Composite and Mixture Distributions for Heavy-Tailed Data—An Application to Insurance Claims
Abstract
:1. Introduction
2. Methodology
2.1. The Composite Model
2.1.1. Model Specification
2.1.2. Risk Measures
2.2. The Mixture Model
2.2.1. Model Specification
2.2.2. Flexibility for Unimodal and Multimodal Data
2.2.3. Risk Measures
2.3. Model Selection Criteria
3. Empirical Analysis
- Fitting composite models to the taxi claims data
- Fitting mixture models to the taxi claims data
- Fitting composite models to the Danish data
- Fitting mixture models to the Danish data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Distribution | Parameters | CDF | ||
---|---|---|---|---|
Burr | ||||
Exponential | ||||
Gamma | ||||
Generalised Pareto | ||||
Inverse Burr | ||||
Inverse Exponential | ||||
Inverse Gamma | ||||
Inverse Gaussian | ||||
Inverse Paralogistic | ||||
Inverse Pareto | ||||
Inverse Weibull | ||||
Loglogistic | ||||
Lognormal | ||||
Paralogistic | ||||
Pareto | ||||
Weibull |
Head | Tail | ||||
---|---|---|---|---|---|
Gamma | Weibull | , | , | ||
Paralogistic | Inverse Gaussian | , | , | ||
Loglogistic | Inverse Gaussian | , | , | ||
Paralogistic | Weibull | , | , | ||
Inverse paralogistic | Inverse Gaussian | , | , | ||
Weibull | Weibull | , | , | ||
Gamma | Burr | , | , , | ||
Loglogistic | Weibull | , | , | ||
Paralogistic | Burr | , | , , | ||
Weibull | Burr | , | , | ||
Inverse Burr | Weibull | , , | , | ||
Loglogistic | Burr | , | , , | ||
Inverse Burr | Burr | , , | , , | ||
Inverse paralogistic | Weibull | , | , | ||
Inverse paralogistic | Burr | , | , , | ||
Burr | Pareto | , , | , | ||
Weibull | Lognormal | , | , | ||
Gamma | Lognormal | , | , | ||
Gamma | Generalised Pareto | , | , , | ||
Paralogistic | Lognormal | , | , |
First Component | Second Component | |||
---|---|---|---|---|
Inverse gamma | Lognormal | |||
Inverse Gaussian | Lognormal | |||
Generalised Pareto | Lognormal | , | ||
Inverse paralogistic | Lognormal | |||
Inverse Weibull | Lognormal | |||
Inverse Burr | Lognormal | , | ||
Loglogistic | Lognormal | |||
Burr | Lognormal | , | ||
Gamma | Lognormal | |||
Paralogistic | Lognormal | |||
Lognormal | Weibull | |||
Loglogistic | Generalised Pareto | , | ||
Generalised Pareto | Paralogistic | , | ||
Loglogistic | Paralogistic | |||
Burr | Loglogistic | , | ||
Paralogistic | Paralogistic | |||
Burr | Burr | , | , | |
Inverse gamma | Paralogistic | |||
Inverse gamma | Generalised Pareto | , | ||
Paralogistic | Burr | , |
Head | Tail | ||||
---|---|---|---|---|---|
Weibull | Inverse Weibull | , | , | ||
Paralogistic | Inverse Weibull | ), | , | ||
Inverse Burr | Inverse Weibull | , | , | ||
Weibull | Inverse paralogistic | , | , | ||
Inverse Burr | Inverse paralogistic | , , | , | ||
Paralogistic | Inverse paralogistic | , | , | ||
Weibull | Loglogistic | , | , | ||
Inverse Burr | Loglogistic | , , | , | ||
Paralogistic | Loglogistic | , | , | ||
Loglogistic | Inverse Weibull | , | , | ||
Weibull | Burr | , | , | ||
Paralogistic | Burr | , | , , | ||
Inverse Burr | Burr | , , | , , | ||
Loglogistic | Inverse paralogistic | , | |||
Inverse Burr | Inverse gamma | , , | , | ||
Paralogistic | Inverse gamma | , | , | ||
Loglogistic | Loglogistic | , | , | ||
Weibull | Paralogistic | , | , | ||
Paralogistic | Paralogistic | , | , | ||
Inverse Burr | Paralogistic | , , | , |
First Component | Second Component | |||
---|---|---|---|---|
Burr | Burr | , | ||
Inverse Weibull | Burr | |||
Loglogistic | Burr | |||
Inverse paralogistic | Burr | |||
Inverse Burr | Burr | , | ||
Gamma | Burr | |||
Inverse Gaussian | Burr | |||
Lognormal | Burr | |||
Generalised Pareto | Burr | , | ||
Inverse gamma | Burr | |||
Inverse exponential | Burr | |||
Exponential | Burr | |||
Inverse Pareto | Burr | |||
Paralogistic | Burr | |||
Weibull | Burr | |||
Pareto | Burr | |||
Inverse Weibull | Inverse Burr | |||
Inverse paralogistic | Inverse Weibull | |||
Inverse gamma | Inverse Weibull | |||
Inverse Burr | Inverse Burr |
References
- Cooray, K.; Ananda, M.M.A. Modeling actuarial data with a composite lognormal-Pareto model. Scand. Actuar. J. 2007, 2005, 321–334. [Google Scholar] [CrossRef]
- Scollnik, D.P.M. On composite lognormal-Pareto models. Scand. Actuar. J. 2007, 2007, 20–33. [Google Scholar] [CrossRef]
- Pigeon, M.; Denuit, M. Composite Lognormal-Pareto model with random threshold. Scand. Actuar. J. 2010, 2011, 177–192. [Google Scholar] [CrossRef]
- Nadarajah, S.; Bakar, S.A.A. New composite models for the Danish fire insurance data. Scand. Actuar. J. 2012, 2014, 180–187. [Google Scholar] [CrossRef]
- Ciumara, R. An actuarial model based on the composite Weibull-Pareto distribution. Math. Rep. 2006, 8, 401–414. [Google Scholar]
- Scollnik, D.P.M.; Sun, C. Modeling with Weibull-Pareto models. N. Am. Actuar. J. 2012, 16, 260–272. [Google Scholar] [CrossRef]
- Abu Bakar, S.A.; Hamzah, N.A.; Maghsoudi, M.; Nadarajah, S. Modeling loss data using composite models. Insur. Math. Econ. 2015, 61, 146–154. [Google Scholar] [CrossRef]
- Grün, B.; Miljkovic, T. Extending composite loss models using a general framework of advanced computational tools. Scand. Actuar. J. 2019, 2019, 642–660. [Google Scholar] [CrossRef]
- Calderin-Ojeda, E.; Kwok, C.F. Modeling claims data with composite Stoppa models. Scand. Actuar. J. 2015, 2016, 817–836. [Google Scholar] [CrossRef]
- Keatinge, C.L. Modeling losses with the mixed exponential distribution. Proc. Casualty Actuar. Soc. 1999, LXXXVI, 654–698. [Google Scholar]
- Klugman, S.; Rioux, J. Toward a Unified Approach to Fitting Loss Models. N. Am. Actuar. J. 2006, 10, 63–83. [Google Scholar] [CrossRef]
- Lee, S.C.K.; Lin, S.X. Modeling and Evaluating Insurance Losses Via mixtures of Erlang Distributions. N. Am. Actuar. J. 2010, 14, 107–130. [Google Scholar] [CrossRef]
- Tijms, H. Stochastic Models: An Algorithm Approach; Wiley: Hoboken, NJ, USA, 1994; ISBN 0-471-95123-4. [Google Scholar]
- Miljkovic, T.; Grün, B. Modeling loss data using mixtures of distributions. Insur. Math. Econ. 2016, 70, 387–396. [Google Scholar] [CrossRef]
- Abu Bakar, S.A.; Nadarajah, S.; Adzhar, Z.A.A.K. Loss modeling using Burr mixtures. Empir. Econ. 2017, 54, 1503–1516. [Google Scholar] [CrossRef]
- Abu Bakar, S.A.; Nadarajah, S. Risk measure estimation under two component mixture models with trimmed data. J. Appl. Stat. 2019, 46, 835–852. [Google Scholar] [CrossRef]
- Asgharzadeh, A.; Nadarajah, S.; Sharafi, F. Generalized inverse Lindley distribution with application to Danish fire insurance data. Commun. Stat. Theory Methods 2017, 46, 5000–5021. [Google Scholar] [CrossRef]
- Punzo, A.; Bagnato, L.; Maruotti, A. Compound unimodal distributions for insurance losses. Insur. Math. Econ. 2018, 81, 95–107. [Google Scholar] [CrossRef]
- Bhati, D.; Ravi, S. On generalized log-Moyal distribution: A new heavy tailed size distribution. Insur. Math. Econ. 2018, 79, 247–259. [Google Scholar] [CrossRef]
- Li, Z.; Beirlant, J.; Meng, S. Generalizing the log-Moyal distribution and regression models for heavy-tailed loss data. ASTIN Bull. J. IAA 2021, 51, 57–99. [Google Scholar] [CrossRef]
- Zhao, J.; Ahmad, Z.; Mahmoudi, E.; Hafez, E.H.; Mohie El-Din, M.M. A new class of heavy-tailed distributions: Modeling and simulating actuarial measures. Complexity 2021, 2021, 5580228. [Google Scholar] [CrossRef]
- Ahmad, Z.; Mahmoudi, E.; Dey, S. A new family of heavy tailed distributions with an application to the heavy tailed insurance loss data. Commun. Stat.-Simul. Comput. 2022, 51, 4372–4395. [Google Scholar] [CrossRef]
- Maphalla, R.; Mokhoabane, M.; Ndou, M.; Shongwe, S.C. Quantifying risk using loss distributions. In Applied Probability Theory—New Perspectives, Recent Advances and Trends; Jaoude, A.A., Ed.; IntechOpen: London, UK, 2023; pp. 139–161. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.R-project.org/ (accessed on 1 April 2023).
- Davison, A. SMPracticals: Practicals for Use with Davison (2003) Statistical Models. 2019. R Package Version 1.4-3. Available online: https://CRAN.R-project.org/package=SMPracticals (accessed on 1 May 2023).
- Blostein, M.; Miljkovic, T. On modeling left-truncated loss data using mixtures of distributions. Insur. Math. Econ. 2019, 85, 35–46. [Google Scholar] [CrossRef]
- Miljkovic, T.; Grün, B. Using Model Averaging to Determine Suitable Risk Measure Estimates. N. Am. Actuar. J. 2021, 25, 562–579. [Google Scholar] [CrossRef]
- Rigby, R.A.; Stasinopoulos, M.D.; Heller, G.Z.; De Bastiani, F. Distributions for Modeling Location, Scale, and Shape: Using GAMLSS in R; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Zou, J.; Wang, W.; Zhang, X.; Zou, G. Optimal model averaging for divergent-dimensional Poisson regressions. Econom. Rev. 2022, 41, 775–805. [Google Scholar] [CrossRef]
- Zou, J.; Yuan, C.; Zhang, X.; Zou, G.; Wan, A.T.K. Model averaging for support vector classifier by cross-validation. Stat. Comput. 2023, 33, 117. [Google Scholar] [CrossRef]
Model A | |||
Model B | |||
Model C |
Model A | |||
Model B | |||
Model C |
Minimum | Quantiles | Mean | Maximum | Standard Deviation | Coefficient of Variation | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
0.1 | (20.8, 45, 120.8) | 132.3 | 4803.3 | 284.1563 | 2.15 | 6.474 | 63.64 |
Minimum | Quantiles | Mean | Maximum | Standard Deviation | Coefficient of Variation | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
0.3134 | (1.1572, 1.6339, 2.6455) | 3.0627 | 263.2504 | 7.976703 | 2.60 | 19.896 | 549.5736 |
Head | Tail | p | NLL | AIC | BIC |
---|---|---|---|---|---|
Gamma | Weibull | 4 | 270,197.8 | 540,403.6 | 540,438.8 |
Paralogistic | Inverse Gaussian | 4 | 270,198.1 | 540,404.2 | 540,439.3 |
Loglogistic | Inverse Gaussian | 4 | 270,200.7 | 540,409.5 | 540,444.6 |
Paralogistic | Weibull | 4 | 270,201.2 | 540,410.5 | 540,445.6 |
Inverse paralogistic | Inverse Gaussian | 4 | 270,217.0 | 540,442.1 | 540,447.2 |
Weibull | Weibull | 4 | 270,202.4 | 540,412.8 | 540,447.9 |
Gamma | Burr | 5 | 270,197.8 | 540,405.6 | 540,449.5 |
Loglogistic | Weibull | 4 | 270,204.4 | 540,416.8 | 540,452.0 |
Paralogistic | Burr | 5 | 270,201.1 | 540,412.5 | 540,456.4 |
Weibull | Burr | 5 | 270,202.4 | 540,414.8 | 540,458.7 |
Inverse Burr | Weibull | 5 | 270,202.5 | 540,415.1 | 540,459.0 |
Loglogistic | Burr | 5 | 270,204.4 | 540,418.8 | 540,462.7 |
Inverse Burr | Burr | 6 | 270,201.2 | 540,417.1 | 540,469.8 |
Inverse paralogistic | Weibull | 4 | 270,223.4 | 540,454.7 | 540,489.9 |
Inverse paralogistic | Burr | 5 | 270,223.4 | 540,456.8 | 540,500.7 |
Burr | Pareto | 5 | 270,246.1 | 540,502.3 | 540,546.2 |
Weibull | Lognormal | 4 | 270,259.9 | 540,527.8 | 540,562.9 |
Gamma | Lognormal | 4 | 270,260 | 540,528.8 | 540,563.9 |
Gamma | Generalised Pareto | 5 | 270,257.0 | 540,524.0 | 540,567.9 |
Paralogistic | Lognormal | 4 | 270,262.9 | 540,533.9 | 540,569.0 |
Empirical Estimates | 525.1509 | 1396.901 | 1085.583 | 2206.203 | |
---|---|---|---|---|---|
Parametric | |||||
Head | Tail | ||||
Gamma | Weibull | 521.76 (−0.6%) | 1396.27 (0.0%) | 1125.77 (3.7%) | 2422.04 (9.8%) |
Paralogistic | Inverse Gaussian | 547.96 (4.3%) | 1361.21 (−2.6%) | 1068.6 (−1.6%) | 2055.10 (−6.8%) |
Loglogistic | Inverse Gaussian | 547.84 (4.3%) | 1361.62 (−2.5%) | 1068.80 (−1.5%) | 2056.09 (−6.8%) |
Paralogistic | Weibull | 521.92 (−0.6%) | 1394.70 (−0.2%) | 1124.46 (3.6%) | 2416.23 (9.5%) |
Inverse paralogistic | Inverse Gaussian | 547.38 (4.2%) | 1363.79 (−2.4%) | 1070.18 (−1.4%) | 2061.91 (−6.5%) |
Weibull | Weibull | 522.21 (−0.6%) | 1389.41 (−0.5%) | 1119.77 (3.1%) | 2396.8 (8.6%) |
Gamma | Burr | 521.78 (−0.6%) | 1396.5 (0.0%) | 1126.1 (3.7%) | 2423.17 (9.8%) |
Loglogistic | Weibull | 521.62 (−0.7%) | 1393.86 (−0.2%) | 1123.85 (3.5%) | 2415.2 (9.5%) |
Paralogistic | Burr | 521.92 (−0.6%) | 1394.71 (−0.2%) | 1124.46 (3.6%) | 2416.26 (9.5%) |
Weibull | Burr | - | - | - | - |
Inverse Burr | Weibull | 522.15 (−0.6%) | 1395.0 (−0.1%) | 1124.66 (3.6%) | 2416.12 (9.5%) |
Loglogistic | Burr | - | - | - | - |
Inverse Burr | Burr | 521.91 (−0.6%) | 1394.08 (−0.2%) | 1123.92 (3.5%) | 2414.26 (9.4%) |
Inverse paralogistic | Weibull | 520.81 (−0.8%) | 1393.196 (−0.3%) | 1123.73 (3.5%) | 2418.417 (9.6%) |
Inverse paralogistic | Burr | 521.06 (−0.8%) | 1394.12 (−0.2%) | 1124.48 (3.6%) | 2420.34 (9.7%) |
Burr | Pareto | 532.21 (1.3%) | 1334.65 (−4.5%) | 1112.35 (2.5%) | 2391.68 (8.4%) |
Weibull | Lognormal | 516.02 (−1.7%) | 1513.17 (8.3%) | 1270.78 (17.1%) | 3067.21 (39.0%) |
Gamma | Lognormal | 516.54 (−1.6%) | 1524.43 (9.1%) | 1286.50 (18.5%) | 3133.02 (42.0%) |
Gamma | Generalised Pareto | 585.11 (11.4%) | 1587.63 (13.7%) | 1396.13 (28.6%) | 3404.88 (54.3%) |
Paralogistic | Lognormal | 513.46 (−2.2%) | 1511.45 (8.2%) | 1274.91 (17.4%) | 3098.64 (40.5%) |
First Component | Second Component | p | NLL | AIC | BIC |
---|---|---|---|---|---|
Inverse gamma | Lognormal | 5 | 270,142.25 | 540,294.5 | 540,338.4 |
Inverse Gaussian | Lognormal | 5 | 270,142.45 | 540,294.91 | 540,338.81 |
Generalised Pareto | Lognormal | 6 | 270,142.17 | 540,296.35 | 540,349.03 |
Inverse paralogistic | Lognormal | 5 | 270,148.17 | 540,306.35 | 540,350.25 |
Inverse Weibull | Lognormal | 5 | 270,148.29 | 540,306.58 | 540,350.48 |
Inverse Burr | Lognormal | 6 | 270,146.59 | 540,305.17 | 540,357.85 |
Loglogistic | Lognormal | 5 | 270,158.197 | 540,326.39 | 540,370.29 |
Burr | Lognormal | 6 | 270,155.86 | 540,323.72 | 540,376.4 |
Gamma | Lognormal | 5 | 270,164.59 | 540,339.19 | 540,383.09 |
Paralogistic | Lognormal | 5 | 270,167.79 | 540,345.59 | 540,389.49 |
Lognormal | Weibull | 5 | 270,186.3 | 540,382.6 | 540,426.5 |
Loglogistic | Generalised Pareto | 6 | 270,225.71 | 540,463.43 | 540,516.11 |
Generalised Pareto | Paralogistic | 6 | 270,227.97 | 540,467.94 | 540,520.62 |
Loglogistic | Paralogistic | 5 | 270,239.59 | 540,489.17 | 540,533.07 |
Burr | Loglogistic | 6 | 270,236.85 | 540,485.70 | 540,538.38 |
Paralogistic | Paralogistic | 5 | 270,247.06 | 540,504.11 | 540,548.01 |
Burr | Burr | 7 | 270,236.71 | 540,487.43 | 540,548.89 |
Inverse gamma | Paralogistic | 5 | 270,248.70 | 540,507.41 | 540,551.31 |
Inverse gamma | Generalised Pareto | 6 | 270,243.88 | 540,499.75 | 540,552.43 |
Paralogistic | Burr | 6 | 270,246.83 | 540,505.67 | 540,558.35 |
Empirical Estimates | 525.1509 | 1396.901 | 1085.583 | 2206.203 | |
---|---|---|---|---|---|
Parametric | |||||
First Component | Second Component | ||||
Inverse gamma | Lognormal | 513.98 (−2.1%) | 1382.65 (−1.0%) | 1142.3 (5.2%) | 2558.96 (16.0%) |
Inverse Gaussian | Lognormal | 514.55 (−2.0%) | 1373.99 (−1.6%) | 1134.85 (4.5%) | 2529.36 (14.6%) |
Generalised Pareto | Lognormal | 514.63 (−2.0%) | 1383.4 (−1.0%) | 1142.86 (5.3%) | 2558.81 (16.0%) |
Inverse paralogistic | Lognormal | 515.07 (−1.9%) | 1390.59 (−0.5%) | 1149.02 (5.8%) | 2580.52 (17.0%) |
Inverse Weibull | Lognormal | 510.55 (−2.8%) | 1378.04 (−1.4%) | 1139.31 (4.9%) | 2560.72 (16.1%) |
Inverse Burr | Lognormal | 513.78 (−2.2%) | 1389.68 (−0.5%) | 1148.59 (5.8%) | 2583.77 (17.1%) |
Loglogistic | Lognormal | 517.67 (−1.4%) | 1391.51 (−0.4%) | 1149.05 (5.8%) | 2570.78 (16.5%) |
Burr | Lognormal | 516.78 (−1.6%) | 1400.85 (0.3%) | 1157.8 (6.7%) | 2607.82 (18.2%) |
Gamma | Lognormal | 513.25 (−2.3%) | 1360.23 (−2.6%) | 1123.05 (3.5%) | 2489.42 (12.8%) |
Paralogistic | Lognormal | 516.78 (−1.6%) | 1373.68 (−1.7%) | 1133.63 (4.4%) | 2515.69 (14.0%) |
Lognormal | Weibull | 512.52 (−2.4%) | 1342.93 (−3.9%) | 1107.41 (2.0%) | 2431.57 (10.2%) |
Loglogistic | Generalised Pareto | 518.2 (−1.3%) | 1349.01 (−3.4%) | 1157.27 (6.6%) | 2664.54 (20.8%) |
Generalised Pareto | Paralogistic | 511.48 (−2.6%) | 1363.65 (−2.4%) | 1190.45 (9.7%) | 2846.36 (29.0%) |
Loglogistic | Paralogistic | 513.22 (−2.3%) | 1372.25 (−1.8%) | 1223.63 (12.7%) | 3002.93 (36.1%) |
Burr | Loglogistic | 515.45 (−1.8%) | 1351.42 (−3.3%) | 1181.42 (8.8%) | 2799.21 (26.9%) |
Paralogistic | Paralogistic | 507.18 (−3.4%) | 1384.18 (−0.9%) | 1255.56 (15.7%) | 3176.84 (44.0%) |
Burr | Burr | 516.17 (−1.7%) | 1351.72 (−3.2%) | 1181.84 (8.9%) | 2798.08 (26.8%) |
Inverse gamma | Paralogistic | 504.42 (−3.9%) | 1436.60 (2.8%) | 1327.5 (22.3%) | 3496.71 (58.5%) |
Inverse gamma | Generalised Pareto | 507.28 (−3.4%) | 1402.21 (0.4%) | 1268.23 (16.8%) | 3220.81 (46.0%) |
Paralogistic | Burr | 507.44 (−3.4%) | 1376.18 (−1.5%) | 1240.94 (14.3%) | 3109.60 (40.9%) |
Head | Tail | p | NLL | AIC | BIC |
---|---|---|---|---|---|
Weibull | Inverse Weibull | 4 | 3820.01 | 7648.02 | 7671.30 |
Paralogistic | Inverse Weibull | 4 | 3820.14 | 7648.28 | 7671.56 |
Inverse Burr | Inverse Weibull | 5 | 3816.34 | 7642.68 | 7671.79 |
Weibull | Inverse paralogistic | 4 | 3820.93 | 7649.87 | 7673.15 |
Inverse Burr | Inverse paralogistic | 5 | 3817.07 | 7644.14 | 7673.25 |
Paralogistic | Inverse paralogistic | 4 | 3821.04 | 7650.08 | 7673.36 |
Weibull | Loglogistic | 4 | 3821.23 | 7650.46 | 7673.74 |
Inverse Burr | Loglogistic | 5 | 3817.37 | 7644.74 | 7673.85 |
Paralogistic | Loglogistic | 4 | 3821.32 | 7650.65 | 7673.93 |
Loglogistic | Inverse Weibull | 4 | 3821.38 | 7650.76 | 7674.04 |
Weibull | Burr | 5 | 3817.57 | 7645.14 | 7674.24 |
Paralogistic | Burr | 5 | 3817.72 | 7645.43 | 7674.54 |
Inverse Burr | Burr | 6 | 3814.00 | 7639.99 | 7674.92 |
Loglogistic | Inverse paralogistic | 4 | 3822.15 | 7652.31 | 7675.59 |
Inverse Burr | Inverse gamma | 5 | 3818.30 | 7646.61 | 7675.71 |
Paralogistic | Inverse gamma | 4 | 3822.22 | 7652.43 | 7675.72 |
Loglogistic | Loglogistic | 4 | 3822.41 | 7652.82 | 7676.10 |
Weibull | Paralogistic | 4 | 3822.44 | 7652.88 | 7676.17 |
Paralogistic | Paralogistic | 4 | 3822.53 | 7653.05 | 7676.34 |
Inverse Burr | Paralogistic | 5 | 3818.68 | 7647.37 | 7676.47 |
Empirical Estimates | 8.406298 | 24.61378 | 22.15509 | 54.60396 | |
---|---|---|---|---|---|
Parametric | |||||
Head | Tail | ||||
Weibull | Inverse Weibull | 8.02 (−4.6%) | 22.77 (−7.5%) | 22.64 (2.2%) | 63.86 (17.0%) |
Paralogistic | Inverse Weibull | 8.02 (−4.6%) | 22.79 (−7.4%) | 22.67 (2.3%) | 64.00 (17.2%) |
Inverse Burr | Inverse Weibull | 8.01 (−4.7%) | 22.73 (−7.7%) | 22.59 (2.0%) | 63.67 (16.6%) |
Weibull | Inverse paralogistic | 8.03 (−4.5%) | 22.64 (−8.0%) | 22.38 (1.0%) | 62.65 (14.7%) |
Inverse Burr | Inverse paralogistic | 8.03 (−4.5%) | 22.65 (−8.0%) | 22.39 (1.1%) | 62.69 (14.8%) |
Paralogistic | Inverse paralogistic | 8.03 (−4.5%) | 22.68 (−7.9%) | 22.44 (1.3%) | 62.89 (15.2%) |
Weibull | Loglogistic | 8.05 (−4.2%) | 22.7 (−7.8%) | 22.43 (1.2%) | 62.8 (15.0%) |
Inverse Burr | Loglogistic | 8.04 (−4.4%) | 22.64 (−8.0%) | 22.35 (0.9%) | 62.46 (14.4%) |
Paralogistic | Loglogistic | 8.05 (−4.2%) | 22.71 (−7.7%) | 22.46 (1.4%) | 62.89 (15.2%) |
Loglogistic | Inverse Weibull | 8.05 (−4.2%) | 22.96 (−6.7%) | 22.93 (3.5%) | 65.02 (19.1%) |
Weibull | Burr | 8.22 (−2.2%) | 25.18 (2.3%) | 26.98 (21.8%) | 82.59 (51.3%) |
Paralogistic | Burr | 8.22 (−2.2%) | 25.18 (2.3%) | 26.98 (21.8%) | 82.61 (51.3%) |
Inverse Burr | Burr | 8.22 (−2.2%) | 25.13 (2.1%) | 26.88 (21.3%) | 82.15 (50.4%) |
Loglogistic | Inverse paralogistic | 8.05 (−4.2%) | 22.79 (−7.4%) | 22.6 (2.0%) | 63.55 (16.4%) |
Inverse Burr | Inverse gamma | 8.1 (−3.6%) | 22.33 (−9.3%) | 21.42 (−3.3%) | 57.83 (5.9%) |
Paralogistic | Inverse gamma | 8.11 (−3.5%) | 22.44 (−8.8%) | 21.57 (−2.6%) | 58.48 (7.1%) |
Loglogistic | Loglogistic | 8.06 (−4.1%) | 22.82 (−7.3%) | 22.61 (2.1%) | 63.52 (16.3%) |
Weibull | Paralogistic | 8.11 (−3.5%) | 22.6 (−8.2%) | 21.98 (−0.8%) | 60.35 (10.5%) |
Paralogistic | Paralogistic | 8.11 (−3.5%) | 22.62 (−8.1%) | 21.99 (−0.7%) | 60.41 (10.6%) |
Inverse Burr | Paralogistic | 8.1 (−3.6%) | 22.47 (−8.7%) | 21.78 (−1.7%) | 59.52 (9.0%) |
First Component | Second Component | p | NLL | AIC | BIC |
---|---|---|---|---|---|
Burr | Burr | 7 | 3786.47 | 7586.95 | 7627.69 |
Inverse Weibull | Burr | 6 | 3790.61 | 7593.22 | 7628.15 |
Loglogistic | Burr | 6 | 3791.60 | 7595.20 | 7630.13 |
Inverse paralogistic | Burr | 6 | 3792.02 | 7596.03 | 7630.96 |
Paralogistic | Burr | 6 | 3794.36 | 7600.72 | 7635.64 |
Inverse Burr | Burr | 7 | 3790.73 | 7595.46 | 7636.21 |
Gamma | Burr | 6 | 3798.004 | 7608.01 | 7642.93 |
Lognormal | Burr | 6 | 3799.06 | 7610.12 | 7645.05 |
Generalised Pareto | Burr | 7 | 3797.91 | 7609.83 | 7650.57 |
Inverse Gaussian | Burr | 6 | 3801.97 | 7615.94 | 7650.86 |
Inverse gamma | Burr | 6 | 3803.79 | 7619.57 | 7654.5 |
Inverse exponential | Burr | 5 | 3810.03 | 7630.06 | 7659.17 |
Exponential | Burr | 5 | 3811.32 | 7632.63 | 7661.74 |
Inverse Pareto | Burr | 6 | 3810.06 | 7632.12 | 7667.04 |
Weibull | Burr | 6 | 3810.82 | 7633.65 | 7668.57 |
Pareto | Burr | 6 | 3811.33 | 7634.65 | 7669.58 |
Inverse Weibull | Inverse Burr | 6 | 3833.76 | 7679.53 | 7714.45 |
Inverse paralogistic | Inverse Weibull | 5 | 3840.24 | 7690.49 | 7719.59 |
Inverse Weibull | Inverse gamma | 5 | 3840.53 | 7691.07 | 7720.17 |
Inverse Burr | Inverse Burr | 7 | 3833.79 | 7681.57 | 7722.32 |
Empirical Estimates | 8.406298 | 24.61378 | 22.15509 | 54.60396 | |
---|---|---|---|---|---|
Parametric | |||||
First Component | Second Component | ||||
Burr | Burr | 8.26 (−1.7%) | 27.0 (9.7%) | 34.74 (56.8%) | 119.72 (119.3%) |
Inverse Weibull | Burr | 8.19 (−2.6%) | 25.23 (2.5%) | 27.21 (22.8%) | 83.83 (53.5%) |
Loglogistic | Burr | 9.245 (10.0%) | 36.07 (46.5%) | 60.00 (170.8%) | 234.13 (328.8%) |
Inverse paralogistic | Burr | 8.2025 (−2.4%) | 25.32 (2.9%) | 27.37 (23.5%) | 84.498 (54.7%) |
Inverse Burr | Burr | 8.1902 (−2.6%) | 25.23 (2.5%) | 27.22 (22.9%) | 83.87 (53.6%) |
Gamma | Burr | 9.395 (11.8%) | 36.48 (48.2%) | 59.80 (169.9%) | 232.22 (325.3%) |
Inverse Gaussian | Burr | 8.59 (2.2%) | 31.88 (29.5%) | 46.53 (110.0%) | 172.91 (216.7%) |
Lognormal | Burr | 8.71 (3.6%) | 32.67 (32.7%) | 48.82 (120.4%) | 183.18 (235.5%) |
Generalised Pareto | Burr | 8.81 (4.8%) | 33.31 (35.3%) | 50.72 (128.9%) | 191.77 (251.2%) |
Inverse gamma | Burr | 9.14 (8.7%) | 32.64 (32.6%) | 43.71 (97.3%) | 156.09 (185.9%) |
Inverse exponential | Burr | 9.61 (14.3%) | 34.555 (40.4%) | - | - |
Exponential | Burr | 9.51 (13.1%) | 33.85 (37.5%) | 45.41 (105.0%) | 162.22 (197.1%) |
Inverse Pareto | Burr | 9.61 (14.3%) | 34.55 (40.4%) | - | - |
Paralogistic | Burr | 8.43 (0.3%) | 26.85 (9.1%) | 30.07 (35.7%) | 95.73 (75.3%) |
Weibull | Burr | 8.44 (0.4%) | 26.89 (9.2%) | 30.14 (36.0%) | 96.04 (75.9%) |
Pareto | Burr | 9.51 (13.1%) | 33.85 (37.5%) | 45.39 (104.9%) | 162.15 (197.0%) |
Inverse Weibull | Inverse Burr | 8.15 (−3.0%) | 21.51 (−12.6%) | 20.11 (−9.2%) | 51.88 (−5.0%) |
Inverse paralogistic | Inverse Weibull | 8.13 (−3.3%) | 19.92 (−19.1%) | 17.89 (−19.3%) | 42.34 (−22.5%) |
Inverse Weibull | Inverse gamma | 8.53 (1.5%) | 22.16 (−10.0%) | 19.84 (−10.4%) | 48.35 (−11.5%) |
Inverse Burr | Inverse Burr | 8.15 (−3.0%) | 21.49 (−12.7%) | 20.096 (−9.3%) | 51.83 (−5.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marambakuyana, W.A.; Shongwe, S.C. Composite and Mixture Distributions for Heavy-Tailed Data—An Application to Insurance Claims. Mathematics 2024, 12, 335. https://doi.org/10.3390/math12020335
Marambakuyana WA, Shongwe SC. Composite and Mixture Distributions for Heavy-Tailed Data—An Application to Insurance Claims. Mathematics. 2024; 12(2):335. https://doi.org/10.3390/math12020335
Chicago/Turabian StyleMarambakuyana, Walena Anesu, and Sandile Charles Shongwe. 2024. "Composite and Mixture Distributions for Heavy-Tailed Data—An Application to Insurance Claims" Mathematics 12, no. 2: 335. https://doi.org/10.3390/math12020335
APA StyleMarambakuyana, W. A., & Shongwe, S. C. (2024). Composite and Mixture Distributions for Heavy-Tailed Data—An Application to Insurance Claims. Mathematics, 12(2), 335. https://doi.org/10.3390/math12020335