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Abstract: A new boundary integral equation for the interface function of a curved solid/liquid
phase interface propagating into an undercooled one-component melt is derived in the presence of
a solid wall in liquid. Green’s function technique is used to transform a purely thermal boundary
value problem to a single integro-differential equation for the interface function in two- and three-
dimensional cases. It is shown that a solid wall represents an additional source of heat and melt
undercooling can be negative in the vicinity of the wall. The new boundary integral equation has a
limiting transition to previously developed theory in the absence of a solid wall.
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1. Introduction

Directional and volumetric crystallization are the basis of many technological so-
lidification processes and are often found in nature (e.g., freezing of water and various
solutions, solidification of magma) [1–7]. Mathematical models of such processes are
based on the description of heat and mass transfer in solid and liquid phases separated
by a moving crystallization front. This interphase boundary is generally curvilinear and
moves according to a certain time-dependent law, which is determined by solving the prob-
lem. The mathematical model of a purely thermal problem was first formulated by Josef
Stephan [8–11], and all problems with a moving boundary of phase transformation now
bear his name. Note that, in general, the unsteady Stefan problem has no exact analytical
solution, and the solution of each individual model strongly depends on the geometry of
the crystallization domain and boundary conditions. The solution to such problems is usu-
ally constructed using approximate analytical (e.g., the method of differential series [12,13])
and numerical (e.g., the method of fixed boundaries [14]) methods.

One of the fruitful approaches to solving the Stefan problem is the method of boundary
integral equation (BIE), first proposed by Nash and Glicksman [15,16]. The idea of this
method is to derive an integro-differential equation for the interface function determining
the position and velocity of the crystallization front. Note that such an equation was derived
in [15,16] for a purely thermal problem. The BIE that describes the thermal concentration
problem was derived by Alexandrov and Galenko [17] in the case of parabolic mass transfer
in the melt/solution. Further, they considered the scenario of local non-equilibrium (fast)
crystallization described by a hyperbolic impurity diffusion equation and derived the
corresponding BIE [18]. Note that the high-speed BIE has a limiting transition to the low-
speed BIE [18]. An important step in the BIE theory was the case of convective fluid flows
considered in [19,20]. Note that the BIE allows us to study the morphological stability of
interfacial boundaries of a certain shape [21–23], derive the selection criterion of stable
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growth mode for dendritic crystals [24–26], as well as study the shape and evolution of
various patterns [27].

In this paper, we derive a new BIE for the case when a single-component melt or
solution crystallizes under the significant influence of a solid wall in liquid. Examples of
such processes are (i) dendritic growth in a mold, (ii) freezing of water in lakes of shallow
depth, (iii) and solidification of lava in magma chambers. The new BIE has a limiting
transition to the previously developed theory in the absence of a solid wall and is found
below for 2D and 3D cases.

2. 2D Boundary Integral Equation

Let us consider the evolution of a curved solid/liquid phase transition boundary in an
undercooled one-component liquid in the presence of a solid wall (Figure 1). Below, we
assume that the one-component melt is motionless, and the BIE is written out in a reference
frame that is moving with a constant (V) toward the liquid phase. Also, we assume that the
temperature conductivity coefficient DT is the same constant in both phases. In addition,
the solid wall is smooth and planar; no particle nucleation occurs in the bulk melt or at the
solid wall. The temperature field in the solid and liquid phases satisfies the temperature
conductivity equation in a reference frame that is moving with a constant velocity (V) [28]

DT∇2T − ∂T
∂t

+ V
∂T
∂z

= 0, (1)

where T is the temperature, DT is the thermal conductivity, t is the time and V is the
constant velocity of moving Cartesian coordinate systems x, y, and z fixed on the growing
crystal (steady-state growth rate). The boundary conditions at the solid/liquid interface
take the form [17,20,22,25]

T = Ti = T0 − dcK
Q
cp

− β̃

(
V +

∂ζ

∂t

)
,

DT

(
∇Tsolid −∇Tliquid

)
· ds =

Q
cp

(
V +

∂ζ

∂t

)
d2x,

(2)

where dc is the anisotropy capillary length, K is the average interface curvature, Q is the
latent heat of crystallization, cp is the heat capacity, β̃ is the kinetic coefficient, Ti is the
interfacial temperature, T0 is the phase transition temperature for a flat crystallization
front, ds is the surface area vector element directed towards the liquid phase, and ζ(x, t)
is the interface function. Let us especially emphasize that ζ(x, t) represents a curved line
in 2D whereas ζ(x, y, t) is a crystal surface in 3D. Note that the boundary conditions (2)
represent the Gibbs–Thomson and heat balance conditions, respectively. The average
interface curvature K in a two-dimensional case is determined as

K(x, t) = − ∂2ζ/∂x2[
1 + (∂ζ/∂x)2

]3/2 . (3)

Here, we consider how a solid wall z = z0 kept at a fixed temperature

T(z0) = T1 = const. (4)

influences the boundary integral equation. To do this, we use Green’s function G(p|p1) to
derive an integro-differential equation for the interface function ζ(x, t). Green’s function
satisfies the following equation and boundary condition [28,29]

∂G(p|p1)

∂t1
+ DT∇2

1G(p|p1)− V
∂G(p|p1)

∂z1
= −δ(p − p1),

G(x, z0, t|x1, z1, t1) = 0,
(5)



Mathematics 2024, 12, 327 3 of 11

where p = (x, z, t) and p1 = (x1, z1, t1).

Figure 1. A scheme of solid/liquid interface propagation into an undercooled liquid in the presence
of a solid wall z = z0.

Applying the method of images to Green’s function for an infinite domain [29], we
construct Green’s function for the problem under question with a solid wall as follows

G(p|p1) =
1

4πDT(t − t1)

[
exp

(
− (x − x1)

2 + (z − z1 + V(t − t1))
2

4DT(t − t1)

)
−exp

(
− (x − x1)

2 + (z − 2z0 + z1 − V(t − t1))
2

4DT(t − t1)

)]
.

(6)

It is easily seen that Green’s function (6) satisfies the boundary value problem (5).
Note that the first term in expression (6) coincides with Green’s function for the unbounded
problem [30] (when a solid wall is absent).

Next, multiplying Equation (1) taken at point p1 by G(p|p1) and then subtracting
Equation (5) multiplied by T(p1), we obtain

DT

(
G(p|p1)∇2

1T − T(p1)∇2
1G(p|p1)

)
− G(p|p1)

∂T
∂t1

− T(p1)
∂G(p|p1)

∂t1

+V
(

G(p|p1)
∂T
∂z1

+ T(p1)
∂G
∂z1

)
= δ(p − p1)T(p1).

(7)

Now, we integrate Equation (7) over time and volume

DT

t+ε∫
−∞

∫
Λ1

(
G(p|p1)∇2

1T − T(p1)∇2
1G(p|p1)

)
dt1dx1dz1

−
∫

Λ1

G(p|p1)T(p1)|t1→t+ε
t1→−∞dx1dz1 + V

t+ε∫
−∞

∞∫
−∞

G(p|p1)T(p1)|z1→z0
z1→−∞dx1dt1 = T(p),

(8)

where ε > 0 is an infinitely small parameter and Λ1 is an integration domain without the
interface ζ(x, t) (−∞ < x1 < ∞, −∞ < z1 < z0).

The second integral in Equation (8) vanishes since Equation (6) gives zero in the limit
t1 → −∞, and G(p|p1) = 0 when t1 > t (causality condition). Considering the third
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integral in (8) with allowance for T(z1 → z0) = T1 = const. and T(z1 → −∞) = const., we
are able to integrate Green’s function as follows

V
t+ε∫

−∞

∞∫
−∞

G(p|p1)dx1dt1 =

 exp
(
(z1 − z)

V
DT

)
, z > z1,

1, z < z1.

−

 exp
(
(z1 + z − 2z0)

V
DT

)
, z − 2z0 + z1 < 0,

1, z − 2z0 + z1 > 0.

(9)

Here, the coordinate z1 ∈ (z0,−∞). At z1 → −∞, both terms on the right-hand side
of expression (9) are vanishing. Considering the boundary z1 = z0 and taking into account
that the total domain of the problem under question is bounded by the solid wall, we
arrive at

V
t+ε∫

−∞

∞∫
−∞

G(p|p1)T(p1)|z1→z0
z1→−∞dx1dt1 = T1

(
1 − exp

(
(z − z0)

V
DT

))
. (10)

Now, we apply Green’s second identity to the first term in (8)

t+ε∫
−∞

∫
Λ1

(
G(p|p1)∇2

1T − T(p1)∇2
1G(p|p1)

)
dt1dx1dz1

=

t+ε∫
−∞

∫
S1

(G(p|p1)∇1T − T(p1)∇1G(p|p1)) · dS1dt1,

(11)

where S1 is a boundary encompassing the volume Λ1 in 3D. By substituting (10) and (11)
into (8), we have

DT

t+ε∫
−∞

∫
S1

(G(p|p1)∇1T − T(p1)∇1G(p|p1)) · dS1dt1

+T1

(
1 − exp

(
(z − z0)

V
DT

))
= T(p).

(12)

The integral containing ∇1G(p|p1) vanishes due to the continuity of temperature
T [28,30]. Approaching the point p to the interface and using the heat balance condition (2),
we come to

Q
cp

t+ε∫
−∞

∞∫
−∞

G(p|p1)

(
V +

∂ζ1

∂t1

)
dt1dx1 + T1

(
1 − exp

(
(ζ − z0)

V
DT

))
= Ti, (13)

where ζ1 = ζ(x1, t1).
The final step is to use the Gibbs–Thomson condition (2), which gives

∆ − dcK+ T2 exp
(
(ζ − z0)

V
DT

)
− β

(
V +

∂ζ

∂t

)

=

t+ε∫
−∞

∞∫
−∞

G(p|p1)

(
V +

∂ζ1

∂t1

)
dt1dx1.

(14)
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Here, Green’s function G(p|p1) is defined by expression (6), β = β̃cp/Q and we intro-
duce the dimensionless undercooling ∆ = (T0 − T1)cp/Q and temperature
T2 = T1cp/Q. Note that Equation (14) transforms to the corresponding BIE in the case of
an unbounded domain at z0 → ∞, i.e., (see, among others, [15,30])

∆ − dcK− β

(
V +

∂ζ

∂t

)

=
1

4πDT

t+ε∫
−∞

∞∫
−∞

1
t − t1

exp
(
− (x − x1)

2 + (ζ − ζ1 + V(t − t1))
2

4DT(t − t1)

)(
V +

∂ζ1

∂t1

)
dt1dx1.

(15)

As a special note, Equation (15) has a particular solution for a parabolic/paraboloidal
dendrite previously discussed by Brener and Mel’nikov [25]. These dendritic shapes are
the exact solutions of the BIE (15) in 2D and 3D cases when the interface curvature K is
negligible or constant.

3. 2D Stationary Crystallization

Let us write the BIE (14) in dimensionless coordinates, where the dendrite tip diameter
ρ plays the role of the length scale, and z0, ζ, and x (ζ1 and x1) are now dimensionless
(for the sake of simplicity, we use here the same designations). In addition, we use the
dimensionless time and spatial coordinates in the BIE with time scale ρ/V. As a result,
we have

∆ − dc

ρ
K+ T2 exp((ζ − z0)2PT)− βV

(
1 +

∂ζ

∂t

)

=
PT
2π

∞∫
0

∞∫
−∞

exp
(
−PT

2τ
(x − x1)

2
)[

exp
(
−PT

2τ
(ζ − ζ1 + τ)2

)

−exp
(
−PT

2τ
(ζ − 2z0 + ζ1 − τ)2

)](
1 +

∂ζ1(x1, t − τ)

∂t

)
dτ

τ
dx1.

(16)

Here, τ = t − t1 and PT = ρV/(2DT) is the Péclet number. Let us consider the
frequently occurring case of steady-state crystal growth with a constant velocity. Under
such conditions, the interface function ζ = ζ(x) does not depend on time and the BIE (16)
transforms to

∆ − dc

ρ
K+ T2 exp((ζ − z0)2PT)− βV =

PT
2π

×

 ∞∫
−∞

dx1 exp(PT(ζ1 − ζ))

∞∫
0

dτ

τ
exp

(
−PT

2

(
(x − x1)

2 + (ζ − ζ1)
2

τ
+ τ

))

−
∞∫

−∞

dx1 exp(PT(ζ1 + ζ0))

∞∫
0

dτ

τ
exp

(
−PT

2

(
(x − x1)

2 + (ζ0 + ζ1)
2

τ
+ τ

))
(17)

with ζ0 = ζ − 2z0. Replacing the variable τ in (17) by y1 and y2

τ√
(x − x1)2 + (ζ − ζ1)2

= y1,
τ√

(x − x1)2 + (ζ0 + ζ1)2
= y2, (18)

and taking into account that the integrals over y1 and y2 are even functions, we obtain
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∆ − dc

ρ
K+ T2 exp((ζ − z0)2PT)− βV =

PT
π

×

 ∞∫
−∞

dx1 exp(PT(ζ1 − ζ))

∞∫
0

dy1 exp
(
−PT

2

√
(x − x1)2 + (ζ − ζ1)2

(
ey1 + e−y1

))

−
∞∫

−∞

dx1 exp(PT(ζ1 + ζ0))

∞∫
0

dy2 exp
(
−PT

2

√
(x − x1)2 + (ζ0 + ζ1)2

(
ey2 + e−y2

)).

(19)

By using the definition of the modified Bessel function, we now come to the BIE
describing the steady-state crystal growth

∆ − dc

ρ
K+ T2 exp((ζ − z0)2PT)− βV =

PT
π

×

 ∞∫
−∞

dx1 exp(PT(ζ1 − ζ))K0

(
−PT

√
(x − x1)2 + (ζ − ζ1)2

)

−
∞∫

−∞

dx1 exp(PT(ζ1 + ζ0))K0

(
−PT

√
(x − x1)2 + (ζ0 + ζ1)2

).

(20)

4. Parabolic Dendrite

As a special case, we consider the growth of a parabolic dendrite with the dimension-
less interface function

ζ = − x2

2
, ζ1 = −

x2
1

2
, (21)

Substituting the interface function (21) into the BIE (14) and integrating Green’s
function over the unbounded region, we have

∆ − dcK
ρ

+ T2 exp
(
−PT(x2 + 2z0)

)
− βV =

√
πPT exp(PT)erfc(

√
PT)

−
∞∫

0

∞∫
−∞

PT
2πτ

exp

−PT
2τ

(x − x1)
2 +

(
2z0 +

x2 + x2
1

2
+ τ

)2
dτdx1.

(22)

Figures 2 and 3 show the melt undercooling determined by Equation (22). As can be
seen, the wall represents an additional source of heat and the undercooling can be negative
at small distances from the wall. In this case, we have melting instead of crystallization.
It should be emphasized that melt undercooling depends only on the Péclet number if
there is no solid wall and if interface curvature is constant or negligible. Contrary to this,
melt undercooling is a function of both the Péclet number and the distance between the
crystal and the solid wall in a semi-bounded problem. In addition, this distance depends
on the x-coordinate. It means that the interface temperature and melt undercooling are also
dependent on x.
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Figure 2. Undercooling at different distances from the flat wall, x = 0, T1 = 1680 K, β = dc = 0.

Figure 3. Undercooling at different distances from the flat wall at fixed PT = 2 × 10−4, T1 = 1680 K,
β = dc = 0.

5. 3D Boundary Integral Equation

Here, we consider a more general and realistic case of the three-dimensional problem
defined by Equations (1), (2), and (4). Green’s function for the 3D problem reads as

G3D(p|p1) =

(
DT

πV2(t − t1)

)3/2[
exp

(
−|x − x1|2 + (z − z1 + V(t − t1))

2

4DT(t − t1)

)
−exp

(
−|x − x1|2 + (z − 2z0 + z1 − V(t − t1))

2

4DT(t − t1)

)]
.

(23)
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Here, p = (x, y, z, t), p1 = (x1, y1, z1, t1), x = (x, y), and x1 = (x1, y1). The 3D
boundary integral equation can be obtained by analogy with the 2D case. In dimensionless
coordinates, it takes the form of

∆ − dc

ρ
K+ T2 exp((ζ − 2z0)PT)− βV

(
1 +

∂ζ

∂t

)

=

(
PT
2π

)3/2 ∞∫
0

dτ

τ3/2

∞∫
−∞

∞∫
−∞

[
exp

(
−PT

2τ

[
|x − x1|2 + (ζ − ζ1 + τ)2

)]

−exp
(
−PT

2τ

[
|x − x1|2 + (ζ − 2z0 + ζ1 − τ)2

])(
1 +

∂ζ1

∂t1

)]
dx1dy1.

(24)

6. Paraboloid of Revolution

The steady-state growth of a needle 3D dendrite can be modeled by the BIE with a
paraboloid of revolution as an interface function

ζ = − x2 + y2

2
, ζ1 = −

x2
1 + y2

1
2

. (25)

In the dimensionless time and spatial coordinates defined in Section 4, the BIE (14) for
the phase transition interface (25) transforms to

∆ − dcK
ρ

+ T2 exp
(
−PT(x2 + y2 + 2z0)

)
− βV

= PT exp(PT)

∞∫
1

exp(−PTη)

η
dη −

(
PT
2π

)3/2 ∞∫
0

dτ

τ3/2

×
∞∫

−∞

∞∫
−∞

dx1dy1 exp

−PT
2τ

|x − x1|2 +
(

2z0 +
x2 + y2 + x2

1 + y2
1

2
+ τ

)2
.

(26)

7. Conclusions

In this paper, we derive a new boundary integral equation (BIE) for the interface
function describing the motion of an interfacial boundary in a semi-bounded domain of
supercooled melt adjacent to a solid wall of constant temperature. Such a temperature
regime can be achieved in practice by artificially maintaining a constant temperature at
the boundary (e.g., on the walls of an ingot mold, an ice surface, or the bottom of a lava
chamber). This new BIE is derived using Green’s function technique for both 2D and 3D
cases (formulas (14) and (24), respectively). The derived BIE transitions to the previously
known theory if we take the distance between the solid/liquid interface and the solid wall
to infinity. The new BIE has been analyzed for the growth of a parabolic dendrite. The
solution shows that melt undercooling near a solid wall can become negative because such
a wall reflects heat. This in turn leads to the melting of the crystal instead of solidification.
An important fact is that the total melt undercooling depends on both the Péclet number
and the distance between a curved crystal surface and the solid wall. This means that
this undercooling is different at different points on the crystal surface. This means that
the dendrite tip slows down as it approaches the wall due to a smaller driving force
(melt supercooling). Therefore, the dendrite shape (the surface that envelops its tip and
secondary branches) becomes wider near a solid wall. If we consider the growth of several
dendrites together (the growth of a dendritic forest), a crystal evolving close to a given
dendrite can act as a solid wall (heat source). Therefore, the growth of dendritic branches
in the corresponding spatial direction will be retarded. This conclusion is confirmed by
experimental data and computer simulations of dendritic growth [31], where the near-
complete disappearance of secondary branches of neighboring dendrites was recorded.

In summary, the following new results have been obtained:
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• A new BIE for a curved solid/liquid interface propagating into a single-component
supercooled melt with a solid wall of constant temperature has been derived.

• An analytical solution of this BIE for a parabolic dendrite is obtained. This solution
demonstrates that melt undercooling near a solid surface can be negative when the
wall reflects heat and melting occurs.

• It has been shown that the solid wall leads to a smaller driving force, which decelerates
the dendrite tip motion and enlarges the crystal shape.

It is of interest to generalize this theory to the effect of a curved solid wall or several
solid walls in the melt, modeling the real geometry of an ingot mold [32,33]. An important
step is also the generalization of the theory for binary melts, where the impurity redistri-
bution upstream of the solid/liquid interface as well as impurity absorption by the solid
phase play a decisive role in the crystallization process and the properties of the solidified
phase. Since improved properties of materials are often observed at high crystal growth
rates, generalization is also required for local nonequilibrium solidification processes with
hyperbolic mass transfer in liquid [18,34–39]. The BIE should also be generalized for
convective solidification in the presence of a solid wall [19,20,40–43]. The BIE describing
the morphology of solid phase protrusions in the two-phase region can also be used to
determine the solid phase fraction in this region and, consequently, how the heat and
mass transfer coefficient depends on the solid phase fraction. Therefore, it is reasonable to
combine the present approach with the two-phase region theory [44–50] for more accurate
modeling of the directional solidification process. The influence of these effects is important
for studying the dynamics of a curved crystallization front in the presence of a solid wall.
For this purpose, it is necessary to use the boundary integral method under consideration
(developed in the presence of a solid wall) and the theories of the aforementioned papers
(elaborated on in the absence of a solid wall).
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