
Citation: Bouyuklieva, S.; Bouyukliev,

I. How to Find the Equivalence

Classes in a Set of Linear Codes

in Practice? Mathematics 2024, 12, 328.

https://doi.org/10.3390/

math12020328

Academic Editor: Raúl M. Falcón

Received: 16 December 2023

Revised: 14 January 2024

Accepted: 17 January 2024

Published: 19 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

How to Find the Equivalence Classes in a Set of Linear Codes
in Practice?
Stefka Bouyuklieva 1,* and Iliya Bouyukliev 2

1 Faculty of Mathematics and Informatics, St. Cyril and St. Methodius University of Veliko Tarnovo,
5000 Veliko Tarnovo, Bulgaria

2 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 5000 Veliko Tarnovo, Bulgaria;
iliyab@math.bas.bg

* Correspondence: stefka@ts.uni-vt.bg

Abstract: An algorithm for equivalence of linear codes over finite fields is presented. Its main
advantage is that it can extract exactly one representative from each equivalence class among a large
number of linear codes. It can also be used as a test for isomorphism of binary matrices. The algorithm
is implemented in the program LCEQUIVALENCE, which is designed to obtain the inequivalent codes
in a set of linear codes over a finite field with q < 64 elements. This program is a module of the free
software package QEXTNEWEDITION for constructing, classifying and studying linear codes.

Keywords: linear code; code equivalence; canonical form; graph isomorphism problem

MSC: 94B05; 05A18

1. Introduction

Solving classification problems is of interest for both practical and theoretical reasons.
Already, Felix Klein in his Erlanger Programm (1872) [1] described mathematics as the study
of properties of sets that remain invariant under certain specified groups of transformations.
The classification of codes with given parameters and/or properties is one of the main
problems in Coding theory. Two equivalent codes are considered to be the same code, and
one can replace the other if it is more convenient in the corresponding practical application.
For example, we say that there is only one Reed–Muller [32, 16, 8] binary code, but in
fact there are many different codes with these parameters and they are all equivalent to
each other. Some algorithms for construction and/or classification of linear codes use the
set of all inequivalent codes with smaller parameters and/or given properties. For more
theoretical and practical issues of the classification problem we refer to the book of Kaski
and Östergård, Classification Algorithms for Codes and Designs [2]. The equivalence test is the
main part in any classification algorithm.

In this paper, we describe the algorithm implemented in the program LCEQUIVALENCE,
which can be downloaded from the website [3]. The program uses as input a file with
generator matrices of linear codes over a finite field Fq with q < 64 elements and gives as
output a maximum set of inequivalent codes among them. Moreover, it calculates the order of
the automorphism group of a codes and presents the orbits of the coordinates with respect to
this group.

Although there are many classification results, the known algorithms for equivalence
of linear codes that are implemented in a software are the algorithm of J. Leon [4] (imple-
mented in MAGMA [5] and GAP [6]), the algorithm of Thomas Feulner [7] (implemented
in SAGEMATH [8]) and Bouyukliev’s algorithm [9] (implemented in Q-EXTENSION). An
algorithm was proposed by N. Sendrier in [10], but his algorithm has mostly theoretical
value. There are many papers considering the complexity of the code equivalence problem
(we distinguish the papers [11,12]). Each of the respective programs has its advantages and

Mathematics 2024, 12, 328. https://doi.org/10.3390/math12020328 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020328
https://doi.org/10.3390/math12020328
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9557-4749
https://orcid.org/0000-0002-6730-1129
https://doi.org/10.3390/math12020328
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020328?type=check_update&version=1

Mathematics 2024, 12, 328 2 of 14

limitations, and in our opinion it is good to have more choice so that users can test and use
the software that is most suitable for their particular research.

Leon’s algorithm checks two codes for equivalence and computes automorphism
groups. It is implemented in the computer algebra system MAGMA, which is not freely
available, and to compare more codes, a program must be written for it. The same algorithm
is implemented in the free computer algebra system GAP, but only for the binary case,
i.e., for linear codes over F2. Feulner’s program can only be used via the computer algebra
system SAGEMATH (as far as we know), so if one wants to use this algorithm one must be
familiar with that system. The algorithm implemented in Q-EXTENSION works with codes
over fields with up to 5 elements.

As main advantages of the program LCEQUIVALENCE, we can point out the following:
(1) it can be used to find the inequivalent among a huge number of linear codes; (2) it
works for codes over prime and composite fields with q < 64 elements; (3) the limits on the
length and dimension of the considered codes depend only on the used hardware and the
computational time (not on the algorithm). As far as we know, there is no other program
for the equivalence test of a large number of linear codes. The algorithms implemented in
popular packages for computations with linear codes, such as MAGMA and GAP package
GUAVA, check pairs of codes for equivalence, and if the researcher needs to test more
codes, he/she has to write a program to use this check.

The main idea of the algorithm is to associate each code (regardless of what field it is
over) with a binary matrix, so that two codes are equivalent if and only if the corresponding
binary matrices are isomorphic. A similar idea was used in [9], but the problem there is
that not every automorphism of the binary matrix used is an automorphism of the code,
therefore additional verification is needed.

Algebraically, an equivalence relation can be considered in terms of the action of a
finite group G on a set of objects Ω. Then, the equivalence classes coincide with the orbits
under this action, so two objects are equivalent if and only if they belong to the same orbit
of G on Ω [2]. The efficiency of some algorithms depends mostly on the order of the group
G, and if it is too large, the equivalence test becomes a very hard problem.

We use an algorithm that involves obtaining canonical forms for the objects using a
canonical representative map. To check whether X ∼= Y we only need to compare their
canonical forms. This approach is used in [9,13]. In most cases, algorithms of this type are
more efficient and faster.

The paper is organized as follows. In Section 2, we present some important definitions
that we need in our research. In Section 3, we discuss the representation of the linear
codes as binary matrices. This representation is very important for the algorithm which is
described in the following Section 4. Some computational results are shown in Section 5. In
the end, before the references, we give a small conclusion.

2. Preliminaries

In this section, we present the most important definitions that we need in our work.
By Fn

q , we denote the n-dimensional vector space over the finite field Fq with q elements.
As a metric, we use the Hamming distance between two vectors of Fn

q , which is defined
as the number of coordinates in which they differ. Any k-dimensional linear subspace of
Fn

q is called a linear code of length n and dimension k. The vectors in a code are called
codewords, and the minimum among the distances between two different codewords is
called the minimum distance of the code. If a linear code over Fq has length n, dimension k
and minimum distance d, we say that it is an [n, k, d]q code. Any matrix of rank k whose
rows are codewords from C is called its generator matrix.

Definition 1. We say that two linear q-ary codes C1 and C2 of the same length and dimension are
equivalentif the codewords of C2 can be obtained from the codewords of C1 via a finite sequence of
transformations of the following types:

(1) Permutation of coordinate positions;

Mathematics 2024, 12, 328 3 of 14

(2) Multiplication of the elements in a given position by a non-zero element of the field;
(3) Application of a field automorphism to the elements in all coordinate positions.

This definition is well motivated as the transformations (1)–(3) preserve the Hamming
distance and the linearity (for more details see [2], Chapter 7.3). It is based on the action
of the semilinear isometries groupM∗

n(q) = Monn(F∗q)⋊ Aut(Fq) ≤ Γn(Fq) on the vector
space Fn

q , where Γn(Fq) is the set of all semilinear mappings, i.e., the general semilinear
group Monn(F∗q) is the group of all monomial n× n matrices over Fq, and Aut(Fq) is the
automorphisms group of the field Fq. Note that the group Monn(F∗q) is isomorphic to the
wreath product F∗q ≀ Sn, and any monomial matrix is a product of a permutation matrix P
and a diagonal matrix D = diag(d1, . . . , dn), where di ∈ F∗q , i = 1, . . . , n. Linear q-ary codes
C1 and C2 of the same length n are equivalent whenever C2 = C1T for some T ∈ M∗

n(q). If
CT = C for an element T ∈ M∗

n(q), then T is called an automorphism of the code C. The
set of all automorphisms of C form a group denoted by Aut(C).

Any element T ∈ M∗
n(q) can be written as T = PDτ where P is a permutation matrix

(permutation part), D is a diagonal matrix (diagonal part) and τ ∈ Aut(Fq). Note that in
the case of prime q,M∗

n(q) = Monn(F∗q), and if q = 2, thenM∗
n(q) ∼= Sn, where Sn is the

symmetric group of degree n.
To construct all inequivalent codes with given parameters means to have one repre-

sentative of each equivalence class. To easily make a distinction between the equivalence
classes, we use the concept for a canonical representative, selected on the base of some
specific conditions.

Let G be a group acting on a set Ω. This action defines an equivalence relation such
that the equivalence classes are the G-orbits in Ω.

Definition 2. A canonical representative map for the action of the group G on the set Ω is a
function ρ : Ω→ Ω that satisfies the following two properties:

1. For all X ∈ Ω it holds that ρ(X) ∼= X;
2. For all X, Y ∈ Ω it holds that X ∼= Y implies ρ(X) = ρ(Y).

For X ∈ Ω, ρ(X) is called the canonical form of X, and ρ(X) is the canonical representative
of its equivalence class with respect to ρ.

In our case, the set Ω consists of linear codes, and we can take for a canonical repre-
sentative of one equivalence class a code which is more convenient for our purposes.

In addition, we use integer-valued invariants. An invariant over the set E (we use the
set of integers Z) is a mapping f : Ω→ E such that f (a) = f (b) if a and b are in the same
orbit with respect to the action of the group G. We use two different actions:

(1) We take Ω to be the set of all linear [n, k]q codes (with additional restrictions if needed,
for example, only self-orthogonal codes with these parameters or codes with a given
minimum and dual distance, etc.) and G =M∗

n(q).
(2) For the second action, we take Ω to be the set of all codewords of a linear code C, and

the group G = Aut(C). The main invariant that we use in this case is the weight of
the codewords.

Finding the canonical form is generally not difficult, but since it is time-consuming, it
is important which canonical representation we choose and how we design the algorithm
to calculate it. In this work, we do not present a new algorithm for computing canonical
forms, but use the algorithm algorithm described in [9]. If the coordinates are previously
partitioned according to suitable invariants, the algorithm works much faster. An invariant
of the coordinates of C is a function f : N = {1, 2, . . . , n} → Z, such that if i and j are in the
same orbit with respect to Aut(C) then f (i) = f (j), i, j ∈ N. The code C and the invariant
f define a partition π = {N1, N2, . . . , Nl} of the coordinate set N, such that Ni ∩ Nj = ∅
for i ̸= j, N = N1 ∪ N2 ∪ · · · ∪ Nl , and two coordinates i, j are in the same subset of
N ⇐⇒ f (i) = f (j). The description of some very effective invariants and the process of
their application are detailed in [9,13].

Mathematics 2024, 12, 328 4 of 14

To define pseudoorbits and coloring, we consider a set of invariants for the codewords
of C. The automorphism group Aut(C) acts on the code and partitions the codewords
into orbits. All codewords with the same value of an invariant f define a set which
consists of one or more orbits called a pseudoorbit. The values of f give an ordering of the
pseudoorbits and a coloring of the codewords (the codeword u ∈ C has color f (u)). The
most natural invariant for a codeword is its weight.

As already mentioned, we associate with each q-ary linear code a binary matrix
such that two codes are equivalent if and only if the corresponding binary matrices are
isomorphic. Therefore, we need a definition for isomorphism of binary matrices.

Definition 3. Two binary matrices of the same size are isomorphic if the rows of the second one can
be obtained from the rows of the first one by a permutation of the columns.

We also use a similar definition for the equivalence of integer matrices.

Definition 4. Two integer matrices A and B of the same size are isomorphic (A ∼= B) if the rows of
the second one can be obtained from the rows of the first one by a permutation of the columns.

Any permutation of the columns of an integer (or binary) matrix A which maps the
rows of A into the rows of the same matrix is called an automorphism of A. The set of all
automorphisms of A is a subgroup of the symmetric group Sn, denoted by Aut(A).

3. Representing the Objects

To check codes for equivalence, we need (1) to find a proper set M(C) of codewords,
(2) to set a binary matrix GM(C) corresponding to M(C) (if the code is not binary) and
(3) to compute the canonical form of GM(C). The set M(C) of codewords of the code C
must have the following properties:

• M(C) generates the code C;
• M(C) is stable with respect to Aut(C);
• If C′ ∼= C′′ and σ(C′) = C′′ then σ(M(C′)) ≡ M(C′′), σ ∈ M∗

n.

We begin with an algorithm for finding a proper set M(C):

1. Initialization: M(C) = ∅;
2. generate the set D of all codewords with smallest not considered weight;
3. Find and order pseoudoorbits {O1, O2, . . . , Ol} of D according to the value of the

applied invariant;
4. For r from 1 to l do the following:

If rank(M(C)
⋃

Or) > rank(M(C)), then M(C) = M(C)
⋃

Or;
5. If rank(M(C)) < rank(C), then go to point 2 else return.

Since the set M(C) is stable under the action of the automorphism group of the code,
together with each vector it contains all its proportional vectors. Let Mt be a (q− 1)s× n
matrix whose rows are the codewords from the set M(C). For any column v of this matrix
we add all its proportional column vectors and thus construct the matrix Mtext with the
same number of (q− 1)s rows but (q− 1)n columns. If the codes C′ and C′′ are equivalent
then there is a monomial matrix M ∈ Monn(F∗q) and an automorphism of the field ϕ such
that vMϕ ∈ C′′ for any codeword v ∈ C′. It turns out that Mt′ ·Mϕ = P ·Mt′′, where P is a
permutation matrix that permutes the rows of Mt′′. Since in the definition for equivalence
of integer matrices we use only permutations (resp. permutation matrices), we consider
the matrices Mt′ext and Mt′′ext. If we map the monomial matrix M to the permutation
(q− 1)n× (q− 1)n matrix PM by replacing any element with a (q− 1)× (q− 1) matrix in
the following way:

0 7→ circ(00 . . . 0), αi 7→ circ(0 . . . 0 1︸︷︷︸
i

0 . . . 0) for i = 0, 1, . . . , q− 2, (1)

Mathematics 2024, 12, 328 5 of 14

we have Mt′ext · PMϕ = P ·Mt′′ext. This gives us that

PT
M ·Mt′Textϕ = Mt′′Text · PT ⇒ Mt′Text · (PT)−1ϕ = (PT

M)−1 ·Mt′′Text.

This means that instead of the matrices Mt′ext and Mt′′ext, we can use their transpose
matrices, which is important if s < n.

Example 1. The ternary codes C′ = ⟨
(

1 0 1
0 1 2

)
⟩ and C′′ = ⟨

(
1 0 2
0 1 2

)
⟩ are equivalent and

the monomial matrix M =

0 0 2
1 0 0
0 1 0

 maps the codewords of C′ to codewords of C′′. We take

Mt′ =

1 0 1
2 0 2
0 1 2
0 2 1
1 1 0
2 2 0

, Mt′′ =

1 0 2
2 0 1
0 1 2
0 2 1
1 2 0
2 1 0

, Mt′

0 0 2
1 0 0
0 1 0

 =

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0

Mt′′,

Mt′ext =

1 2 0 0 1 2
2 1 0 0 2 1
0 0 1 2 2 1
0 0 2 1 1 2
1 2 1 2 0 0
2 1 2 1 0 0

, Mt′′ext =

1 2 0 0 2 1
2 1 0 0 1 2
0 0 1 2 2 1
0 0 2 1 1 2
1 2 2 1 0 0
2 1 1 2 0 0

.

We take only one representative of each class of proportional vectors and thus obtain
the set M′(C). To define the binary matrix GM(C) that corresponds to the set M′(C), we
consider the cases q = 2 and q ≥ 3 separately.

Consider first the binary case. Let GM(C) be a binary matrix whose rows are the
codewords from M(C).

Theorem 1. The binary [n, k] codes C1 and C2 are equivalent if and only if the binary matrices
GM(C1) and GM(C2) are isomorphic.

Proof. Let the binary codes C1 and C2 be equivalent. Hence, there is a permutation σ ∈ Sn
such that σ(C1) = C2. It follows that σ(M(C1)) = M(C2), therefore the matrices GM(C1)
and GM(C2) are isomorphic.

Let GM(C1) ∼= GM(C2). Then, there is a permutation τ ∈ Sn such that the matri-
ces τ(GM(C1)) and GM(C2) have the same rows but are ordered differently. Hence, τ
maps the codewords from M(C2) to codewords in M(C2), therefore the codes C1 and C2
are equivalent.

Representing a linear code over a field with more than two elements as a binary matrix
is already introduced in [9,14], but here we present a different approach which is more
general and more suitable for codes over fields with q ≥ 5 elements.

Let C be a q-ary linear code for with q = pm ≥ 3, where p is a prime, and let α be a
primitive element of Fq. We map each element of Fq to a circular binary matrix of order
q− 1 in the same way as shown in (1).

Consider the matrix Mt′(C) whose rows are the codewords from M′(C) for the q-ary
linear code C of length n. Replacing all elements in Mt(C) using (1), we obtain the matrix
GM(C) of size (q− 1)s× (q− 1)n where s = |M′(C)|. Note that this presentation includes
also the proportional vectors of the codewords in M′(C) and (q− 1)s = |M(C)|.

Mathematics 2024, 12, 328 6 of 14

To construct the needed binary matrix, we use some additional matrices that depend
on the field. Denote the (q− 1)× (q− 1) circulant circ(010 . . . 0) by L and let

A∗ = Iq−1 + 2(L + Lp + · · ·+ Lpm−1
).

The automorphism group of this matrix is Aut(A∗) = ⟨σ, τ⟩ < Sq−1, where σ =
(0, 1, . . . , q− 2) is the presented cycle of length q− 1, and τ = Ω1 . . . Ωt, where Ωi corre-
sponds to the i-th ciclotomic class modulo q− 1. This group is isomorphic to F∗q ⋊ Aut(Fq)
which is the automorphism group of the trivial [1, 1]q code. We prove this isomorphism in
detail in the following lemma.

Lemma 1. Aut(A∗) ∼= F∗q ⋊ Aut(Fq).

Proof. Let us label the rows and the columns of the matrix A∗ from 0 to q− 2. We first
consider the case of a prime q ≥ 3. Then the i-th row of A∗ is

(0, . . . , 0, 1︸︷︷︸
i

, 2︸︷︷︸
i+1

, 0, . . . , 0), for 0 ≤ i ≤ q− 3,

and (2, 0, . . . , 0, 1) if i = q− 2. The j-th column is (1, 0, . . . , 0, 2)T if j = 0, and

(0, . . . , 0, 2︸︷︷︸
j−1

, 1︸︷︷︸
j

, 0, . . . , 0), if 1 ≤ j ≤ q− 2.

Now, take a permutation τ ∈ Aut(A∗) ≤ Sq−1. If τ(0) = j, then the column with
number 0 goes to the j-th column. This column contains only one coordinate equal to
1 and this 1 is on the j-th row which contains only one coordinate equals to 2, namely
the j + 1-th coordinate. Hence, τ(1) = j + 1. Considering the j + 1-th column and the
positions of the coordinates equal to 1 and 2, we have τ(i) = j + i (mod q− 1). Hence,
τ = (0, 1, . . . , q− 2)j and Aut(A∗) = ⟨(0, 1, . . . , q− 2)⟩ ∼= F∗q .

Let us now consider the general case when q = pm for a prime p and integer m ≥ 1.
In this case, if A∗ = (aij), 0 ≤ i, j ≤ q − 2, then aii = 1 for all i = 0, 1, . . . , q − 2, and
aij = 2 if j = i + ps (mod q− 1), s = 0, 1, . . . , m− 1. We can consider any automorphism
τ ∈ Aut(A∗) ≤ Sq−1 as a permutation of the nonzero elements of the field. If τ(α0) = αi,
the row with number 0 goes to the i-th row. This means that

{α, αp, . . . , αpm−1} τ−→{αi+1, αi+p, . . . , αi+pm−1}

(these are the positions of the coordinates equal to 2 in these two rows). But then, τ(α) = αi+ps1

and the number 1 row goes to row with number i + ps1 and therefore

{α2, α1+p, . . . , α1+pm−1} τ−→{α1+i+ps1 , αi+ps1+p, . . . , αi+ps1+pm−1}.

Hence, τ(α2) = αi+ps1+ps2 . Then,

{α3, α2+p, . . . , α2+pm−1} τ−→{α1+i+ps1+ps2 , αi+ps1+ps2+p, . . . , αi+ps1+ps2+pm−1}.

Thus, τ(α3) = αi+ps1+ps2+ps3 . In this way we obtain that τ(αp) = αi+ps1+ps2+···+psp .
But at the same time, τ(αp) = αi+pr

and so αi+ps1+ps2+···+psp
= αi+pr

. It follows that

αps1+ps2+···+psp−pr
= 1 ⇒ pm − 1 | ps1 + ps2 + · · ·+ psp − pr.

But sj ≤ m − 1, j = 1, . . . , p, and r ≥ 0, thus ps1 + ps2 + · · · + psp − pr ≤ pm − 1.
Hence, ps1 + ps2 + · · ·+ psp − pr = 0 or pm − 1. It turns out that s1 = s2 = · · · = sp = s,
r = s + 1, and τ(αj) = αi+jps

for j = 0, 1, . . . , q− 2 which means that τ = σiϕs ∈ G, where

Mathematics 2024, 12, 328 7 of 14

σ = (0, 1, 2, . . . , q− 2) and ϕ is the Frobenius automorphism defined by ϕ(a) = ap, a ∈ Fq.
It follows that Aut(A∗) ∼= ⟨σ, ϕ⟩ ∼= F∗q ⋊ Aut(Fq).

We give two examples with the matrices A∗.

Example 2. Consider the cases q = 5 and q = 8:

(1) If q = 5 we have A∗ = circ(1200) =

1 2 0 0
0 1 2 0
0 0 1 2
2 0 0 1

, Aut(A∗) = ⟨(0123)⟩ < S4;

(2) If q = 8 then A∗ = circ(1220200) =

1 2 2 0 2 0 0
0 1 2 2 0 2 0
0 0 1 2 2 0 2
2 0 0 1 2 2 0
0 2 0 0 1 2 2
2 0 2 0 0 1 2
2 2 0 2 0 0 1

,

Aut(A∗) = ⟨(0123456), (124)(365)⟩ < S7, |Aut(A∗)| = 21.

Next, we replace the elements 0, 1 and 2 in the matrix A∗ with binary column-vectors
with two coordinates as follows:

0 7→
(

0
0

)
, 1 7→

(
1
0

)
, 2 7→

(
1
1

)
and in this way from the matrix A∗ we construct the matrix B′. To have a matrix with an
automorphism group which is isomorphic to Aut(A∗), we expand B′ with the columns of
the matrix Iq−1 ⊗ (1

1), and denote the obtained matrix by B∗.

Example 3. Consider again the case q = 5. Then,

B∗ =

1 1 0 0 1 0 0 0
0 1 0 0 1 0 0 0
0 1 1 0 0 1 0 0
0 0 1 0 0 1 0 0
0 0 1 1 0 0 1 0
0 0 0 1 0 0 1 0
1 0 0 1 0 0 0 1
1 0 0 0 0 0 0 1

Recall that Aut(A∗) = ⟨σ, τ⟩. Let us map σ ∈ Sq−1 to the permutation

σ′ = (0, 1, . . . , q− 2)(q− 1, q, . . . , 2q− 3) ∈ S2q−2, and τ to τ′ = Ω1 . . . ΩtΩ′1 . . . Ω′t ∈ S2q−2
where τ′ is defined as follows: if Ωi = (j1, . . . , jmi) then Ω′i = (q− 1 + j1, . . . , q− 1 + jmi),
i = 1, . . . , t. This map defines an isomorphism between Aut(A∗) and Aut(B∗), and so
Aut(B∗) ∼= F∗q ⋊ Aut(Fq).

We need two more square matrices, namely the (q− 1)n× (q− 1)n matrix A = In⊗ A∗

and the 2(q− 1)n× 2(q− 1)n matrix B = (In⊗ B′|I(q−1)n⊗ (1
1)). The automorphism groups

of these two matrices are isomorphic toM∗
n(q).

Now expand the matrix GM(C) by adding the rows of the matrix A. In this way we
obtain the matrix GMA(C) = (GM(C)

A) with (q− 1)(s + n) rows and (q− 1)n columns.

Mathematics 2024, 12, 328 8 of 14

Example 4. Consider the [2, 1]5 code C with a generator matrix (1 2). For this code

GMA(C) =

1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0
1 2 0 0 0 0 0 0
0 1 2 0 0 0 0 0
0 0 1 2 0 0 0 0
2 0 0 1 0 0 0 0
0 0 0 0 1 2 0 0
0 0 0 0 0 1 2 0
0 0 0 0 0 0 1 2
0 0 0 0 2 0 0 1

The automorphism group of the matrix A is isomorphic to M∗

n(q) and therefore
Aut(GMA(C)) < Aut(A) and consists of those automorphisms of A which belong to
Aut(GM(C)).

Example 5. Consider the code from Example 4. If we swap the two coordinates and then multiply

the second coordinate by 4, we obtain the same code. Hence, the monomial matrix
(

0 4
1 0

)
belongs

to the automorphism group of this code. We map this monomial matrix to the permutation matrix

QA =

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

.

It is easy to see that the matrix GMA(C)QA has the same rows as the matrix GMA(C) and
so QA ∈ Aut(GMA(C)).

The matrices GM(C) and GMA(C) are related to the matrix GMB(C) which we con-
struct in the following way: (1) we glue the (q− 1)s× (q− 1)n zero matrix to the matrix
GM(C); (2) we add the rows of B. The obtained matrix has (q − 1)(s + 2n) rows and
2(q− 1)n columns.

Example 6. Consider the same [2, 1]5 code C with a generator matrix (1 2). For this code

GMB(C) =

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

Mathematics 2024, 12, 328 9 of 14

Theorem 2. The q-ary [n, k] codes C1 and C2 are equivalent if and only if the binary matrices
GMB(C1) and GMB(C2) are isomorphic.

Proof. In converting the matrix Mt(C) to the matrix GMB(C), we replace each column with
a group of (q− 1) columns and then extend the obtained matrix with extra zero columns
and the rows of the matrix B. Therefore, there is a one-to-one correspondence between the
permutations of the coordinates of C and the permutations of the corresponding groups of
columns in GMB(C). More precisely, if τ ∈ Sn is a permutation of the n coordinates of C,
it goes to the permutation τB ∈ S2(q−1)n of the columns of GMB(C) such that if τ(j) = ij
then τB((q− 1)j− j1) = (q− 1)ij − j1 and τB((q− 1)(n + j)− j1) = (q− 1)(n + ij)− j1
for 1 ≤ j ≤ n, 0 ≤ j1 ≤ q− 2. Moreover, the multiplication of a coordinate by αi can be
considered as applying the permutation σ = (0, 1, . . . , q− 2) on the corresponding group
of 2(q− 1) columns i times. The automorphism of the field applied to all coordinates of all
codewords also can be considered as a permutation of the columns of GMB(C).

The above observation shows that if φ ∈ Mn(q)∗ maps the code C1 to C2, then
the corresponding to φ permutation of the columns of GMB(C1) maps the rows of this
matrix to the rows of GMB(C2). Note that ϕ can be considered as a permutation followed
by multiplications of the coordinates of the code by nonzero elements of the field and
eventually applying an automorphism of the field to all coordinates of all codewords.

Conversely, if we take a permutation π of the columns of GMB(C1) that maps the
rows of this matrix to the rows of GMB(C2), then π ∈ Aut(B) ∼=M∗

n(q) and π maps the
rows of GM′(C1) to the rows of GM′(C2).

Corollary 1. Aut(C) ∼= Aut(GMB(C)).

Example 7. The automorphism group of the code C = ⟨(1, 2)⟩ ⊂ F2
5 is

Aut(C) = {βI2, β

(
0 4
1 0

)
, β ∈ F∗5}, |Aut(C)| = 8.

According to Corollary 1, Aut(C) ∼= Aut(GMB(C)). Indeed,

Aut(GMB(C)) = ⟨(1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12)(13, 14, 15, 16),

(1, 7, 3, 5)(2, 8, 4, 6)(9, 15, 11, 13)(10, 16, 12, 14)⟩ ∼= Aut(C).

Calculating |Aut(GM(C))| = 384, |Aut(GMA(C))| = 8, |Aut(GMB′(C))| = 48, where
GMB′(C) is the matrix GMB(C) without the last n(q− 1) columns, we see that the extra rows
and columns are important to remove the automorphisms of the matrices that do not correspond to
automorphisms of the code.

4. The Algorithm

The classification problem we want to solve is the following: given a set of linear q-ary
codes of length n and dimension k, take only one representative of each equivalence class.
We present the algorithm that gives a solution of the problem. As an input, we have a family
of linear codes presented by a generator matrix. The set of these matrices is denoted by W.
As an output, we have one representative of each equivalence class with respect to the
defined (in the previous sections) equivalence relation in the set of linear codes. Generator
matrices of these representatives compose the set U. The algorithm follows these steps:

1. We find a generating set M(C) for each code C. In most cases this is the set of
codewords with minimum weight. If this set has a rank smaller than k, we add the
codewords with another weight, etc. In some cases we also use other invariants to get
a smaller and more convenient generating set.

2. We take the binary matrix GMB(C) as it is described in the previous section. According
to Theorem 2, two codes C1 and C2 are equivalent if and only if GMB(C1) ∼= GMB(C2).

Mathematics 2024, 12, 328 10 of 14

3. We find the canonical form of the matrix GMB(C) as it is described in [9].
4. We compare the canonical forms of the matrices. If two matrices have the same

canonical form, they are isomorphic and the corresponding codes are equivalent. If
these matrices have different canonical forms, the codes are not equivalent.

A pseudocode of Algorithm 1 is given below.

Algorithm 1 Procedure Find_Inequivalent_Codes

Input: A set W of generator matrices of linear codes.
Output: A maximal set U ⊆W of generator matrices of inequivalent codes.

var
HA: array of integers;
Hf: file;
not_found: boolean;

1: Initialize Hf;
2: HA[i]← 0 for all i = 0, . . . , size;
3: for each generator matrix G ∈W do
4: Find generating set M(C) of the corresponding linear code C;
5: construct the corresponding binary matrix GMB(C);
6: find the canonical form A the matrix GMB(C) and its hash value h(A);
7: call the procedure SEARCH_IN_HASH_TABLE with parameters HA, A, h(A),

H f {the procedure gives the value of the boolean variable not_ f ound which is true
or false}

8: if not_ f ound then
9: U ← U ∪ {G}

10: end if
11: end for

For fast search between a large number of similar objects (in our case, binary matrices in
canonical form), an abstract data structure known as a hash map is used (more information
about hash tables and hash maps can be found in [15,16]). It consists of three components:
a hash array, a hash function and a hash table or file. The basic idea is that when we get
a new code, we first compare its hash with the hash values of already considered codes.
If the new hash is different from all already computed, the new code is not equivalent to
either of the previous codes. If the hash is equal to the hash value of another code, then we
compare the corresponding binary matrices.

Let us introduce the hashing we use in a little more detail. A hash array HA[] can be
considered as an array of non-negative integers. To any object, the hash function associates
an integer, which can be considered as an index in the hash array HA[]. Each element of
the array HA[i] (if HA[i] ̸= 0) is a pointer (a positive integer) to the location of the object in
a hash file or table. In the beginning, all values in the array HA are 0s. We define a hash
file as an addressable memory of a large size that consists of cells. Objects or records (that
contain an object) can be written in these cells. A binary file which has direct access, or a
dynamic structure (if enough RAM is available), can serve as the hash file (hash table).

We use a non-cryptographic hash function h that maps an object of arbitrary size to a
positive integer not larger than the size of the hash array. If the number of different matrices
we examine is greater than the size of the hash array, there will be at least two matrices
with the same hash value, which is called a collision. The hash function h must meet the
following requirements:

• The function should be easily and quickly calculated.
• It should provide a uniform distribution in the hash array. In this case, the number

of collisions will be smaller. Even with a very good hash function, collisions are
not excluded. The collision handling technique which we use is known as Separate
Chaining (Open Hashing). It is usually implemented using linked lists. A nonzero
cell of the hash array points to the first object in a linked list of objects that have the

Mathematics 2024, 12, 328 11 of 14

same hash value (if no matches with the same hash value are found, the list consists of
one element).

An implementation of this approach is presented in Algorithm 2.
The total complexity of the main algorithm depends on the size of the set of codes (the

set W consists of their generator matrices) but is difficult to determine because it depends
on many subalgorithms. For codes with large dimension, one of the most expensive parts
is the generating a proper set M(C) of codewords. In this case, a more efficient approach
than the standard brute force algorithm (with Gray code) gives the Brouwer–Zimmermann
algorithm and its modifications [17]. The construction of the binary matrix GMB(C),
which corresponds to the set M(C), despite its theoretical complexity, practically does not
affect the execution time of the algorithm. Finding the canonical form of a binary matrix
represents the solution to the graph isomorphism problem, since in this case a bipartite
graph is considered. The computation time required depends on whether the binary matrix
corresponds to a regular structure such as a combinatorial design and does not particularly
depend on the order of the automorphism group. The use of a canonical form reduces the
isomorphism problem between binary matrices to a matrix comparison problem which has
complexity fixed by the matrix parameters and negligible execution time. In the case of a
large number m of non-equivalent matrices, if a hash map is not used, the complexity of
comparing a matrix with the others becomes linear with respect to m, and when a hash
map is used, the complexity is reduced to a constant.

Algorithm 2 Procedure SEARCH_IN_HASH_TABLE

Input: hashkey = h(A), the matrix A, the integer array HA, the file H f
Output: not_ f ound: boolean;

type
structure MATREC {

matrix M;
integer Next} // next matrix with the same hashkey

var
AMATREC, BMATREC of type MATREC;

curent_position, old_position: integer;
1: AMATREC.M← A;
2: AMATREC.next← 0;
3: if HA[hashkey] = 0 then
4: append AMATREC to the file H f ;
5: HA[hashkey]← the position of AMATREC in the file H f ;
6: return not_ f ound← true
7: else
8: curent_position← HA[hashkey];
9: while curent_position ̸= 0 do

10: old_position← curent_position;
11: read from curent_position the structure BMATREC {from the file H f };
12: curent_position← BMATREC.next
13: if AMATREC.M = BMATREC.M then
14: return not_ f ound← f alse
15: end if
16: end while
17: append AMATREC to the file H f ;
18: curent_position← the first position of AMATREC in the file H f ;
19: BMATREC.Next← curent_position;
20: write from old_position the structure BMATREC to the file H f
21: return not_ f ound← true;
22: end if

Mathematics 2024, 12, 328 12 of 14

5. Computational Results

We made some experiments with codes with different lengths and dimensions over
different finite fields.

In Table 1, we present the execution times for obtaining inequivalent codes. In the
table, we have presented results in the following cases, which we consider to be significant:

• Finding the inequivalent codes in a set of randomly constructed linear codes. This
is useful for the process of generating linear codes of a given type and/or given
parameters. During the intermediate steps in the generation process, a large amount
of codes is usually constructed, from which only the inequivalent ones should be
taken and the procedure continued with them. As an example, we can mention one
of the methods for isomorph-free exhaustive generation, namely isomorph rejection
based on recorded objects [2].

• One of the most important classes of linear codes for theoretical and practical reasons
is the class of self-dual codes. A self-dual code over Fq is a linear code which coincides
with its orthogonal complement in the vector space Fn

q with respect to a given inner
product [18]. The study of these codes involves the generation and classification of
self-dual codes over a given finite field with prescribed length, minimum distance and
other parameters such as a weight enumerator or an automorphism group (see, for
example, [19]). Therefore, we have included in the table results on this type of codes
over fields with 3, 5 and 7 elements.

• The quasi-cyclic codes have nontrivial automorphism groups that contain as a sub-
group a cyclic group of a given order (see [18] for more details about these codes).
This is the reason why we also consider these types of codes and include a special
option in the LCEQUIVALENCE program to generate random quasi-cyclic codes.

Table 1. Execution times (in seconds) for obtaining inequivalent codes in a set of randomly constructed
linear codes with the program LCEQUIVALENCE.

n k q Number of Codes Number of Inequivalent
Codes Time in Seconds Comment

20 10 2 100,000 65,566 39.47 random
40 20 2 10,000 10,000 89.25 random

120 40 2 100 100 336.98 quasi-cyclic
120 40 2 100 100 214.34 random

28 14 3 6931 6931 15,386.21 self-dual
60 16 4 100 100 231.30 random

5000 10 4 1000 1000 153.91 random

16 8 5 535 535 33.187 self-dual
12 6 7 64 64 0.30 self-dual
40 20 7 2 1 12.44 self-dual
56 28 7 2 1 25,161.18 self-dual
15 3 9 1,000,000 4115 621.85 quasi-cyclic
20 10 16 1000 1000 9.87 random
20 10 17 1000 1000 17.33 random
20 10 23 1000 1000 110.38 random

1000 5 31 100 100 110.39 random
10 3 32 10,000 9999 167.81 random
20 10 61 100 100 80.59 random

Table 1 is structured as follows. The first three columns contain the parameters
n (length), k (dimension) and q (size of the field) of the constructed [n, k]q codes. In the
fourth column we present the number of constructed codes that will be checked for equiva-
lence. The next column contains the number of the inequivalent codes in the given set of
codes. The execution time is shown in the sixth column. In the last column we comment on
whether the constructed codes are of special types, for example self-dual or quasi-cyclic.

Mathematics 2024, 12, 328 13 of 14

The computations were executed on a WINDOWS 11 OS in a single core of an INTEL

XEON GOLD 5118 CPU with a 2.30 GHz clock frequency.
The program LCEQUIVALENCE has two options for constructing random codes—for

given positive integers ℓ, n, k, d and q, (1) constructing ℓ random linear [n, k,≥ d]q codes
and (2) constructing ℓ random quasi-cyclic [n, k,≥ d]q codes. We have provided this option
so that we can test a large number of random codes for equivalence. The self-dual codes
that we check for equivalence are taken from the Database of self-dual codes by Masaaki
Harada and Akihiro Munemasa [20].

As input we use generator matrices of the considered codes. The program then goes
through the four steps presented in Section 4 and takes exactly one representative from
each equivalence class. Generator matrices of these representatives, as well as additional
information about them (parameters, automorphism groups, orbits, etc.), are written to a file.

6. Conclusions

This paper is devoted to the algorithm for equivalence of linear codes over finite fields
implemented in the program LCEQUIVALENCE, which is a module of the software package
QEXTNEWEDITION v1.1 [3]. The program takes as input a file with generator matrices
of linear codes and gives as output a file with generator matrices for the maximum set
of inequivalent among the input codes. Using this program, one can test for equivalence
codes over fields with q < 64 elements. As can be seen in Table 1, the file may contain large
number of codes. As far as we know, there is no other program for the equivalence test of a
large number of linear codes. The algorithms implemented in the popular packages that
deal with linear codes check pairs of codes for equivalence.

Instead of linear codes, the program LCEQUIVALENCE can test binary matrices for
equivalence. This means that it can be used for equivalence (isomophism) testing of objects
that can be represented by binary matrices including graphs [14].

The program also gives the orders and generators of the automorphism groups of
the corresponding binary matrices. Optionally, by marking the corresponding option, the
program can also write additional information to the output file, such as a permutation
that leads one matrix to its equivalent, orbits, weight distributions of the codes, etc.

No installation of the program is required. It is only necessary for the user to create a
directory and download a version of the program that corresponds to the operating system
used—LINUX or WINDOWS. The interface is very simple. The user can choose from the
following seven options:

1. Find inequivalent codes.
2. Find inequivalent matrices.
3. What to print in the output file about codes?
4. What to print in the output file about matrices?
5. Change the name of the input file.
6. Random codes (will be written in a file with name EXAM in the directory RES_DIR0).
7. Random quasi-cyclic codes (will be written in a file with name EXAM in the directory

RES_DIR0).

As an input the program LCEQUIVALENCE uses a text file with generator matrices of
linear codes in the form described in the previous version of Q-EXTENSION. There is no
limit to the number of codes in the input file.

Author Contributions: Conceptualization, I.B.; methodology, I.B.; software, I.B.; validation, I.B.
and S.B.; formal analysis, S.B.; resources, I.B. and S.B.; data curation, I.B.; writing—original draft
preparation, S.B.; writing—review and editing, S.B.; project administration, I.B. and S.B.; funding
acquisition, I.B. and S.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by Bulgarian National Science Fund grant number
KP-06-H62/2/13.12.2022.

Mathematics 2024, 12, 328 14 of 14

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Klein, F. Das Erlanger Programm (1872). In Vergleichende Betrachtungen über Neuere Geometrische Forschungen, 3rd ed.; Harri

Deutsch: Frankfurt am Main, Germany, 1997.
2. Kaski, P.; Östergård, P. Classification Algorithms for Codes and Designs; Springer: Berlin/Heidelberg, Germany, 2006.
3. Bouyukliev, I. QEXTNEWEDITION–LCEQUIVALENCE Module. Available online: http://www.moi.math.bas.bg/moiuser/~data/

Software/QextNewEditionLCequiv.html (accessed on 15 December 2023).
4. Leon, J. Computing automorphism groups of error-correcting codes. IEEE Trans. Inform. Theory 1982, 28, 496–511. [CrossRef]
5. Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system I: The user language. J. Symb. Comput. 1997, 24, 235–265.

[CrossRef]
6. The GAP Group: GAP–Groups, Algorithms, and Programming, Version 4.12.2. 2022. Available online: https://www.gap-system.org

(accessed on 15 December 2023).
7. Feulner, T. The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes. Adv.

Math. Commun. 2009, 3, 363–383. [CrossRef]
8. SageMath. Open-Source Mathematical Software System. Available online: https://www.sagemath.org/ (accessed on 15

December 2023).
9. Bouyukliev, I. About the code equivalence. In Advances in Coding Theory and Cryptology; Shaska, T., Huffman, W., Joyner, D.,

Ustimenko, V., Eds.; World Scientific Publishing: Singapore, 2007; pp. 126–151.
10. Sendrier, N. Finding the permutation between equivalent linear codes: The support splitting algorithm. IEEE Trans. Inform.

Theory 2000, 46, 1193–1203. [CrossRef]
11. Petrank, E.; Roth, R. Is code equivalence easy to decide? IEEE Trans. Inform. Theory 1997, 43, 1602–1604. [CrossRef]
12. Sendrier, N.; Simos, D. How easy is code equivalence over Fq? In Proceedings of the 8th International Workshop on Coding

Theory and Cryptography WCC 2013, Bergen, Norway, 15–19 April 2013.
13. McKay, B.; Piperno, A. Practical graph isomorphism, II. J. Symb. Comput. 2014, 60, 94–112. [CrossRef]
14. Bouyukliev, I.; Dzhumalieva-Stoeva, M. Representing equivalence problems for combinatorial objects. Serdica J. Comput. 2014, 8,

327–354. [CrossRef]
15. Sedgewick, R.; Wayne, K. Algorithms, 4th ed.; Addison-Wesley Professional: Boston, MA, USA, 2011; Volume 1.
16. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Chapter 11: Hash Tables, in Introduction to Algorithms, 4th ed.; MIT Press:

Cambridge, MA, USA; McGraw-Hill: New York, NY, USA, 2022.
17. Bouyuklieva, S.; Bouyukliev, I. An Extension of the Brouwer–Zimmermann Algorithm for Calculating the Minimum Weight of a

Linear Code. Mathematics 2021, 9, 2354. [CrossRef]
18. Huffman, W.C.; Pless, V. Fundamentals of Error-Correcting Codes; Cambridge University Press: Cambridge, UK, 2003.
19. Huffman, W.C. On the classification and enumeration of self-dual codes. Finite Fields Appl. 2005, 11, 451–490. [CrossRef]
20. Harada, M.; Munemasa, A. Database of Self-Dual Codes. Available online: https://www.math.is.tohoku.ac.jp/~munemasa/

selfdualcodes.htm (accessed on 11 January 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.moi.math.bas.bg/moiuser/~data/Software/QextNewEditionLCequiv.html
http://www.moi.math.bas.bg/moiuser/~data/Software/QextNewEditionLCequiv.html
http://doi.org/10.1109/TIT.1982.1056498
http://dx.doi.org/10.1006/jsco.1996.0125
https://www.gap-system.org
http://dx.doi.org/10.3934/amc.2009.3.363
https://www.sagemath.org/
http://dx.doi.org/10.1109/18.850662
http://dx.doi.org/10.1109/18.623157
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.55630/sjc.2014.8.327-354
http://dx.doi.org/10.3390/math9192354
http://dx.doi.org/10.1016/j.ffa.2005.05.012
https://www.math.is.tohoku.ac.jp/~munemasa/selfdualcodes.htm
https://www.math.is.tohoku.ac.jp/~munemasa/selfdualcodes.htm

	Introduction
	Preliminaries
	Representing the Objects
	The Algorithm
	Computational Results
	Conclusions
	References

