k)) +
ν

2
∥X − X(k)∥2

F,
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where ν > µ and the first-order gradient ∇F (X(k)) can be evaluated by

∇F (X(k))

= λ1(2T T
r TrX(k) − 2T T

r CT
l ClTrX(k))

+λ2(2X(k)TcT T
c −2Dl DT

l X(k)TcT T
c )

+Y(k)
11 − µW(k) + µX(k)

= (2λ1T T
r Tr − 2λ1T T

r CT
l ClTr + µI)X(k) +

(2λ2 I − 2λ2Dl DT
l )X(k)TcT T

c + Y(k)
11 − µW(k). (21)

Therefore, the solution (20) can be refined as:

X(k+1)

= arg min
X

∥X∥∗ +∇F (X(k))(X − X(k)) +
ν

2
∥X − X(k)∥2

F

= arg min
X

∥X∥∗ +
ν

2
∥X − X(k) +

∇F (X(k))

ν
∥2

F.

By Definition 1 and Proposition 1, this could be solved as

X(k+1) = S 1
ν

(
X(k) − ∇F (X(k))

ν

)
. (22)

Next, we concentrate on calculating W(k+1).

W(k+1) = arg min
W

£µ(X(k+1), W, Y(k))

= arg min
W

µ

2
∥AX(k+1) + BW − Z∥2

F − Tr(AlWBT
l )

+ ⟨Y(k),AX(k+1) + BW − Z⟩.

(23)

It is obvious that the objective function of (23) is a quadratic function.

W(k+1) =
1
µ

(
AT

l Bl + Y(k)
11

)
+ X(k+1)

− 1
2µ

PΩ

(
µ(X(k+1) − M) + AT

l Bl + Y(k)
11 + Y(k)

22

)
.

(24)

Ultimately, the update of Lagrange multipliers is

Y(k+1) = Y(k) + µ(AX(k+1) + BW(k+1) − Z). (25)

To sum up, the full procedure is listed in Algorithm 2.

Algorithm 2 ADMM for Step 2 of Algorithm 1

Require: Al , Bl , Cl , Dl , MΩ and tolerance ε > 0;
Initialize: X(1) = MΩ, W(1) = X(1), Y(1) = X(1), µ, and ν = 1.1µ;
repeat

Step 1: Fix W(k) and Y(k), then compute F (X(k)) by (21) and X(k+1) by (22)
Step 2: Fix Y(k) and X(k+1), then compute W(k+1) by (24)
Step 3: Fix W(k+1) and X(k+1), then compute Y(k+1) by (25)

until ∥X(k+1) − X(k)∥F ≤ ε.
Ensure: X(k+1)
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4.3. Convergence Analysis

In this subsection, the convergence of the proposed approach will be discussed. To this
end, denote the optimal value of (14) as

g∗ = inf{∥X∥∗−Tr(AlWBT
l )+λ1(∥TrX∥2

F −∥ClTrX∥2
F)

+ λ2(∥XTc∥2
F − ∥DlXTc∥2

F) : AX + BW = Z},
(26)

and the unaugmented Lagrangian function as

£0(X, W, Y) = ∥X∥∗ − Tr(AlWBT
l ) + λ1(∥TrX∥2

F

− ∥ClTrX∥2
F) + λ2(∥XTc∥2

F − ∥DlXTc∥2
F).

(27)

Subsequently, the paper establishes three auxiliary lemmas as foundational results
prior to demonstrating the convergence of the proposed method.

Lemma 1. Assume that (X∗, W∗, Y∗) is the optimal solution to the unaugmented Lagrangian
function (27). Let

(
X(k+1), W(k+1)

)
be the iterative solution to Algorithm 2 and

g(k+1) = ∥X(k+1)∥∗ − Tr(AlW(k+1)B⊤
l ) + λ1

(
∥TrX(k+1)∥2

F − ∥ClTrX(k+1)∥2
F

)
+ λ2

(
∥X(k+1)Tc∥2

F − ∥DlX(k+1)Tc∥2
F

)
.

Then the following inequality holds:

g∗ − g(k+1) ≤ ⟨Y∗,AX(k+1) + BW(k+1) − Z⟩. (28)

Proof. Since (X∗, W∗, Y∗) is the optimal solution to (27), then it follows that

£0(X∗, W∗, Y∗) ≤ £0(X(k+1), W(k+1), Y∗).

Using AX∗ + BW∗ = Z, the left-hand side is equal to g∗. In terms of

g(k+1) = ∥X(k+1)∥∗ − Tr(AlW(k+1)B⊤
l ) + λ1

(
∥TrX(k+1)∥2

F − ∥ClTrX(k+1)∥2
F

)
+ λ2

(
∥X(k+1)Tc∥2

F − ∥DlX(k+1)Tc∥2
F

)
,

we can obtain that g∗ ≤ g(k+1) + ⟨Y∗,AX(k+1) + BW(k+1) − Z⟩, i.e., the inequality (28)
holds. This completes the proof.

Actually, AX∗ + BW∗ = Z implies that (X∗, W∗) is also the optimal solution to the
model (14).

Lemma 2. Let E(k+1) = AX(k+1) + BW(k+1) − Z and Y(k+1) = Y(k) + µE(k+1). Then we have

g(k+1) − g∗ ≤− ⟨Y(k+1), E(k+1)⟩ − µ⟨B(W(k+1) − W(k)),

B(W(k+1) − W∗)− E(k+1)⟩.
(29)

Proof. By definition, we know that X(k+1) minimizes £µ(X, W(k), Y(k)). As £µ(X, W(k), Y(k))
is closed, convex, and subdifferentiable on X. With the property of subdifferential [43],
the optimality condition can be satisfied, namely,
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0 ∈∂£µ(X(k+1), W(k), Y(k))

=∂∥X(k+1)∥∗ + 2λ1(T T
r TrX(k+1) − T T

r CT
l ClTrX(k+1))

+ 2λ2(X(k+1)TcT T
c −Dl DT

l X(k+1)TcT T
c )

+A∗Y(k) + µA∗(AX(k+1) + BW(k) − Z).

(30)

Using Yk+1 = Yk + µRk+1, we can rearrange (30) as

0 ∈∂£µ(X(k+1), W(k), Y(k))

=∂∥X(k+1)∥∗ + 2λ1(T T
r TrX(k+1) − T T

r CT
l ClTrX(k+1))

+ 2λ2(X(k+1)TcT T
c −Dl DT

l X(k+1)TcT T
c )

+A∗(Y(k+1) − µB(W(k+1) − W(k))).

This indicates that X(k+1) minimizes

∥X∥∗+λ1(∥TrX∥2
F −∥ClTrX∥2

F)

+ λ2(∥XTc∥2
F − ∥DlXTc∥2

F)

+ ⟨Y(k+1) − µB(W(k+1) − W(k)),AX⟩.

Similarly, W(k+1) minimizes

−Tr(AlWB⊤
l ) + ⟨Y(k+1),BW⟩.

Accordingly, for the optimal solution (X∗, W∗), we can obtain

∥X(k+1)∥∗+λ1(∥TrX(k+1)∥2
F −∥ClTrX(k+1)∥2

F)

+ λ2(∥X(k+1)Tc∥2
F − ∥DlX(k+1)Tc∥2

F)

+ ⟨Y(k+1) − µB(W(k+1) − W(k)),AX(k+1)⟩
≤∥X∗∥∗+λ1(∥TrX∗∥2

F −∥ClTrX∗∥2
F)

+ λ2(∥X∗Tc∥2
F − ∥DlX∗Tc∥2

F)

+ ⟨Y(k+1) − µB(W(k+1) − W(k)),AX∗⟩,

(31)

and

− Tr(AlW(k+1)B⊤
l ) + ⟨Y(k+1),BW(k+1)⟩

≤ − Tr(AlW∗B⊤
l ) + ⟨Y(k+1),BW∗⟩.

(32)

Adding both sides of (31) and (32), as well as using AX∗ + BW∗ = Z, it follows that

g(k+1) − g∗ ≤⟨Y(k+1) − µB(W(k+1) − W(k)),A(X∗ − X(k+1))⟩

+ ⟨Y(k+1),B(W∗ − W(k+1))⟩

=⟨Y(k+1), Z −AX(k+1) −BW(k+1)⟩

− µ⟨B(W(k+1) − W(k)),A(X∗ − X(k+1))⟩

=⟨Y(k+1),−E(k+1)⟩

−µ⟨B(W(k+1) − W(k)),B(W(k+1) − W∗)− E(k+1)⟩,
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where the last equality holds due to AX(k+1) = E(k+1) −BW(k+1) + Z. This completes the
proof.

Lemma 3. Suppose that (X∗, W∗, Y∗) is the optimal solution to the unaugmented Lagrangian
function (27). Denote E(k+1) = AX(k+1) + BW(k+1) − Z and define

ξk =
1
µ
∥Y(k) − Y∗∥2

F + µ∥B(W(k) − W∗)∥2
F.

Then, ξk decreases in each iteration and satisfies the following relationship:

ξk − ξk+1 ≥ µ(∥E(k+1)∥2
F + ∥B(W(k+1) − W(k)∥2

F). (33)

Proof. Adding the two inequalities in Lemmas 1 and 2 and multiplying through by 2
give that

2⟨Y(k+1) − Y∗, E(k+1)⟩ − 2µ⟨B(W(k+1) − W(k)), E(k+1)⟩

+ 2µ⟨B(W(k+1) − W(k)),B(W(k+1) − W∗)⟩ ≤ 0.
(34)

Using Y(k+1) = Y(k) + µE(k+1), the first term of (34) can be rewritten as

2⟨Y(k+1) − Y∗, E(k+1)⟩

= 2⟨Y(k) + µE(k+1) − Y∗, E(k+1)⟩

= 2⟨Y(k) − Y∗, E(k+1)⟩+ µ∥E(k+1)∥2
F + µ∥E(k+1)∥2

F

=
2
µ
⟨Y(k) − Y∗, Y(k+1) − Y(k)⟩+ 1

µ
∥Y(k+1) − Y(k)∥2

F

+ µ∥E(k+1)∥2
F.

Due to the fact that Y(k+1) − Y(k) = (Y(k+1) − Y∗)− (Y(k) − Y∗), we have

2⟨Y(k+1) − Y∗, E(k+1)⟩

=
1
µ

(
∥Y(k+1) − Y∗∥2

F − ∥Y(k) − Y∗∥2
F

)
+ µ∥E(k+1)∥2

F.
(35)

Now, we rewrite the remaining terms, i.e.,

µ∥E(k+1)∥2
F − 2µ⟨B(W(k+1) − W(k)), E(k+1)⟩

+2µ⟨B(W(k+1) − W(k)),B(W(k+1) − W∗)⟩,

where µ∥E(k+1)∥2
F is taken from (35). Replacing W(k+1) −W∗ = (W(k+1) −W(k))+ (W(k) −

W∗) gives

µ
(
∥E(k+1) −B(W(k+1) − W(k))∥2

F

)
+µ∥B(W(k+1) − W(k))∥2

F

+2µ⟨B(W(k+1) − W(k)),B(W(k+1) − W∗)⟩.

With W(k+1) − W(k) = (W(k+1) − W∗)− (W(k) − W∗), this can be converted into

µ
(
∥E(k+1) −B(W(k+1) − W(k))∥2

F

)
+µ
(
∥B(W(k+1) − W∗)∥2

F − ∥B(W(k) − W∗)∥2
F

)
.
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Consequently, (34) is equivalent to

1
µ

(
∥Y(k+1) − Y∗∥2

F − ∥Y(k) − Y∗∥2
F

)
+µ
(
∥B(W(k+1) − W∗)∥2

F − ∥B(W(k) − W∗)∥2
F

)
+µ
(
∥E(k+1) −B(W(k+1) − W(k))∥2

F

)
≤ 0,

in other words,

ξk − ξk+1 ≥ µ
(
∥E(k+1) −B(W(k+1) − W(k))∥2

F

)
≥ 0.

Thus, ξk decreases.
Further, in order to obtain (33), it only suffices to verify that the term ⟨E(k+1),B(W(k+1) −

W(k))⟩ ≤ 0. In fact, recalling that W(k+1) minimizes −Tr(AlWB⊤
l ) + ⟨Y(k+1),BW⟩ and W(k)

minimizes −Tr(AlWB⊤
l ) + ⟨Y(k),BW⟩ in Lemma 2, we can add

− Tr(AlW(k+1)B⊤
l ) + ⟨Y(k+1),BWk+1⟩

≤ − Tr(AlW(k)B⊤
l ) + ⟨Y(k+1),BW(k)⟩

and

− Tr(AlW(k)B⊤
l ) + ⟨Y(k),BW(k)⟩

≤ − Tr(AlW(k+1)B⊤
l ) + ⟨Y(k),BW(k+1)⟩

to obtain that
⟨Y(k+1) − Y(k),B(W(k+1) − W(k))⟩ ≤ 0.

Combining Y(k+1) − Y(k) = µE(k+1) and µ > 0, we have

µ⟨E(k+1),B(W(k+1) − W(k))⟩ ≤ 0.

This completes the proof.

Based on the above results, the following convergence theorem is established.

Theorem 1. Under the conditions of Lemmas 1–3, the iterative solution (X(k), W(k)) converges to
the optimal solution when k tends to infinity. Namely, gk → g∗ as k → ∞.

Proof. From Lemma 3, ξk decreases in each iteration and meets

ξk − ξk+1 ≥ µ(∥E(k+1)∥2
F + ∥B(W(k+1) − W(k))∥2

F).

Adding all the terms on both sides and rearranging it, we have

∞

∑
k=1

(
µ(∥E(k+1)∥2

F + ∥B(W(k+1) − W(k))∥2
F)
)

≤
∞

∑
k=1

(ξk − ξk+1) ≤ ξ1 < ∞.

This indicates ∥E(k+1)∥2
F + ∥B(W(k+1) − W(k))∥2

F → 0 (as k → ∞). Due to the non-
negativity of the Frobenius norm, we know E(k+1) → 0 and B(W(k+1) − W(k)) → 0
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when k → ∞. By the definition of A and B, it is easy to find W(k+1) − W(k) → 0 and
X(k+1) − X(k) → 0. Combining Lemmas 1 and 2, it follows that

g∗ − g(k+1) ≤⟨Y∗,AX(k+1) + BW(k+1) − Z⟩

=⟨Y∗, E(k+1)⟩ → 0,

and

g(k+1) − g∗ ≤µ⟨B(W(k+1) − W(k)),B(W(k+1) − W∗)− E(k+1)⟩

− ⟨Y(k+1), E(k+1)⟩ → 0

when k → ∞. That is to say, gk → g∗ as k → ∞. This completes the proof.

In terms of Theorem 1, it can be seen that the iteration solution to the objective
function approximates the optimal value, illuminating the convergence property of the
proposed method.

Remark 1. The GMC-GBTNR model enhances the geometric matrix completion task by incorpo-
rating both row-graph and column-graph structures. It advances beyond traditional model-driven
methods by integrating structural information with truncated norm details, offering a more compre-
hensive solution to matrix completion challenges. Unlike the data-driven model, which may lack
a solid theoretical underpinning, the GMC-GBTNR stands on a firm theoretical foundation. Its
convergence properties, as substantiated in Section 4.3, provide a reliable basis for its effectiveness,
making it a robust and theoretically sound approach in the realm of recommendation systems.
The GMC-GBTNR framework, while effective, can potentially be elevated by integrating both data-
driven and model-driven schemes. Such a hybrid approach may yield even better performance in
recommendation tasks due to its comprehensive analysis of data and underlying theoretical models.
Nonetheless, crafting a theoretical framework for this hybrid model presents a significant challenge,
one that is complex and nuanced, and thus, it remains an area for future research exploration. This
endeavor would aim to balance the empirical strengths of data-driven methods with the predictive
reliability of model-driven frameworks, carving out new frontiers in the recommendation domain.

5. Experiments
5.1. Datasets

In our experiments, we employ five specialized datasets focusing on learning resources,
as meticulously described in reference [44], detailed as follows:

• Ratings dataset (RA) (https://www.kaggle.com/philippsp/book-recommender-collaborative-
filtering-shiny, accessed on 1 September 2023): This learning resource dataset encompasses
an extensive compilation of book evaluations, featuring approximately 980,000 ratings
for 10,000 titles by 53,424 participants. It showcases the application of collaborative
filtering techniques, providing an insightful perspective on algorithm-based book
recommendations.

• BX-Book-ratings dataset (BBA) (https://www.kaggle.com/ruchi798/bookcrossing-
dataset, accessed on on 1 September 2023): This dataset is a comprehensive aggre-
gation of book assessments, comprising 1,149,780 ratings (both explicit and implicit)
contributed by 105,283 users for roughly 340,556 books.

• Ratings-Books dataset (RAB) (https://jmcauley.ucsd.edu/data/amazon/, accessed
on on 1 September 2023): It includes a vast array of Amazon product evaluations, last
updated in 2018. It comprises a detailed collection of data points such as user, item,
rating, and timestamp.

• Related-Article Recommendation dataset (RAR) (https://doi.org/10.7910/DVN/
AT4MNE, accessed on on 1 September 2023): It originates from a recommender
system utilized in the context of digital libraries and reference management soft-

https://www.kaggle.com/philippsp/book-recommender-collaborative-filtering-shiny
https://www.kaggle.com/philippsp/book-recommender-collaborative-filtering-shiny
https://www.kaggle.com/ruchi798/bookcrossing-dataset
https://www.kaggle.com/ruchi798/bookcrossing-dataset
https://jmcauley.ucsd.edu/data/amazon/
https://doi.org/10.7910/DVN/AT4MNE
https://doi.org/10.7910/DVN/AT4MNE
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ware. This dataset is specifically oriented towards literature, featuring 2,663,825 users,
7,224,279 books, and a total of 48,879,167 evaluations.

• LibraryThings dataset (LT) (https://cseweb.ucsd.edu/jmcauley/datasets.html, ac-
cessed on on 1 September 2023): It not only provides book ratings but also delves into
the social connections among its 70,618 users. It contains 1,387,125 ratings covering
385,251 books. The integration of social interactions and rating correlations in this
dataset has yielded optimal results.

These datasets exhibit a high level of sparsity, indicating that many users or learning
resources have received only a limited number of ratings. In our experiments, alternative
versions of these datasets have been created for comparative analysis. Initially, in each
dataset, we selectively focus on users and learning resources that have received a minimum
of ten ratings. This approach is strategically implemented to effectively mitigate the
significant challenge posed by extensive data sparsity. Then, from the refined version of
each dataset, we only choose 3000 users and 3000 items, along with the associated ratings
linked to these specific user–item interactions. Table 1 summarizes the statistics of these five
real-world datasets with details for the number of users, the number of items, the available
graph type, the number of ratings, and the density.

Table 1. Statistics of datasets for evaluation. For the “Graphs”, “Users/Items" denotes that both user
graph and item graph are used.

Dataset #Users #Items Graphs #Ratings Density

RA 3000 3000 Users/Items 16,500 0.0018
BBA 3000 3000 Users/Items 10,000 0.0011
RAB 3000 3000 Users/Items 10,800 0.0012
RAR 3000 3000 Users/Items 8100 0.0009
LT 3000 3000 Users/Items 11,700 0.0013

5.2. Baselines and Experimental Setting

In the experiments, we compare our proposed GMC-GBTNR model to the five existing
approaches for matrix completion, detailed as follows:

• IALM [17]: This foundational approach employs the inexact augmented Lagrange
multiplier method for precise matrix completion.

• MEN [20]: This strategy incorporates the elastic-net regularization scheme, tailored
specifically for matrix recovery.

• TNN [19]: This model is notable for being the first to introduce the truncated nuclear
norm method in the realm of matrix completion.

• TNNWRE [21]: Building upon TNN [19], this method enhances it by applying differ-
ential weights to the rows of the residual error matrix within an augmented Lagrange
function. This modification is designed to expedite the model’s convergence.

• GMC [10]: This advanced approach utilizes a deep learning framework, based on a
multi-graph convolutional neural network architecture, for effective matrix completion.

• SMC [34]: The method described is a spectral geometric matrix completion approach,
specifically designed to account for the underlying geometric or topological relation-
ships among the rows and/or columns.

• FMC [15]: This method extends and enhances SMC [34], adopting a functional per-
spective tailored for geometric matrix completion. It employs a reduced basis to
represent a function on the product space of two graphs, which inherently provides
robust regularization.

Each of these methodologies provides a unique perspective on matrix completion,
against which we assess the efficacy of our proposed method. On the other hand, in assess-
ing the models, this study employs the root mean square error (RMSE), a widely recognized

https://cseweb.ucsd.edu/ jmcauley/datasets.html
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metric in the field of recommender systems. This is computed using the formula given
as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2,

where yi represents the actual rating value, ŷi is the predicted rating value, and N denotes
the total number of missing values/elements in the matrix.

5.3. Results and Discussion

In our experiments, we conduct a performance comparison across five real-world
datasets (RA, BBA, RAB, RAR, and LT) using various matrix completion methods. As shown
in Table 2, the evaluation encompasses a range of established approaches such as IALM,
MEN, TNN, TNNWRE, and GMC, alongside our novel GMC-GBTNR method. The re-
sults clearly demonstrate the efficacy of these methods in handling the complexities of
different datasets. For instance, in the RA and BBA datasets, while the GMC method
shows impressive results with scores of 0.8823 and 3.2578, respectively, our GMC-GBTNR
method outshines the rest by recording the lowest and thus the most favorable scores of
0.8252 and 3.1256, respectively. This suggests a significant enhancement in matrix comple-
tion capabilities, highlighting the strengths of our approach in these particular datasets.
In particular, in the RA and BBA datasets, the method’s superior scores not only demon-
strate its effectiveness but also suggest a more nuanced understanding and handling of
the inherent complexities within these datasets. This might include better capturing of
user–item interactions or more accurately modeling sparse data. In the RAB, RAR, and LT
datasets, GMC-GBTNR’s consistent outperformance over other methods like TNNWRE
indicates its robust adaptability to different data structures and types. These results could
be attributed to the method’s advanced algorithmic structure, which effectively leverages
the truncated Dirichlet norms. The truncated Dirichlet norms in the GMC-GBTNR model
play a crucial role in enhancing its matrix completion capabilities. These norms function
by prioritizing the significant singular values and corresponding eigenvectors in the data,
allowing the model to focus on the most impactful features. This selective emphasis is
particularly effective in datasets with complex structures or sparse information, as it filters
out noise and less relevant details. By homing in on these key elements, GMC-GBTNR can
achieve more accurate and robust predictions, as evidenced by its remarkable performance
across varied datasets. This approach illustrates the model’s advanced analytical capacity,
making it a powerful tool in discerning and leveraging the essential characteristics of data
for superior recommendations.

Furthermore, the performance metrics in the remaining datasets—RAB, RAR, and
LT—reiterate the superior performance of the GMC-GBTNR method. Across these datasets,
it consistently surpasses the other methods, marking a notable achievement in the field of
matrix completion. In RAR, for example, where the TNNWRE scores 0.0510, our method
advances further with a score of 0.0356. Similarly impressive is its performance in the
LT dataset, where it achieves a groundbreaking score of 0.8438, significantly ahead of
GMC’s 0.8780. These results not only validate the robustness and adaptability of our GMC-
GBTNR method but also underscore its potential as a leading solution in matrix completion.
By consistently outperforming across a spectrum of datasets, our method establishes a
new benchmark in accuracy and efficiency, paving the way for future advancements in
this domain.
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Table 2. Performance comparison for the five real-world datasets. The performance of our proposed
method, GMC-GBTNR, is emphasized with bold text, indicating its superior performance across all
datasets compared to the other methods.

Method
Dataset

RA BBA RAB RAR LT

IALM [17] 0.9567 3.6793 1.0634 0.0516 0.9278
MEN [20] 0.9313 3.5732 0.9812 0.0498 0.9132
TNN [19] 0.9236 3.4178 1.0416 0.0478 0.8921

TNNWRE [21] 0.9342 3.4322 0.9768 0.0510 0.9126
GMC [10] 0.8823 3.2578 0.9532 0.0452 0.8780
SMC [34] 0.8715 3.2468 0.9456 0.0441 0.8672
FMC [15] 0.8689 3.2319 0.9378 0.0436 0.8543

GMC-GBTNR 0.8252 3.1256 0.9216 0.0356 0.8438

5.4. Demonstration of Convergence

To illustrate the convergence characteristics of the proposed GMC-GBTNR model, we
present the loss curves (of RMSE values) for all five datasets. As depicted in Figure 1, each
curve initiates from a specific loss value and exhibits a pronounced decrease, transitioning
into a more gradual descent as it nears the 200-epoch mark. This pattern underscores a swift
initial improvement during the early covergence phase, followed by a progressive stabiliza-
tion in convergence rate. Notably, the distinct shapes and levels of the loss curves across the
datasets underscore the model’s adaptability and consistent convergence behavior despite
varying dataset complexities. This demonstration effectively showcases the effectiveness
of the GMC-GBTNR model in achieving convergence. It provides compelling empirical
evidence that supports and verifies our theoretical findings regarding the convergence
properties of the GMC-GBTNR model, as detailed in Section 4.3. The consistency observed
between the theoretical predictions and the practical outcomes underlines the reliability
and effectiveness of the GMC-GBTNR model in real-world applications.

(a) (b)

(c) (d) (e)
Figure 1. Demonstration for training loss convergence of GMC-GBTNR on five datasets: (a) RA,
(b) BBA, (c) RAB, (d) RAR, (e) LT.

Generally, the convergence property is crucial, as it ensures the stability and reliability
of our GMC-GBTNR model. In practical terms, it means that the model will consistently
produce accurate and dependable results over time, which is vital for applications in
real-world scenarios, as it guarantees that the model’s predictions become more accurate
and stable over time, regardless of initial conditions or minor changes in the input data.
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Theoretically and empirically, this convergence property is key for users who rely on
our model for consistent and dependable recommendations, ensuring that the system’s
performance remains robust and trustworthy in various scenarios.

5.5. Robustness Analysis

In this section, we investigate empirically the robustness of the proposed GMC-
GBTNR model. Specifically, we conduct additional experiments introducing varying
levels of white Gaussian noise into the rating matrix X ∈ Rm×n. This noise, represented
by M ∼ N (0, σ2) ∈ Rm×n, was calibrated using σ = p(max(X)− min(X)), where p varies
across a set {0.01, 0.03, 0.05, 0.08, 0.1}. This range of p values allowed us to systematically
test the model’s performance under different degrees of noise, providing a comprehensive
understanding of its resilience to data perturbations.

The experimental results in Table 3 reflect the robustness of the GMC-GBTNR algo-
rithm across five different datasets. Notably, as the noise level increases (with p values
ranging from 0.01 to 0.1), the performance of the GMC-GBTNR algorithm exhibits minimal
variation, indicating a gradual and stable behavior despite the introduction of noise. This
consistent performance across datasets such as RA, BBA, RAB, RAR, and LT suggests that
the model maintains its robustness, highlighting its reliability and effectiveness in various
conditions. The results are consistent across all datasets, further reinforcing the robust
nature of our proposed GMC-GBTNR model.

Table 3. Evaluation of GMC-GBTNR’s robustness across different levels of noise.

Case
Dataset

RA BBA RAB RAR LT

GMC-GBTNR (for p = 0.01) 0.8210 3.1198 0.9192 0.0326 0.8410
GMC-GBTNR (for p = 0.03) 0.8168 3.1172 0.9182 0.0318 0.8392
GMC-GBTNR (for p = 0.05) 0.8153 3.1103 0.9145 0.0307 0.8356
GMC-GBTNR (for p = 0.08) 0.8121 3.1056 0.9113 0.0301 0.8334
GMC-GBTNR (for p = 0.1) 0.8098 3.1012 0.9097 0.0298 0.8312

6. Conclusions and Future Work

In this paper, we introduce a novel geometric matrix completion method tailored for
learning resource recommendation, incorporating graph-based truncated norm regulariza-
tion. This approach not only reflects user-to-user and resource-to-resource relationships
but also integrates truncated Dirichlet norms for user and item graphs. This combination
enhances the model’s capacity to interpret complex data structures and merges the benefits
of truncated norm regularization with a thorough analysis of graph relationships. Sup-
ported by a comprehensive theoretical analysis and empirical validation across diverse
datasets, our GMC-GBTNR model demonstrates reliability and effectiveness in enhancing
recommendation systems, thus making a significant contribution to personalized educa-
tion and enriching our understanding of the dynamics of learner–resource interactions.
The GMC-GBTNR model, while effective in certain aspects, faces notable limitations. Its
scalability is a primary concern, as the model may struggle with the efficient processing
of large datasets, impacting its performance. Additionally, the model’s approach of gen-
erating row and column graphs without prior knowledge of the rating distribution can
be suboptimal, especially in scenarios where such information is critical. Furthermore,
the GMC-GBTNR model encounters challenges in handling extremely sparse rating ma-
trices, which can significantly affect its accuracy and reliability in extracting meaningful
insights from such data.

For future work, we aim to tackle the scalability in large educational datasets and
integrate domain-specific insights into our model. We also plan to explore the potential
of large language models (LLMs) to further refine the GMC-GBTNR model, enhancing
its relevance and effectiveness in personalized learning environments. We believe that
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these future directions promise to extend the impact and applicability of our research in
the rapidly evolving field of online education.
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