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Abstract: There are many problems based on solving nonautonomous differential equations of the
form ẍ(t) + ω2(t)x(t) = 0, where x(t) represents the coordinate of a material point and ω is the
angular frequency. The inverse problem involves finding the bounded coefficient ω. Continuity of
the function ω(t) is not required. The trajectory x(t) is also unknown, but the initial and final values
of the phase variables are given. The variation principle of the minimum time for the entire dynamic
process allows for the determination of the optimal solution. Thus, the inverse problem is an optimal
control problem. No simplifying assumptions were made.
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1. Introduction

The investigation of the equation

ẍ(t) + ω2(t)x(t) = 0, (1)

where ω(t) is a given function, has a rich history and a wide range of applications. In
the 19th century, Mathieu [1] studied solutions of this Equation (1) for a special class of
ω(t). The research in this area began with the work of Magnus and Winkler on Hill’s
equation [2]. Yakubovich and Starzhinskii [3] explored linear differential equations with
periodic coefficients. This equation, in particular, describes the motion of a particle in
a potential field, a problem that dates back to the work of K.M. Case [4] on a singular
coefficient. W.B. Case [5] examined the motion of a swing.

The inverse problem, where ω(t) is not given a priori and must be determined, is also
a field of interest but has been much less investigated.

Such problems arise, for example, in the theory of the control of mechanical systems,
when the goal is to find a control function that ensures the desired motion of a system [6].

The aim of this paper is to study the inverse problem, the function ω(t) that guar-
antees the existence of a solution x(t) of Equation (1) that satisfies the given final and
initial conditions.

A more general problem related to Equation (1) does not require smoothness of ω(t)
and, in general, makes no simplifying assumptions about this function other than bound-
edness. The most natural formulation of the problem involves applying the variational
principle to minimizing the total time of the process or some other objective function. It is
also possible to give the problem a physical interpretation, considering parametric reso-
nance [7], to find solutions where x(t) has an increasing amplitude, as well as conditions
for damping oscillations.
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The motivation of this work is to solve the inverse problem of the control with the
coefficient ω(t) as a bang-bang control for the trajectories of Equation (1). The function
ω(t) can be applied in controllers for robotic systems [8]. Solutions to inverse control
problems are generally nonclassical. The smoothness of such solutions is violated at a
finite number of isolated points. Therefore, between the switching points of the control
function ω(t), the solution to the general problem x(t) (1) is smooth, allowing numerical
methods to be cancelled to solve hard optimization problems. According to Pontryagin’s
maximum principle [9], ω(t) imposes bounds, which simplifies the optimal control problem.
Analytical methods are preferable to predict the ω(t) function, but exact solutions are rarely
straightforward. It is also worth noting that not all analytically solvable ill-posed problems
can be easily solved numerically due to instability [10–12]. When additional constraints are
imposed on the phase variables (for example, | ˙x(t)| < const), singular solutions to the ω(t)
problem are possible [13]. In such cases, it is convenient to resort to numerical methods,
which are widely available online in both open and private access, such as MATLAB,
Python with SciPy, or Julia. The input data are assumed to be well specified, so the main
result of this work is to obtain nontrivial analytic solutions to the inverse control problem.

The complexity lies in the implicit connections between ω(t), x(t), and the total time T
and the need to satisfy all conditions simultaneously.

In advanced computational fields, particularly those involving the development of al-
gorithms for inverse problems in partial differential equations, targeting supercomputers is
often necessary. This necessity arises due to the increased dimensionality of such problems,
which demand a level of computational power and efficiency beyond the capabilities of
standard computers. Supercomputers, with their superior processing abilities, are essential
for managing the complexities and large-scale computations typical of these advanced
mathematical and scientific challenges. This approach is especially critical in fields such as
physics, meteorology, and various engineering disciplines, where precision and efficient
computation are crucial [14].

2. Preliminaries and Problem Formulation

An inverse problem of time optimal control for a second-order differential equation is
considered. The objective is to determine the coefficient ω(t) of the differential equation,
which is the boundary value problem:

ẍ(t) = −ω2(t)x(t), 0 < t < T;
x(0) = A > 0, ẋ(0) = 0;
x(T) = B ̸= 0, ẋ(T) = 0;
0 ≤ ω(t) ≤ 1 or 0 < ω0 ≤ ω(t) ≤ 1,

(2)

where the total process time T is determined from the condition

T → in f . (3)

Under these constraints, the function ω(t) can be found. The coefficient ω(t) is not a
smooth function. The equation in (2) describes the motion of a material point with given
boundary conditions. Initial conditions determine the position and speed of the point at
the moment of time t = 0. It is required in the shortest time T to move the point from the
initial position to a given one, while the speed ẋ(t) at this moment should be equal to zero,
and the entire trajectory should be a smooth function. The variational approach allows the
controlling function ω(t) to be determined.

Remark 1. The value of the constant A can be considered non-negative. If A < 0, then by replacing
y(t) = −x(t) (due to the linearity of equation for x(t)), we arrive at the same equation for y(t)
with the initial condition y(0) > 0.

Remark 2. The function ω(t) requires boundedness, but not continuity.
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Remark 3. In real applications, the function ω(t) is typically non-negative. However, our approach
can also find a solution for ω(t) when ẍ(t) − ω2(t)x(t) = 0, though this case is considered
physically insignificant.

Remark 4. The condition of the initial and final velocities being zero is not a limitation. The pro-
posed algorithm works in this scenario as well, but it leads to more cumbersome formulas

Remark 5. From a practical standpoint, the problem is not overdetermined, as technological
processes in robotics aim for minimal time execution.

Remark 6. In problems (2) and (3), the stationary point x = 0 of Equation (1) is not investigated
because the trajectory cannot converge to the point x(T) = ẋ(T) = 0.

Thus, the problem is reduced to two cases:

a. If 0 ≤ ω ≤ 1, then the solution contains trigonometric and linear functions.
b. The coefficient ω(t) is limited and greater than zero (0 < ω0 ≤ ω ≤ 1), and the

solution may oscillate, with the amplitude of oscillations increasing or decreasing
over time.

In all these cases, the solutions for x(t) and ω(t) are in an explicit form. The number
of switching points is limited. The problem is considered solved if all the switching points,
the trajectories, and the reachability set are found.

Remark 7. Consider the following boundary problem:
ẍ + ω2(t)x = 0, 0 < t < T;
x(0) = A, ẋ(0) = 0;
x(T) = B, ẋ(T) = 0,

(4)

where A, B − const and A · B ̸= 0.
Denoting t = T − τ leads to the same system:

ÿ(τ) + ω2(τ)y(τ) = 0, 0 < τ < T;
y(0) = B, ẏ(0) = 0;
y(T) = A, ẏ(T) = 0;
y(τ) = x(T − τ).

(5)

Thus, it is enough to consider the solution case (4) for all possible combinations of boundary
conditions.

3. Analysis with 0 ≤ ω ≤ 1

Let us consider the simplest case of the motion under the control of an unknown
bounded function ω(t). Let us split the segment from 0 to T into three segments: ω1 = 1,
ω2 = 0, and ω3 = 1. This assumption is justified in the following paragraph.

3.1. Different Sign Values at the Boundary

Let us again consider the system
ẍ + ω(t)x = 0, 0 < t < T;
x(0) = A > 0, ẋ(0) = 0;
x(T) = −B, ẋ(T) = 0,

(6)

where B = const > 0, T → in f , 0 ≤ ω(t) ≤ 1, 0 ≤ t ≤ T, and x(t) ∈ C1[0, T].



Mathematics 2024, 12, 329 4 of 16

There is a solution in the form (ω = {0, 1}):

x(t) =


A cos(t), 0 ≤ t ≤ t1;
at + b, t1 ≤ t ≤ t2;
B cos(t + ∆), t2 ≤ t ≤ T.

There is a system with continuity conditions for x(t) and ẋ(t):

A cos t1 = at1 + b;
−A sin t1 = a;
B cos(t2 + ∆) = at2 + b;
−B sin(t2 + ∆) = a;
T + ∆ = π;
T → in f .

(7)

Let us express the auxiliary variables a, b, t2, ∆ through t1. Solution (7) is sought
analytically:

B2 = a2 + (at2 + b)2 ⇒ at2 + b = −
√

B2 − a2 (at2 + b < 0 − under the axis) ⇒

a = −A sin t1;
b = A(cos t1 + t1 sin t1);

t2 =
1

A sin t1

(√
B2 − A2 sin2 t1 + A(cos t1 + t1 sin t1)

)
;

∆ = π − arcsin
(

A sin t1

B

)
− t2,

resulting in the total nonoptimal time of the process:

T = π − ∆(t1) = arcsin
(

A sin t1

B

)
+

1
A sin t1

(√
B2 − A2 sin2 t1 + A(cos t1 + t1 sin t1)

)
.

From the condition
T′

t1
= 0 ⇒ t1 =

π

2
it turns out the minimum total process time is

Topt(B > A) =
π

2
+

√
B2 − A2

A
+ arcsin

(
A
B

)
(8)

and the switching points t1 and t2 are{
t1 = π

2 ;
t2 = π

2 +
√

B2−A2

A .

The final solution is

ω(t) =

 1, t ∈
[
0, π

2
)
∪
[

π
2 +

√
B2−A2

A , Topt

]
;

0, t ∈
[

π
2 , π

2 +
√

B2−A2

A

)
,

x(t) =


A cos(t), 0 ≤ t ≤ π

2 ;
−A(t − π

2 ),
π
2 ≤ t ≤ π

2 +
√

B2−A2

A ;
−B cos

(
t − Topt

)
, π

2 +
√

B2−A2

A ≤ t ≤ Topt.
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It is noted that this solution is optimal. If B < A, a similar analysis of system (6) leads
to the following formulas:

Topt(B < A) =
π

2
+

√
A2 − B2

B
+ arcsin

(
B
A

)
. (9)

The final solution is

ω(t) =

 1, t ∈
[
0, arcsin

(
B
A

))
∪
[√

A2−B2

B + arcsin
(

B
A

)
, Topt

)
;

0, t ∈
[
arcsin

(
B
A

)
,
√

A2−B2

B + arcsin
(

B
A

))
,

x(t) =


A cos t, t ∈

[
0, arcsin

(
B
A

)]
;

B
(√

A2−B2

B + arcsin
(

B
A

)
− t
)

, t ∈
[
arcsin

(
B
A

)
,
√

A2−B2

B + arcsin
(

B
A

)]
;

−B cos
(
t − Topt

)
, t ∈

[√
A2−B2

B + arcsin
(

B
A

)
, Topt

]
.

All possible solutions can be found in Figure 1.

Figure 1. Reachability set for 0 ≤ ω ≤ 1, A = 1, and B ∈ [0.2, 5]. Any point with negative coordinate
values can be reached in 2 switches (Equation (6)).

3.2. Proof of Optimality

It is easy to show that using value ω /∈ {0, 1} leads to a nonoptimal solution.
The system for the general case looks like

x(t) =


A cos(αt), 0 ≤ t ≤ t1;
at + b, t1 ≤ t ≤ t2;
B cos(αt), t2 ≤ t ≤ T.

After some algebra, the solution leads to

T(B > A) = t1 +
1
β

arcsin
(

Aα

Bβ
sin(t1)

)
−
(

1
A

√
B2 − A2α2

β2 sin2(t1)− cos(t1)

)
1

α sin(t1)
.

To obtain the minimal time Tmin, the equation T′
t1
= 0 needs to be solved. The final

parameters are α = β = 1 and t1 = π
2 .

The same calculation can be performed for the case T(B < A).
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3.3. Identical Sign Values at the Boundary

Let us now consider the case when the values on the boundaries are of the same sign:
ẍ + ω(t)x = 0, 0 ≤ t ≤ T;
x(0) = A, ẋ(0) = 0;
x(T) = B, ẋ(T) = 0,

(10)

where A, B = const, T → in f , 0 ≤ ω(t) ≤ 1, and x(t) ∈ C1[0, T].
Also, let us assume 0 < A < B.
It should be noted that in this case the solution is nonmonotonic, i.e., the coordinate

undergoes one full oscillation.
Indeed, the following applies:

1. For any ω(t) ∈ [0, 1] there exists t∗0 such that x(t∗0) = 0, ẋ(t∗0) < 0, x(t) > 0,
and t ∈ (0, t∗0).

2. For any ω(t) ∈ [0, 1] there exists t∗1 such that x(t∗1) < 0, ẋ(t∗1) = 0, x(t) < 0,
and t ∈ (t∗0 , t∗1).

Moreover, the following also applies:

1. For any ω(t) ∈ [0, 1] there exists t∗2 such that x(t∗2) = 0, ẋ(t∗2) > 0, x(t) < 0, and
t ∈ (t∗1 , t∗2).

2. For any ω(t) ∈ [0, 1] there exists t∗3 such that x(t∗3) > 0, ẋ(t∗3) = 0, x(t) > 0, and
t ∈ (t∗2 , t∗3).

These propositions lead to the construction of a solution.
Clearly, if we consider the points t∗0 , t∗1 , t∗2 , and t∗3 , and the previously constructed

solution x(t), t ∈ (0, t∗3) with the described properties, and set T = t∗3 , then the constructed
solution will be optimal.

In fact, let us consider the point t∗1 , where x(t∗1) < 0 and ẋ(t∗1) = 0. An optimal solution
on the interval [0, t∗1 ] can then be constructed. This solution precisely addresses the problem
where values of different signs are accepted at the boundaries, as discussed earlier.

Similarly, by solving the problem for the interval [t∗1 , T], we obtain the optimal part of
the solution.

In other words, there are lower estimates for t∗1 and T − t∗1 . Since the boundary condi-
tions of the problems at the point t = t∗1 are identical, the obtained solution is defined on
[0, T] and belongs to the class C1[0, T].

However, to solve each of the problems separately, it is necessary to know the value of
x(t∗1) < 0. In fact, determining this value is essential because the analytical formulas for
the length of the interval and the solutions for each part have already been obtained (see
Equations (8) and (9)).

Thus, the problem is formalized, which will be equivalent to the original one (see
Equation (10)).

This problem is divided into two parts: for t ∈ [0, T1] and for t ∈ [T1, T2]. Ultimately,
it is necessary to minimize T1 + T2:

T1 =
π

2
+

√
A2

1 − A2

A
+ arcsin

(
A
A1

)
, T2 =

π

2
+

√
B2 − A2

1

A1
+ arcsin

(
A1

B

)
,

where A1 is a parameter through which the optimal curve must pass.
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d(T1 + T2)

dA1
=

A1

A
1√

A2
1 − A2

− A
A2

1

1√
1 − A2/A2

1

+

+
−A1

A1

√
B2 − A2

1

−

√
B2 − A2

1

A2
1

+
1

B
√

1 − A2
1/B2

= 0

⇒ A1 =
√

AB ⇒ T1 = T2 = π
2 +

√
B−A√

A
+ arcsin

(√
A
B

)
,

The optimal time of this process is as follows:

Topt(B > A) = π + 2

√
B
A

− 1 + 2 arcsin

(√
A
B

)
.

The final solution is as follows:

ω(t) =
{

1, t ∈
(
0, π

2
)
∪ [t1, t2) ∪

[
t3, Topt

)
;

0, t ∈
[

π
2 , t1

)
∪ [t2, t3),

x(t) =


A cos t, t ∈

[
0, π

2
]
;

A
(

π
2 − t

)
, t ∈

[
π
2 , t1

]
;

−
√

AB cos(t −
(
t2 − π

2
)
), t ∈ [t1, t2];√

AB(t − t2), t ∈ [t2, t3];
B cos

(
t − Topt

)
, t ∈

[
t3, Topt

]
,

where 
t1 = π

2 +
√

B
A − 1,

t2 = π +
√

B
A − 1 + arcsin

(√
A
B

)
,

t3 = π + 2
√

B
A − 1 + arcsin

(√
A
B

)
.

Topt(B < A) = π + 2
√

A
B − 1 + 2 arcsin

(√
B
A

)
,

ω(t) =
{

1, t ∈ (0, t1) ∪ [t2, t3) ∪
[
t4, Topt

)
;

0, t ∈ [t1, t2) ∪ [t3, t4),

x(t) =



A cos t, t ∈ [0, t1];√
AB(t2 − t), t ∈ [t1, t2];√
AB cos(t −

(
t2 −

π

2

)
), t ∈ [t2, t3];

B(t − t4), t ∈ [t3, t4];
B cos

(
t − Topt

)
, t ∈

[
t4, Topt

]
,

where 

t1 = arcsin
(√

B
A

)
;

t2 = arcsin
(√

B
A

)
+
√

A
B − 1;

t3 = π
2 +

√
A
B − 1 + 2 arcsin

(√
B
A

)
;

t4 = π
2 + 2

√
A
B − 1 + 2 arcsin

(√
B
A

)
.

The set of reachability is constructed for two cases when the boundary values of the
coordinate x(0) and x(T) are of different signs—see Figures 1 and 2. It should be noted
that the maximum number of switches in the case of 0 ≤ ω(t) ≤ 1 is equal to four.
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Figure 2. Complete reachability set of all possible optimal trajectories. 0 ≤ ω ≤ 1, A = 1, and
B ∈ [0.2, 5]. Any points with x = 0 can be reached in 4 switches (Equation (10)).

The simple solution x(t) = A cos t with ω = 1 of (4) is an interface curve of the two
different regimes: B > A and B < A of system (4).

Similarly, one can consider the case of separation from zero, i.e., 0 < ω0 ≤ ω(t) ≤ 1.

4. Problem with ω > 0
Construction of an Analytical Solution When ω > 0

Let us set the problem of determining the optimal process for achieving the final value
of the coordinate x(T) = B.

Let ω(t) ∈ [ω0, 1], where ω0 > 0.
If |x(T)| > A, in this case, parametric resonance occurs [7], when the final value is

obtained after a large number of switches. In this case, the amplitude of oscillations x(t)
increases with the growth of t under the condition of the minimum total process time.

If |x(T)| < A, in this case, the effect of damping occurs. In this case, the amplitude
of oscillations x(t) decays with the growth of t. Oscillations with |x(T)| ̸= A occur with a
changing amplitude.

Let us introduce a division of the segment [0, T] into intervals [ti, ti+1], where
i = 0, 1, . . . , (N + 1), t0 = 0, and tN+2 = T.

Then, ω(t) is represented as a piecewise-constant function, which allows an analyt-
ical solution to be found, as ω(t) only takes two values: ω(t) = {ω0, 1} according to
Pontryagin’s maximum principle [9].

Consider the coordinate function x(t) ∈ C1[0, T] :
{

x(0) = A;
ẋ(0) = ẋ(T) = 0,

of the follow-

ing form:

x(t) =



A cos(αt), 0 ≤ t ≤ t1;
A1 cos(ω1t + δ1), t1 ≤ t ≤ t2;
. . . . . .
Ai cos(ωit + δi), ti ≤ t ≤ ti+1;
. . . . . .
AN cos(ωNt + δN), tN ≤ t ≤ tN+1;
B cos(βt + ∆), tN+1 ≤ t ≤ T,

(11)

where ti, i = 1, 2, . . . , (N + 1) are the points of pairing and B ∈ R/{0} is the terminal value.
The task of determining ω(t) is reduced to finding the values {ωi, ti, Ai, δi, α, β, ∆}. Note
that the intervals [ti, ti+1] can be of unequal length.
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Based on this, clarify the main goal: from all such functions x(t), one should choose
such that the total time of the process T is minimal.

The variational setting should be supplemented with the conditions of differentiability
of the trajectory x(t) and the continuity of the velocity ẋ(t) at the points of pairing.

Note that the maximum principle is not fulfilled for ω(t) in the presence of some
constraints.

Thus, calculations lead to a recursive relation, determined by Formula (11) with
N = 0, 1, . . . , M.

The number of switches is defined unambiguously, but if a smaller number of switches
is set, then the boundary conditions (2) are not fulfilled; if more are set, then parts of
the time intervals degenerate into points. For the verification of analytical solutions, a
numerical calculation was performed taking into account Formula (11) with 1000 possible
switches, and the calculations confirmed the analytical solution.

As a result, the task can be divided into a family of separate boundary tasks, where the
boundary conditions are recurrently determined by the conditions of pairing:
Ai =

√
Ai−1 Ai+1, A0 = A, AN+1 = B, and Ai = ( N

√
AB)i. The proof of optimality

is based on the dependency of the solution on the initial and terminal conditions on each
full oscillation and will be given below.

Thus, the solution x(t) represents a smooth curve. The number of oscillations depends
on the position of the final point x(T) inside the reachability set.

1. If x(T) < 0, then the following cases of the optimal process are possible:

(a) x(T) = −Aω−1
0 or x(T) = −Aω0;

(b) x(T) : −Aω−1
0 < x(T) < −Aω0;

(c) If x(T) /∈
[
−Aω−1

0 , −Aω0

]
, then the solution oscillates with a number of

switches.

2. If x(T) > 0, x(T) ̸= A, then the following applies:

(a) x(T) = Aω−2
0 or x(T) = Aω2

0;

(b) x(T) ∈
[

Aω2
0, Aω−2

0

]
;

(c) If x(T) /∈
[

Aω2
0, Aω−2

0

]
, then the solution oscillates with a number of switches.

For the final point x(T) < 0, let us consider the case with one switching point. We
obtain that the function x(t) consists of two cosines:

x(t) =
{

A cos(αt), 0 ≤ t ≤ t1;
B cos(βt + ∆), t1 < t ≤ T, A, B > 0.

Let us write the conditions of continuity and the existence of the derivative at the
point t1 ∈ [0, T], i.e., {

A cos(αt1) = B cos(βt1 + ∆);
Aα sin(αt1) = Bβ sin(βt1 + ∆).

(12)

It leads to

B = A

√√√√1 + sin2(αt1)

((
α

β

)2
− 1

)
(13)

or

t1 =
1
α

arcsin

√
(B2 − A2)β2

A2(α2 − β2)
if Aα ≥ Bβ, (14)

where α, β ∈ [ω0, 1] and 0 ≤ sin2(αt1) ≤ 1 ⇒ Aω0 ≤ B ≤ Aω−1
0 .

Let us consider characteristic cases:
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1. If B = Aω0, then
{

sin2 αt1 = 1;
α = ω0, β = 1.

The solution is α = ω0, β = 1, and t1 =
π

2ω0
,

and then the function x(t) is uniquely determined: T =
π

2

(
1 + ω−1

0

)
.

2. If B =
A
ω0

, then, similarly to the previous case, we obtain that the function x(t) is

determined as follows: α = 1, β = ω0, t1 =
π

2
, and Topt =

π

2

(
1 + ω−1

0

)
.

3. If B = A, then the function x(t) is determined as follows:

[
t1 = πk, k = 0, 1, ∀α, β;
α = β, ∀t1

⇒

 t1 = 0 and ∆ = 0 ⇒ x(t) = A cos(βt);
t1 = π ⇒ x(t) = A cos(αt);
α = β ⇒ x(t) = A cos(αt)

In this case, the function will be equal to A · cos(αt), α ∈ [ω0, 1], and T =
π

α
.

Taking into account the minimum T, we find that α = 1 and x(t) is determined
unambiguously.

5. Construction of the Optimal Solution

As was mentioned earlier, the optimal solution from A to (−B), where B ∈
[

Aω0, A
ω0

]
,

will consist of one, two, or three cosines.
Let us consider the function

x(t) =


A cos(ω1t), 0 ≤ t ≤ t1;
C cos(ω2t + δ), t1 ≤ t ≤ t2;
B cos(ω3t + ∆), t2 ≤ t ≤ T.

Proposition 1. Let ω1 = ω3 = 1, ω2 = ω0 > 0, and B be known. Then,

x(t) =


A cos(t), 0 ≤ t ≤ t1;
C cos(ω0t + δ), t1 ≤ t ≤ t2;
B cos(t + ∆), t2 ≤ t ≤ T.

According to the maximum principle [9], two values of ω(t) are admissible as well.

Construct an analytical optimal solution and prove that it is optimal.
Let us write the continuity conditions and the existence of the derivative at the points

t1 and t2: 
A cos(t1) = C cos(ω0t1 + δ);
−A sin(t1) = −Cω0 sin(ω0t1 + δ);
C cos(ω0t2 + δ) = B cos(t2 + ∆);
−Cω0 sin(ω0t2 + δ) = −B sin(t2 + ∆).

Let us express the unknowns through t1.
Let us write the conditions of continuity and the existence of the derivative at the

point t1, i.e., {
A cos(t1) = C cos(ω0t1 + δ)
A sin(t1) = Cω0 sin(ω0t1 + δ).

(15)

Using the basic trigonometric identity, we have the following (we divide the second
equation by ω0, raise each equation to the second power, and sum them up):

C = A

√√√√1 + sin2(t1)

((
1

ω0

)2
− 1

)
, (16)
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From the first equation, let us express δ:

δ(t1) = arccos
(

A cos t1

C

)
− ω0t1

Let us write the conditions of continuity and the existence of the derivative at the
point t2, i.e., {

C cos(ω0t2 + δ) = B cos(t2 + ∆)
Cω0 sin(ω0t2 + δ) = B sin(t2 + ∆).

(17)

Using the basic trigonometric identity, we have the following (raise each equation to
the second power and sum them up):

C2(cos2(ω0t2 + δ) + ω2
0 sin2(ω0t2 + δ)) = B2, (18)

C2(ω2
0 + (1 − ω2

0) cos2(ω0t2 + δ)) = B2 ⇒ (1 − ω2
0) cos2(ω0t2 + δ) =

B2

C2 − ω2
0 ⇒

cos2(ω0t2 + δ) =
B2 − C2ω2

0
C2(1 − ω2

0)
⇒ t2 =

1
ω0

(
π − arccos

√
C2 − B2ω2

0
B2(1 − ω2

0)
− δ

)
.

(19)

∆(t1) = arccos
(

C cos(ω0t2 + δ)

B

)
− t2

It turns out that all unknown variables are expressed through t1:

C = A

√√√√1 + sin2(t1)

((
1

ω0

)2
− 1

)
;

δ(t1) = arccos
(

A cos t1

C

)
− ω0t1;

t2 =
1

ω0

(
π − arccos

√
B2 − C2ω2

0
C2(1 − ω2

0)
− δ

)
;

∆(t1) = arccos
(

C cos(ω0t2 + δ)

B

)
− t2;

T(t1) = π − arccos
(

C cos(ω0t2 + δ)

B

)
+ t2.

(20)

After some algebra, system (20) gives us the solution.
The optimal time T is found from the condition

dT(t1)

dt1
= 0

The solution is as follows:

t1 =
π

2
, δ = (1 − ω0)

π

2
, C =

A
ω0

;

t2 =
1

ω0

(
π

2
(1 + ω0)− arccos

(
ω0

√
B2 − A2

A2(1 − ω2
0)

))
;

∆ = arccos
(

A cos(ω0t2 + δ)

ω0B

)
− t2;

T(B) = π − ∆.

These considerations will help us come up with a solution.
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6. Proof of Optimality and Final Solution

In order to find the optimal solution, it is necessary to study one complete oscillation
of x(t). In this case, the intermediate boundary point C is located from the condition of the
minimum time of this oscillation.

Let us consider the following case A > 0
T1−−→ (−S)

T2−−→ B, where B ∈ [Aω2
0 , A/ω2

0 ]
and T = T1 + T2:

A
T1−−→ (−S) : x(t) =


ẍ + ω2(t)x = 0, 0 < t < T1;
x(0) = A, ẋ(0) = 0;
x(T1) = −S, ẋ(T1) = 0,

(21)

and

(−S)
T2−−→ B : x(t) =


ẍ + ω2(t)x = 0, T1 < t < T;
x(T1) = −S, ẋ(T1) = 0;
x(T) = B, ẋ(T) = 0,

(22)

For problems (21) and (22), the solution for the optimal times T1 and T2 are as follows:

T1 =
π

2

(
1 +

1
ω0

)
+ arccos

(
1
S

√
S2 − A2

1 − ω2
0

)
− 1

ω0
arccos

(
ω0

A

√
S2 − A2

1 − ω2
0

)
; (23)

T2 =
π

2

(
1 +

1
ω0

)
+ arccos

(
1
B

√
B2 − S2

1 − ω2
0

)
− 1

ω0
arccos

(
ω0

S

√
B2 − S2

1 − ω2
0

)
. (24)

Let us study the first derivative: d(T1+T2)
dS = 0 ⇒ S =

√
AB − minimum value ⇒

T1 = T2, where (see Figure 3a)

t1 =
π

2
, t2 =

1
ω0

(
π

2
(1 + ω0)− arccos

(
ω0

A

√
S2 − A2

A2(1 − ω2
0)

))
; (25)

T1 +
π

2
, T1 +

1
ω0

(
π

2
(1 + ω0)− arccos

(
ω0

S

√
B2 − S2

S2(1 − ω2
0)

))
−

switching points for t > T.

(26)

For case (b) in Figure 3, solution is T⋆ = T⋆
1 + T⋆

2 :

T⋆
1 =

π

2
(1 + ω0)−

1
ω0

arccos

(
1
S

√
S2 − A2

1 − ω2
0

)
+ arccos

(
ω0

A

√
S2 − A2

1 − ω2
0

)
; (27)

T⋆
2 =

π

2
(1 + ω0)−

1
ω0

arccos

(
1
B

√
B2 − S2

1 − ω2
0

)
+ arccos

(
ω0

S

√
B2 − S2

1 − ω2
0

)
. (28)

At the point S =
√

AB, the maximum of T⋆ is reached, but this time is not optimal.
From the obtained formulas, it follows that the solution to the original problem is

unique, as it is constructed in an explicit form.

Remark 8. The issue of optimality can be solved through the maximum principle [9]. However, it
is proved by direct classical analysis.

Thus, the complete solution of the problem of determining the optimal process consists
of finding amplitudes according to the formulas Ai =

√
Ai−1 Ai+1, A0 = A, and AN = B
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and the time T =
N
∑

i=1
Ti, where Ti is the time of one full oscillation. The choice of sign for

Ai is determined from the reachability set.

Figure 3. The initial guess of ω(t): plot (a) refers to the optimal cases (23) and (24), and case (b) refers
to the nonoptimal solutions (27) and (28).

7. General Case

In Section 6, a solution was constructed for one complete oscillation. To build a solution
over an arbitrary period of time, it is necessary to pair solutions taking into account the
continuity of the function x(t) and the derivative ẋ(t).

Write the condition of pairing at an arbitrary point ti:{
Ai cos(ωiti + δi) = Ai+1 cos(ωi+1ti + δi+1);
Aiωi sin(ωiti + δi) = Ai+1ωi+1 sin(ωi+1ti + δi+1),

(29)

where Ai, ωi, and δi are known (they are determined at the previous point of pairing).
Note that if ωiti + δi = ωi+1ti + δi+1 = πk, k ∈ N, then Ai = Ai+1, and ωi+1 and δi+1

are paired by the equation
ωi+1ti + δi+1 = πk,

in which any ωi+1 ∈ [ω0, 1] can be taken.

If ωiti + δi = ωi+1ti + δi+1 =
π

2
+ πk and k ∈ N0, then Aiωi = Ai+1ωi+1, and δi+1 is

determined from the equation ωi+1ti + δi+1 =
π

2
+ πk.

Let us consider the function x(t) for an arbitrary N > 0. Writing the conditions of
continuity and the existence of the derivative at the points ti, i = 1, 2, . . . , N, we have the
following:

B = A

√√√√1 + sin2(αt1)

((
α

ω1

)2
− 1

)√√√√1 + sin2(ω1t2 + δ1)

((
ω1

ω2

)2
− 1

)
· . . .

. . . ·

√√√√1 + sin2(ωNtN+1 + δN)

((
ωN
β

)2
− 1

)
.

Hence, it follows that AωN
0 ≤ B ≤ A

ωN
0

.

In conclusion, we find that the set

Dω0 =

[
AωN

0 ,
A

ωN
0

]

is the set of controllability (reachability).
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8. Construction of the Set of Reachability

Let N be the number of zeros of the function x(t) on the set (0, T], A = x(0), and
ω0 ̸= 0.

Consider the following family of sets for negative final values:

A1
− =

[
−Aω0,

−A
ω0

]
, AN

− =

(
−A

ωN−2
0

,
−A
ωN

0

]
,

BN
− =

(
−AωN

0 , −AωN−2
0

]
, N = 2k + 1, k ∈ N.

For positive final values,

A2
+ =

[
Aω2

0,
A

ω2
0

]
, AN

+ =

(
A

ωN−2
0

,
A

ωN
0

]
,

BN
+ =

(
AωN

0 , AωN−2
0

]
, N = 2k, k ∈ N, k ∈ N.

These sets enable the determination of the optimal process time corresponding to the
specific trajectory.

Let us outline the process for determining the optimal trajectory:

1. Determine the optimal time curve that x(T) belongs to.
2. Choose a trajectory that converges to the terminal point; this trajectory will be optimal

(see Figure 4).
3. Construct the analytical solution within a single oscillation and extend it to the

terminal point using Equations (23) and (24) and Equations (25) and (26).

Figure 4. Complete reachability set of all possible optimal trajectories. 0.75 ≤ ω ≤ 1 and A = 1. The
number of switching points depends on the terminal conditions. Within a single oscillation, there are
4 switching points.

The boundary of the intervals is connected by convex functions T(B) Figure 4.
Examples of calculations are shown in Figures 5 and 6.
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Figure 5. A time optimal trajectory x(t) (brown), ẋ(t) (red), ω(t) (blue) of oscillations (a) and the
phase portrait (b) with switching points for the case: x(0) = 1, ẋ(0) = 0, x(T) = 8, ẋ(T) = 0,
0.5 ≤ ω(t) ≤ 1, and T ≈ 14.97.

Figure 6. A time optimal trajectory x(t) (brown), ẋ(t) (red), ω(t) (blue) of oscillations (a) and
the phase portrait (b) with switching points for the case: x(0) = 1, ẋ(0) = 0, x(T) = −32,
ẋ(T) = 0, 0.5 ≤ ω(t) ≤ 1, and T ≈ 23.56. The oscillations follow the boundary of the reacha-
bility set.

9. Conclusions and Outlook

In this paper, we address the multiparameter problem of optimally controlling the
coefficients of a linear differential equation in the shortest possible time. The instability
of the inverse control problem leads to difficulties in obtaining a reliable solution using
the numerical method. Therefore, the solution is constructed analytically and verified
through direct modeling, using recurrent formulas for each trajectory segment while
ensuring smoothness.

The following results were obtained:

1. Constraints on the parameters under which nontrivial solutions occur were estab-
lished.

2. Points were identified where the coefficients of the equation can be switched, for arbi-
trary input parameters, to achieve an optimal solution.

3. The reachability set was constructed for the conditions 0 ≤ ω(t) ≤ 1 and 0 < ω0 ≤
ω(t) ≤ 1.

4. It was proved that the values of the extremum points of the optimal trajectories (inside
and on the boundary of the reachability set in Figure 4) form either an increasing
geometric progression in the case of parametric resonance or a decreasing geometric
progression in the case of damping.

In the problem under consideration, the trend µẋ, where µ > 0, was not included; this
aspect will be the subject of research in the subsequent article.
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Nomenclature

Notation Description
t, τ Time variables
x(t), y(t) Coordinate functions
ẋ(t) Velocity
ẍ(t) Acceleration
ω(t) Control function
T, T1, T2, Topt Optimal time
A, Ai, C, B,
x(0), ẋ(0), x(T), ẋ(T)

Boundary conditions

t1, t2, ti Switching points
ω0 Lower limit of the control function
ωi Discrete values of ω
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