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Abstract: This research provides a comprehensive analysis of two-component non-Gaussian com-
posite models and mixture models for insurance claims data. These models have gained attrac-
tion in actuarial literature because they provide flexible methods for curve-fitting. We consider
256 composite models and 256 mixture models derived from 16 popular parametric distributions. The
composite models are developed by piecing together two distributions at a threshold value, while
the mixture models are developed as convex combinations of two distributions on the same domain.
Two real insurance datasets from different industries are considered. Model selection criteria and
risk metrics of the top 20 models in each category (composite/mixture) are provided by using the
‘single-best model’ approach. Finally, for each of the datasets, composite models seem to provide
better risk estimates.
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1. Introduction

In the area of loss modelling, basic classical distributions such as the lognormal,
Weibull, gamma, Pareto, and Burr distributions are increasingly becoming less popular
as composite and mixture models are gaining more attention because of their flexibility.
Composite models are developed by piecing together two distributions (which are termed
head and tail distributions) at a threshold value so that small and moderate losses are mod-
elled by the head distribution, whereas large losses are modelled by the tail distribution.
On the other hand, mixture models are developed as convex combinations of distributions
defined on the same overlapping domain, i.e., the positive real line. The different combina-
tions of models that can be constructed provide a large degree of flexibility for modelling
heavy-tailed loss data.

The first composite model used to model actuarial data was proposed by Cooray
and Ananda [1]. This model has paved the way for more composite model research in
the actuarial and risk management curriculum. The idea behind the model was to use
the lognormal distribution to model the behaviour of small and moderate losses (high
frequency/low severity) and the Pareto distribution to model the behaviour of the large
losses (low frequency/high severity). However, this model was criticised by Scollnik [2] as
it can be interpreted as a two-component mixture model with fixed and a priori known
mixing weights. Scollnik [2] then proposed two models with unrestricted mixing weights.
Unlike the model proposed by [1], these models provided more flexibility due to the
accommodation of different proportions of the two distributions of the composite model.
The models discussed in Scollnik [2] were extended by Pigeon and Denuit [3] for when
the threshold is assumed to vary among observations. Pigeon and Denuit [3] proposed
two examples of distributions which can be used for the threshold—this resulted in the
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gamma-distributed threshold and lognormaldistributed threshold. Next, Nadarajah and
Bakar [4] introduced the composite lognormal-Burr model, where it was observed that
in the case of the Danish fire loss data, this model performed better than the composite
lognormal-Pareto family. Parallel to the studies based on the composite lognormal models
at that time, Ciumara [5] introduced a model with the Weibull distribution to model the
behaviour of small and moderate losses and the Pareto distribution to model the behaviour
of large losses. Scollnik and Sun [6] also criticised the restrictive nature of the fixed and
a priori known mixing weights of the model discussed in Ciumara [5]. Scollnik and
Sun [6] proposed two additional models with unrestricted weights. Abu Bakar et al. [7]
extended the class of Weibull composite distributions by proposing seven models with
the tail belonging to the family of transformed beta distributions. The new composite
models proposed were the composite Weibull-Burr, the composite Weibull-Loglogistic, the
composite Weibull-Paralogistic, the composite Weibull-Generalised Pareto, the composite
Weibull-Inverse Burr, the composite Weibull-Inverse Pareto and the composite Weibull-
Inverse paralogistic models. At the time of their study, [7] found that the composite models
with the Weibull as the head distribution performed better for the Danish fire loss data
compared to other composite models in the literature. The extension of the framework
for composite models was provided by Grün and Miljkovic [8], where they conducted
a thorough analysis of 256 distinct composite curve-fitting models which emerged from
piecing together two distributions (i.e., head and tail distributions) from the list of 16 widely
used parametric distributions—these are provided in Table A1 in Appendix A.

For the Danish fire loss data, Grün and Miljkovic [8] identified the top 20 composite
models that fit the data the best and examined the goodness-of-fit characteristics and
risk assessments for those 20 models. The composite Weibull-Inverse Weibull, composite
Paralogistic-Inverse Weibull, and composite Inverse Burr-Inverse Weibull, respectively,
were the top three models based on the Bayesian Information Criterion (BIC). Among
the 256 composite models assessed, none of the top 20 best-fitting had the lognormal
distribution in the head. Contrarily, using the Weibull, paralogistic, and inverse Burr
distributions in the head was proven to be the most practical approach for simulating the
small- and moderate-sized claims of Danish fire loss data. The best choices for modelling
the long tail of the loss data were the inverse Weibull, inverse paralogistic, loglogistic, Burr,
inverse gamma, and paralogistic. Neither the Pareto nor the generalised Pareto distributions
were among the top 20 based on the BIC. Calderin-Ojeda and Kwok [9] suggested the use of
composite models where the mode is the splice point (or the truncation point). This method
is known as the mode matching procedure, and it was used to construct the composite
lognormal-Stoppa and the composite Weibull-Stoppa, where the composite Weibull-Stoppa
model had the best performance up to date for the Danish data.

Keatinge [10] introduced the use of the mixture of exponentials as a semiparametric
approach. Klugman and Rioux [11] stated that a drawback of the mixture of exponentials
is its zero mode, and they proposed the augmented mixture of exponentials distribution
which consisted of the mixture of exponentials, the gamma or lognormal distribution,
and the Pareto distribution, respectively. Lee and Lin [12] stated that a drawback of the
augmented mixture of exponentials is that it has a maximum of three modes, and they
proposed a mixture of Erlang distributions with the same scale parameter. It is said that the
mixture of Erlang distributions is dense in the space of positive, continuous distributions
(Tijms, [13]). Lee and Lin [12] also demonstrated that a uniform distribution, a mixture of
two gamma distributions, a generalised Pareto distribution, and the lognormal distribution
can be approximated by a mixture of Erlang distributions. Finally, Lee and Lin [12] fitted the
mixture of Erlang distributions to the US catastrophic loss data. Miljkovic and Grün [14]
stated that a drawback of using the mixture of Erlangs with the same scale parameter
could be that more components may be required to obtain an adequate fit that could have
otherwise been attained without this restriction. Next, Miljkovic and Grün [14] proposed
mixtures of non-Gaussian distributions with no restrictions on the parameters. Their best
three models for the Danish data based on minimum BIC were the two-component Burr



Mathematics 2024, 12, 335 3 of 25

mixture, the three-component inverse Burr mixture, and the five-component lognormal
mixture. In addition, Miljkovic and Grün [14] further added that these three models
have lower negative log-likelihood (NLL), Akaike Information Criterion (AIC), and BIC in
comparison to the composite Weibull-Burr, composite Weibull-Loglogistic, and the Weibull-
Inverse paralogistic distributions which were considered to be the best three composite
models in [7]. Abu Bakar et al. [15] proposed six two-component mixture models for
fitting three real datasets—the Danish, AON Re Belgium, and Norwegian fire loss datasets.
The two-component Burr mixture and the two-component lognormal were the first- and
second-best models for the three datasets, respectively. However, the two-component
exponential mixture was the worst for the Belgian and Danish fire loss datasets, while
the two-component Pareto mixture was the worst for the Norwegian fire loss data. Abu
Bakar and Nadarajah [16] proposed two-component mixture models based on the inverse
transformed gamma and the transformed beta families, where their fit was illustrated using
the Danish fire loss data. Furthermore, Abu Bakar and Nadarajah [16] stated that these
families are appropriate for modelling loss data because of the high degree of skewness
present in the tails of the distributions. This resulted in seventeen two-component mixtures,
all with the inverse transformed gamma as the first component distribution and they
found that these models have a better fit for the Danish data based on the BIC than all the
composite models and mixture models that had been considered for the Danish dataset in
the past.

In the spirit of modelling insurance claims data, many other authors have studied
loss distributions. Asgharzadeh et al. [17] introduced the generalised inverse Lindley
distribution for the Danish data and found it to be better than most of the classical heavy-
tailed distributions, but not as good as the composite models. Next, Punzo et al. [18]
introduced nine compound models using three real-life datasets (namely, the US indemnity
losses, automobile insurance claims, and Norwegian fire claims). These models were said
to have more flexibility than the unimodal two-parameter lognormal, inverse Gaussian,
and gamma distributions due to the additional parameters. Bhati and Ravi [19] proposed
the use of the generalised log-Moyal distribution and fitted it to the Danish and Norwegian
fire loss datasets. Motivated by the research work of [18,19], Li et al. [20] proposed the use
of the three-parameter gamma mixture of the generalised log-Moyal distribution, and it
was shown to be a special case of the four-parameter generalised beta of the second kind.
Zhao et al. [21] and Ahmad et al. [22] introduced additional new heavy-tailed distributions
for use in insurance data analysis. While the above review is by no means comprehensive,
it provides an overall view of the current literature for heavy-tailed (insurance/claims)
data analysis.

This paper is motivated by the recent work by: (i) Grün and Miljkovic [8] where
256 composite models were evaluated for the Danish fire loss data (note though, the cor-
responding 256 mixture models have not all been considered before); and (ii) Maphalla
et al. [23] where the standard loss distributions with the best goodness of fit for the South
African taxi claims data were found to be the lognormal and the Pareto, and the potential
future research idea of modelling the South African taxi claims data using mixture models
were suggested. One should note that due to the flexibility of two-component composite
and mixture models, overfitting may easily occur. Thus, care needs to be exercised when fit-
ting these models, especially when using mixture models with more than two components,
as this may easily lead to overfitting and greatly violate the principle of parsimony.

In this paper, we consider a thorough comparison of 256 composite models and
256 mixture models for curve-fitting which are derived from 16 popular parametric distri-
butions listed in Table A1 in Appendix A. This study focuses on the following objectives:
(i) To discover composite models that have not been studied previously for the South
African taxi claims data; (ii) To discover mixture models that have not been studied previ-
ously for the South African taxi claims data and Danish fire loss data; and (iii) To assess the
implications of the different composite models and mixture models using risk measures,
such as Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR).
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This paper is structured as follows: Section 2 provides the methodology, which in-
cludes model specification, risk measures, and model selection criteria. Section 3 provides
the analysis, wherein all the results for the top 20 composite models and mixture mod-
els that yield the best goodness-of-fit to the Danish fire loss data and the South African
taxi claims data are discussed. Different information criteria and risk measures are com-
puted and presented for models studied in this paper, with additional results provided in
Appendix A. Finally, Section 4 provides the concluding remarks.

2. Methodology
2.1. The Composite Model
2.1.1. Model Specification

The probability density function (pdf) of a composite model which was introduced
in [7] and adapted by [8] is given by

f (ϑ1, ϑ2, θ, ϕ) =


1

1+ϕ f ∗1 (x|ϑ1, θ), if 0 < x ≤ θ,

ϕ
1+ϕ f ∗2 (x|ϑ2, θ), if θ < x < ∞.

(1)

The continuity condition and the differentiability conditions are imposed at the thresh-
old θ such that,

f (ϑ1, ϑ2, θ, ϕ) = f (ϑ1, ϑ2, θ, ϕ) (2)

f ′(ϑ1, ϑ2, θ, ϕ) = f ′(ϑ1, ϑ2, θ, ϕ) (3)

where ϑ1 and ϑ2 are the parameter sets associated with the pdfs on the disjoint intervals,
(0, θ] and (θ, ∞), respectively. The continuity and differentiability conditions ensure that
the threshold parameter θ and the weight parameter ϕ > 0 are defined as functions of the
other parameters, ϑ1 and ϑ2. In addition, 1

1+ϕ and ϕ
1+ϕ are referred to as mixing weights,

see [4]. Moreover, the continuity condition at threshold θ ensures that the weight parameter
ϕ is expressed as a function of the other parameters ϑ1, ϑ2, θ, and cumulative distribution
function (cdf) in closed form as,

ϕ = −
dln F1(θ|ϑ1)

dθ
dln[1−F2(θ|ϑ2)]

dθ

=

f1(θ|ϑ1)
F1(θ|ϑ1)

f2(x|ϑ2)
1−F2(θ|ϑ2)

. (4)

Substituting the expression for ϕ obtained in Equation (4) into the differentiability con-
dition in Equation (3) gives the following condition for the threshold θ, which simplifies to,

d
dθ ln

[
f1(θ|ϑ1)
f2(θ|ϑ2)

]
= 0

f ′1(θ|ϑ1)
f1(θ|ϑ1)

=
f ′2(θ|ϑ2)
f2(θ|ϑ2)

.
(5)

Lastly, f ∗1 (x|ϑ1, θ) and f ∗2 (x|ϑ2, θ) are truncated pdfs which are defined in terms of
their corresponding pdfs and cdfs are

f ∗1 (x|ϑ1, θ) =
f1(x|ϑ1)

F1(θ|ϑ1)
, (6)

f ∗2 (x|ϑ2, θ) =
f2(x|ϑ2)

1 − F2(θ|ϑ2)
, (7)

and also,

F(ϑ1, ϑ2, θ, ϕ) =


1

1+ϕ
F1(x|ϑ1)
F1(θ|ϑ1)

, if 0 < x ≤ θ,

1
1+ϕ

[
1 + ϕ

F2(x|ϑ2)−F2(θ|ϑ2)
1−F2(x|ϑ2)

]
, if θ < x < ∞.

(8)
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The kth raw moment of the composite model is given in Grün and Miljkovic [8] as

E
[

Xk
]
=

1
1 + ϕ

E
[

Xk
1

] F(k)
1 (θ|ϑ1)

F1(θ|ϑ1)
+

ϕ

1 + ϕ
E
[

Xk
2

]1 − F(k)
2 (θ|ϑ2)

1 − F2(θ|ϑ2)
, (9)

where Xi is the random variable associated with the ith component and F(k)
i is the kth

incomplete moment distribution of the ith component distribution. For a random sample
x = {x1, x2, . . . , xn}, the log-likelihood function which was introduced in Grün and
Miljkovic [8] is given by

↕(ϑ1, ϑ2|x) =
n

∑
i=1

ln( f (xi|ϑ1, ϑ2)). (10)

2.1.2. Risk Measures

Abu Bakar et al. [7] and Grün and Miljkovic [8] defined the theoretical estimate for the
VaR of X as

VaRp(X) =

{
F−1

1 (p(1 + ϕ)F1(θ)), if 0 < p ≤ 1
1+ϕ ,

F−1
2 (F2(θ) + (p(1 + ϕ)− 1)(1 − F2(θ))/ϕ), if 1

1+ϕ < p < 1.
(11)

The theoretical estimates for the TVaR of X are defined in [8] as

TVaRp(X) =


1

1−p

[ ∫ θ
πp x f1(x)dx

F1(θ)
+

∫ ∞
θ x f2(x)dx
1−F2(θ)

]
, if 0 < p ≤ 1

1+ϕ ,

1
1−p

1
1−F2(θ)

[∫ ∞
πp

x f2(x)dx
]
, if 1

1+ϕ < p < 1.

(12)

Finite values of Equation (12) can only be obtained if the first moment of the tail
distribution exists (Grün and Miljkovic, [8]).

2.2. The Mixture Model
2.2.1. Model Specification

The pdf of a two-component mixture model is given by

f (x|ϑ1, ϑ2, ϕ) =
1

1 + ϕ
f1(x|ϑ1) +

ϕ

1 + ϕ
f2(x|ϑ2), x > 0, (13)

where ϕ > 0 is the weight parameter, and ϑ1 and ϑ2 are the parameter sets associated
with the first and second component distributions, respectively, where f1 and f2 are the
corresponding pdfs. The component distributions are both defined on R+. Therefore, the
set of parameters of the mixture model is {ϕ, ϑ1, ϑ2}. Unlike the composite model, the
weight parameter, ϕ, is not a function of the other parameters. Rather, the weight parameter
is also a model parameter, which is estimated by the maximum likelihood method in a
similar fashion as the other model parameters. The coefficients of f1 and f2 are called
mixing weights and for ϕ > 0, it is clear that 1

1+ϕ + ϕ
1+ϕ = 1. For ϕ = 1, the component

distributions have equal mixing weights of 0.5, i.e., 1
1+ϕ = ϕ

1+ϕ = 0.5. For ϕ < 1, the
first component distribution has a greater weight to the mixture model than the second
component distribution. For ϕ > 1, the second component distribution has a greater weight
to the mixture model than the first component distribution.

The corresponding cdf is given by

F(x|ϑ1, ϑ2, ϕ) =
1

1 + ϕ
F1(x|ϑ1) +

ϕ

1 + ϕ
F2(x|ϑ2), x > 0, (14)
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where F1 and F2 are the cdfs of the first and second components, respectively. The kth raw
moment of a two-component mixture model is given by

E
[

Xk
]
=

1
1 + ϕ

E
[

Xk
1

]
+

ϕ

1 + ϕ
E
[

Xk
2

]
, x > 0, (15)

where E
[

Xk
1

]
and E

[
Xk

2

]
are the kth raw moments of the first and second components,

respectively, given that they exist. The moment-generating function (mgf) of a two-
component mixture model is given by

MX(t) =
1

1 + ϕ
MX1(t) +

ϕ

1 + ϕ
MX2(t), (16)

where MX1(t) and MX2(t) are the mgfs of the first and second components, respectively,
given that they exist.

For a random sample x = {x1, x2, . . . , xn}, the log-likelihood function was introduced
in Abu Bakar and Nadarajah [16] as

l(ϑ1, ϑ2, ϕ|x) = −nln(1 + ϕ) +
n

∑
i=1

{ln[ f1(xi|ϑ1) + ϕ f2(xi|ϑ2)]}. (17)

2.2.2. Flexibility for Unimodal and Multimodal Data

Abu Bakar and Nadarajah [16] illustrated the flexibility of two-component mixture
models by their adaptability to unimodal and bimodal density functions. In this section,
we extend the demonstration of flexibility (adaptability to unimodality and bimodality)
by illustrating graphically with two additional two-component mixture models. The
first model has different parametric distributions (i.e., inverse transformed gamma and
transformed beta distributions) and the second has the same parametric distribution (i.e.,
Burr distributions) with different parameters. Varying the parameter estimates as indicated
in Table 1 leads to different shapes of the pdfs in Figure 1 to illustrate how the mixture
of inverse transformed gamma and transformed beta tends to account for unimodality
and bimodality.

Table 1. Parameter estimates corresponding to the models in Figure 1.

ϕ ϑ1 ϑ2

Model A ϕ = 1 α = 0.5, τ = 2, θ = 1 α = 0.1, γ = 0.5, τ = 2, θ = 1

Model B ϕ = 2.5 α = 0.1, τ = 0.5, θ = 1 α = 0.9, γ = 1.5, τ = 5, θ = 1

Model C ϕ = 5 α = 10, τ = 3, θ = 10 α = 0.2, γ = 5, τ = 2 , θ = 0.5

Similarly, varying the parameter estimates as indicated in Table 2 leads to different
shapes of the pdfs in Figure 2 to illustrate how the mixture of two Burr distributions tends
to account for unimodality and bimodality. Note that similar patterns can be illustrated for
other types of mixture distributions.

Table 2. Parameter estimates corresponding to the models in Figure 2.

ϕ ϑ1 ϑ2

Model A ϕ = 1 α = 0.1, γ = 2, θ = 1 α = 2, γ = 5, θ = 1

Model B ϕ = 2 α = 2, γ = 0.6, θ = 1 α = 3, γ = 0.2, θ = 1

Model C ϕ = 1 α = 10, γ = 10, θ = 3 α = 2.5, γ = 8, θ = 8
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2.2.3. Risk Measures

The theoretical estimate for the VaR of the mixture model does not have a closed-form
solution and requires a numerical solution of

FX
(
VaRp(X)

)
= p (18)

which can be evaluated using software as stated in [14]. However, for the mixture model,
the theoretical estimate for the TVaR of X can be simplified by the “linearity” property stated
in [14] to give the weighted sum of the TVaRp(X) of each of the component distributions.

2.3. Model Selection Criteria

This section discusses some commonly used model selection criteria that appear in the
area of loss distributions. Three information criteria are considered: NLL, AIC, and BIC;
see Abu Bakar et al. [7]. The BIC is also known as the Schwarz’s Bayesian Criterion (SBC).
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For all three criteria, a lower value implies that the theoretical model provides a better fit to
the data. The NLL is appropriate only when comparing models with the same number of
parameters; however, the AIC and BIC are more appropriate for comparing models with a
different number of parameters. Let l(θ) denote the maximised log-likelihood function of a
model, then the NLL is defined as

NLL = −l(θ). (19)

The AIC was introduced by Akaike [24] and is defined as

AIC = 2NLL + 2p, (20)

where p is the number of free parameters or degrees of freedom. The BIC was introduced
by Schwarz [25] and it is defined as

BIC = 2NLL + plog(n), (21)

where n is the number of observations. An analysis of the results is given with an emphasis
on the BIC.

3. Empirical Analysis

In this section, the statistical computations were performed in R (R Core Team, [26]).
Two real-life datasets are considered—the South African taxi claims data and the Danish
fire insurance loss data. The taxi (or minibus) industry in South Africa, well known for its
taxi turf wars, provides the most commonly used mode of public transport, especially for
lower-income communities (which account for a larger proportion of the population due
to South Africa’s high level of inequality in income levels and high unemployment rates).
The types of disasters that this industry faces include and are not limited to road accidents
(due to potholes, tyre bursts, improper road infrastructure, vehicle malfunctioning, and
drunk driving), hijacking, theft of taxi parts, and damage or fires due to public protests
because of poor service delivery by elected officials. However, the Danish fire loss data,
which was collected by Copenhagen Reinsurance, covers losses from fire due to buildings,
contents, and profits. The Danish data is from Denmark, which is in Europe (Northern
Hemisphere), a developed first-world country, whereas the South African taxi claims data is
from South Africa, which is in the southernmost part of Africa in the Southern Hemisphere,
a developing third-world country. Considering that Denmark is a well-developed country,
in the case of a fire hazard, the fire can be extinguished quickly because of Denmark’s
well-developed social service delivery. On the other hand, with the many hazards that can
occur in the taxi industry in South Africa, they may not all be avoidable because of the
many underdevelopments. When it comes to economic development, a large portion of the
South African population is impoverished and burdened with unemployment, whereas
only a small portion of the population in Denmark is lacking.

The South African taxi claims data, which was kindly provided for our study by [23]
(this data has been made available in the Supplementary Materials of this paper), consists
of 48,043 observations and was divided by 100 for computational ease. The Danish fire
loss data, however, is very popular and has a long history of applications. It consists of
2492 observations which were adjusted for inflation to reflect 1985 values. Most of the
composite models in actuarial literature have used the Danish data as an application. The
Danish dataset is available in the SMPracticals package Version 1.4-3 in R, Davidson [27].
The full R code used for the analysis in this paper has been made available in the Supple-
mentary Materials of this paper. Tables 3 and 4 provide the summary of the descriptive
statistics for the South African taxi claims data and Danish fire loss data, respectively.



Mathematics 2024, 12, 335 9 of 25

Table 3. Descriptive statistics of the South African taxi claims data.

Minimum Quantiles Mean Maximum Standard
Deviation

Coefficient
of Variation Skewness Kurtosis

0.1 (20.8, 45, 120.8) 132.3 4803.3 284.1563 2.15 6.474 63.64

Table 4. Descriptive statistics of the Danish fire loss data.

Minimum Quantiles Mean Maximum Standard
Deviation

Coefficient
of Variation Skewness Kurtosis

0.3134 (1.1572, 1.6339, 2.6455) 3.0627 263.2504 7.976703 2.60 19.896 549.5736

Figure 3 provides the boxplots for the South African taxi claims data and the Danish
fire loss data, respectively. The dotted vertical line represents the mean value for the
datasets. For both datasets, it is clear that the data are skewed to the right.
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Figure 3. Boxplots of the taxi claims and the Danish loss data.

Figure 4 displays the histograms of the taxi claims and the Danish fire loss data,
respectively. By visual inspection of the histograms, the claims data are positive (or at least
nonnegative), unimodal and hump-shaped, skewed to the right with long upper tails, and
the smaller claims occur with more frequency whereas the larger claims are less frequent.

Figure 5 displays the mean excess plots of the taxi claims on the left and the Danish fire
losses data on the right. The mean excess plot for the taxi claims data is initially ultimately
increasing, then ultimately constant, and then ultimately decreasing for the remainder of
the plot. Therefore, the underlying distribution of the taxi claims data can be said to be
heavy-tailed for the lower (left) tail and light-tailed for the upper (right) tail. The mean
excess plot for the Danish losses is ultimately increasing (with two observations being the
exception). Therefore, the underlying distribution of the Danish data can be said to be
heavy-tailed throughout, apart from two observations.
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It is important to note that the approach used in this paper is based on the ‘single best
model’ as performed in well-known studies like [7,8,14,16]. That is, using the BIC (as the
main model selection criteria), we extract the top 20 best goodness-of-fit models, calculate
the corresponding risk metrics, and select the model with the VaR and/or TVaR closer
to the corresponding empirical values. Note though that Blostein and Miljkovic [28] as
well as Miljkovic and Grün [29] suggested two alternative methods to select the optimal
model, which consider both the goodness-of-fit measures and the risk metrics. It is worth
mentioning that [29] stated that the ‘single best model’ approach is still the most used one
because although “model averaging has been recognized in the actuarial field, it has not yet been
embraced as a standard practice neither in risk management nor the regulatory capital environment”,
but researchers and practitioners are starting to realise the importance of applying the
‘model averaging approach’.
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Fitting composite models to the taxi claims data

Using the 16 loss distributions outlined in Appendix A’s Table A1, it is observed in
Table 5 that using distributions such as the gamma, loglogistic, paralogistic, and inverse
paralogistic in the head is found to be ideal for modelling the small and moderate size
claims of the taxi claims data. However, the tail distributions such as the Weibull, inverse
Gaussian, Burr, Pareto, or generalised Pareto and lognormal seem to be the best choices
for modelling the upper tail of taxi claims. In an effort to conserve writing space, the
corresponding parameter estimates of the top 20 models in Table 5 are provided in Table A2
in Appendix A.

Table 5. Summary of the information criteria of the top 20 composite models for taxi claims (based
on the BIC).

Head Tail p NLL AIC BIC

Gamma Weibull 4 270,197.8 540,403.6 540,438.8

Paralogistic Inverse Gaussian 4 270,198.1 540,404.2 540,439.3

Loglogistic Inverse Gaussian 4 270,200.7 540,409.5 540,444.6

Paralogistic Weibull 4 270,201.2 540,410.5 540,445.6

Inverse
paralogistic Inverse Gaussian 4 270,217.0 540,442.1 540,447.2

Weibull Weibull 4 270,202.4 540,412.8 540,447.9

Gamma Burr 5 270,197.8 540,405.6 540,449.5

Loglogistic Weibull 4 270,204.4 540,416.8 540,452.0

Paralogistic Burr 5 270,201.1 540,412.5 540,456.4

Weibull Burr 5 270,202.4 540,414.8 540,458.7

Inverse Burr Weibull 5 270,202.5 540,415.1 540,459.0

Loglogistic Burr 5 270,204.4 540,418.8 540,462.7

Inverse Burr Burr 6 270,201.2 540,417.1 540,469.8

Inverse
paralogistic Weibull 4 270,223.4 540,454.7 540,489.9

Inverse
paralogistic Burr 5 270,223.4 540,456.8 540,500.7

Burr Pareto 5 270,246.1 540,502.3 540,546.2

Weibull Lognormal 4 270,259.9 540,527.8 540,562.9

Gamma Lognormal 4 270,260 540,528.8 540,563.9

Gamma Generalised
Pareto 5 270,257.0 540,524.0 540,567.9

Paralogistic Lognormal 4 270,262.9 540,533.9 540,569.0

Table 6 reports the empirical risk estimates, the estimated risk measures for the top
20 composite models for taxi claims, and the percentage deviation in parenthesis of each
estimated risk measure with respect to the empirical risk estimates. The risk estimates
obtained from using the top 20 composite distributions closely match the empirical risk
estimates. However, using the lognormal or the generalised Pareto distributions as a
tail distribution leads to much higher estimates for the TVaR than when using the Burr
distribution, the Pareto distribution, or the Weibull distribution. Using the inverse Gaussian
distribution as the tail distribution leads to TVaR estimates that are much lower than the
empirical estimates.
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Table 6. Summary of the empirical risk estimates, risk measures of the top 20 composite mod-
els for taxi claims data, and the percentage deviation with respect to the empirical risk estimates
in parenthesis.

VaR0.95 VaR0.99 TVaR0.95 TVaR0.99

Empirical Estimates 525.1509 1396.901 1085.583 2206.203

Parametric

Head Tail

Gamma Weibull 521.76 (−0.6%) 1396.27 (0.0%) 1125.77 (3.7%) 2422.04 (9.8%)

Paralogistic Inverse Gaussian 547.96 (4.3%) 1361.21 (−2.6%) 1068.6 (−1.6%) 2055.10 (−6.8%)

Loglogistic Inverse Gaussian 547.84 (4.3%) 1361.62 (−2.5%) 1068.80 (−1.5%) 2056.09 (−6.8%)

Paralogistic Weibull 521.92 (−0.6%) 1394.70 (−0.2%) 1124.46 (3.6%) 2416.23 (9.5%)

Inverse
paralogistic Inverse Gaussian 547.38 (4.2%) 1363.79 (−2.4%) 1070.18 (−1.4%) 2061.91 (−6.5%)

Weibull Weibull 522.21 (−0.6%) 1389.41 (−0.5%) 1119.77 (3.1%) 2396.8 (8.6%)

Gamma Burr 521.78 (−0.6%) 1396.5 (0.0%) 1126.1 (3.7%) 2423.17 (9.8%)

Loglogistic Weibull 521.62 (−0.7%) 1393.86 (−0.2%) 1123.85 (3.5%) 2415.2 (9.5%)

Paralogistic Burr 521.92 (−0.6%) 1394.71 (−0.2%) 1124.46 (3.6%) 2416.26 (9.5%)

Weibull Burr - - - -

Inverse Burr Weibull 522.15 (−0.6%) 1395.0 (−0.1%) 1124.66 (3.6%) 2416.12 (9.5%)

Loglogistic Burr - - - -

Inverse Burr Burr 521.91 (−0.6%) 1394.08 (−0.2%) 1123.92 (3.5%) 2414.26 (9.4%)

Inverse
paralogistic Weibull 520.81 (−0.8%) 1393.196 (−0.3%) 1123.73 (3.5%) 2418.417 (9.6%)

Inverse
paralogistic Burr 521.06 (−0.8%) 1394.12 (−0.2%) 1124.48 (3.6%) 2420.34 (9.7%)

Burr Pareto 532.21 (1.3%) 1334.65 (−4.5%) 1112.35 (2.5%) 2391.68 (8.4%)

Weibull Lognormal 516.02 (−1.7%) 1513.17 (8.3%) 1270.78 (17.1%) 3067.21 (39.0%)

Gamma Lognormal 516.54 (−1.6%) 1524.43 (9.1%) 1286.50 (18.5%) 3133.02 (42.0%)

Gamma Generalised Pareto 585.11 (11.4%) 1587.63 (13.7%) 1396.13 (28.6%) 3404.88 (54.3%)

Paralogistic Lognormal 513.46 (−2.2%) 1511.45 (8.2%) 1274.91 (17.4%) 3098.64 (40.5%)

Fitting mixture models to the taxi claims data

Using the 16 loss distributions outlined in Appendix A’s Table A1, it is observed
from the results in Table 7 that the lognormal distribution seems to be an ideal component
distribution for most of the best-fitting mixture models. It seems that the conclusion
by Maphalla et al. [23] that the lognormal distribution is the best for taxi claims data is
supported by the top mixture models with a lognormal distribution component. In an effort
to conserve writing space, the corresponding parameter estimates of the top 20 models in
Table 7 are provided in Table A3 in Appendix A.
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Table 7. Summary of the information criteria of the top 20 mixture models for taxi claims data (based
on the BIC).

First Component Second
Component p NLL AIC BIC

Inverse gamma Lognormal 5 270,142.25 540,294.5 540,338.4

Inverse Gaussian Lognormal 5 270,142.45 540,294.91 540,338.81

Generalised
Pareto Lognormal 6 270,142.17 540,296.35 540,349.03

Inverse
paralogistic Lognormal 5 270,148.17 540,306.35 540,350.25

Inverse Weibull Lognormal 5 270,148.29 540,306.58 540,350.48

Inverse Burr Lognormal 6 270,146.59 540,305.17 540,357.85

Loglogistic Lognormal 5 270,158.197 540,326.39 540,370.29

Burr Lognormal 6 270,155.86 540,323.72 540,376.4

Gamma Lognormal 5 270,164.59 540,339.19 540,383.09

Paralogistic Lognormal 5 270,167.79 540,345.59 540,389.49

Lognormal Weibull 5 270,186.3 540,382.6 540,426.5

Loglogistic Generalised
Pareto 6 270,225.71 540,463.43 540,516.11

Generalised
Pareto Paralogistic 6 270,227.97 540,467.94 540,520.62

Loglogistic Paralogistic 5 270,239.59 540,489.17 540,533.07

Burr Loglogistic 6 270,236.85 540,485.70 540,538.38

Paralogistic Paralogistic 5 270,247.06 540,504.11 540,548.01

Burr Burr 7 270,236.71 540,487.43 540,548.89

Inverse gamma Paralogistic 5 270,248.70 540,507.41 540,551.31

Inverse gamma Generalised
Pareto 6 270,243.88 540,499.75 540,552.43

Paralogistic Burr 6 270,246.83 540,505.67 540,558.35

For the taxi claims data, the two-component Burr mixture also performs better than the
two-component gamma mixture, the two-component Pareto mixture, the two-component
Weibull mixture, and the two-component exponential mixture—this is similar to the results
observed in Abu Bakar et al. [15] for the Danish, Belgian, and Norwegian loss datasets.
Additionally, for the taxi claims data, the two-component paralogistic mixture performs
better than the two-component Burr based on the BIC. In fact, the two-component gamma
mixture, the two-component exponential mixture, and the two-component Weibull mixture
did not converge for the taxi claims data. Other components such as the paralogistic
distribution, the Burr distribution, the generalised Pareto distribution, the loglogistic
distribution, and the inverse gamma distribution also seem to be optimal component
distributions for the mixture models for the taxi claims data.

The mixture models considered provide fair estimates for the VaR at both 95% and
99% security levels, although the VaR at a 95% security level is underestimated by all the
models (see Table 8). The TVaR at both 95% and 99% security levels is not underestimated
for any of the models, which provides a bit of comfort since the TvaR is a coherent risk
measure and more attractive than the VaR.
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Table 8. Summary of the empirical risk estimates, risk measures of the top 20 mixture models
for the taxi claims data, and the percentage deviation with respect to the empirical risk estimates
in parenthesis.

VaR0.95 VaR0.99 TVaR0.95 TVaR0.99

Empirical Estimates 525.1509 1396.901 1085.583 2206.203

Parametric

First Component Second
Component

Inverse gamma Lognormal 513.98 (−2.1%) 1382.65 (−1.0%) 1142.3 (5.2%) 2558.96 (16.0%)

Inverse Gaussian Lognormal 514.55 (−2.0%) 1373.99 (−1.6%) 1134.85 (4.5%) 2529.36 (14.6%)

Generalised Pareto Lognormal 514.63 (−2.0%) 1383.4 (−1.0%) 1142.86 (5.3%) 2558.81 (16.0%)

Inverse
paralogistic Lognormal 515.07 (−1.9%) 1390.59 (−0.5%) 1149.02 (5.8%) 2580.52 (17.0%)

Inverse Weibull Lognormal 510.55 (−2.8%) 1378.04 (−1.4%) 1139.31 (4.9%) 2560.72 (16.1%)

Inverse Burr Lognormal 513.78 (−2.2%) 1389.68 (−0.5%) 1148.59 (5.8%) 2583.77 (17.1%)

Loglogistic Lognormal 517.67 (−1.4%) 1391.51 (−0.4%) 1149.05 (5.8%) 2570.78 (16.5%)

Burr Lognormal 516.78 (−1.6%) 1400.85 (0.3%) 1157.8 (6.7%) 2607.82 (18.2%)

Gamma Lognormal 513.25 (−2.3%) 1360.23 (−2.6%) 1123.05 (3.5%) 2489.42 (12.8%)

Paralogistic Lognormal 516.78 (−1.6%) 1373.68 (−1.7%) 1133.63 (4.4%) 2515.69 (14.0%)

Lognormal Weibull 512.52 (−2.4%) 1342.93 (−3.9%) 1107.41 (2.0%) 2431.57 (10.2%)

Loglogistic Generalised Pareto 518.2 (−1.3%) 1349.01 (−3.4%) 1157.27 (6.6%) 2664.54 (20.8%)

Generalised Pareto Paralogistic 511.48 (−2.6%) 1363.65 (−2.4%) 1190.45 (9.7%) 2846.36 (29.0%)

Loglogistic Paralogistic 513.22 (−2.3%) 1372.25 (−1.8%) 1223.63 (12.7%) 3002.93 (36.1%)

Burr Loglogistic 515.45 (−1.8%) 1351.42 (−3.3%) 1181.42 (8.8%) 2799.21 (26.9%)

Paralogistic Paralogistic 507.18 (−3.4%) 1384.18 (−0.9%) 1255.56 (15.7%) 3176.84 (44.0%)

Burr Burr 516.17 (−1.7%) 1351.72 (−3.2%) 1181.84 (8.9%) 2798.08 (26.8%)

Inverse gamma Paralogistic 504.42 (−3.9%) 1436.60 (2.8%) 1327.5 (22.3%) 3496.71 (58.5%)

Inverse gamma Generalised Pareto 507.28 (−3.4%) 1402.21 (0.4%) 1268.23 (16.8%) 3220.81 (46.0%)

Paralogistic Burr 507.44 (−3.4%) 1376.18 (−1.5%) 1240.94 (14.3%) 3109.60 (40.9%)

Fitting composite models to the Danish data

Using the 16 loss distributions outlined in Appendix A’s Table A1, it is observed that
having distributions such as the Weibull, paralogistic, and inverse Burr in the head is found
to be ideal for modelling the small and moderate size claims of Danish fire losses (Grün
and Miljkovic, [8]). The tail distributions such as inverse Weibull, inverse paralogistic,
loglogistic, Burr, inverse gamma, and paralogistic seem to be the best choices for modelling
the long tail of Danish fire losses (Grün and Miljkovic, [8]). In an effort to conserve writing
space, the corresponding parameter estimates of the top 20 models in Table 9 are provided
in Table A4 in Appendix A.
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Table 9. Summary of the information criteria of the top 20 composite models for Danish fire loss data
(based on the BIC)—these results are similar to those reported in Grün and Miljkovic [8].

Head Tail p NLL AIC BIC

Weibull Inverse Weibull 4 3820.01 7648.02 7671.30

Paralogistic Inverse Weibull 4 3820.14 7648.28 7671.56

Inverse Burr Inverse Weibull 5 3816.34 7642.68 7671.79

Weibull Inverse
paralogistic 4 3820.93 7649.87 7673.15

Inverse Burr Inverse
paralogistic 5 3817.07 7644.14 7673.25

Paralogistic Inverse
paralogistic 4 3821.04 7650.08 7673.36

Weibull Loglogistic 4 3821.23 7650.46 7673.74

Inverse Burr Loglogistic 5 3817.37 7644.74 7673.85

Paralogistic Loglogistic 4 3821.32 7650.65 7673.93

Loglogistic Inverse Weibull 4 3821.38 7650.76 7674.04

Weibull Burr 5 3817.57 7645.14 7674.24

Paralogistic Burr 5 3817.72 7645.43 7674.54

Inverse Burr Burr 6 3814.00 7639.99 7674.92

Loglogistic Inverse
paralogistic 4 3822.15 7652.31 7675.59

Inverse Burr Inverse gamma 5 3818.30 7646.61 7675.71

Paralogistic Inverse gamma 4 3822.22 7652.43 7675.72

Loglogistic Loglogistic 4 3822.41 7652.82 7676.10

Weibull Paralogistic 4 3822.44 7652.88 7676.17

Paralogistic Paralogistic 4 3822.53 7653.05 7676.34

Inverse Burr Paralogistic 5 3818.68 7647.37 7676.47

Although the composite inverse Burr-Burr model has the lowest NLL and AIC among
the other models in Table 9 (and the 256 considered), there is no strong evidence that it
provides a better fit than the other models—its BIC is not at least 10 units less than the BIC
of the other models in Table 9 (see Abu Bakar et al. [7]). Additionally, the composite inverse
Burr-Burr model has six parameters, and the principle of parsimony does not favour it.
Rather, a simpler four-parameter composite model is more favourable here.

Table 10 reports the empirical risk estimates, the estimated risk measures for the top
20 composite models for Danish fire loss data and the percentage deviation in parenthesis
of each estimated risk measure with respect to the empirical risk estimates. Most of the
risk estimates in Table 10 obtained from using the top 20 composite distributions closely
match the empirical risk estimates (except those with the Burr as the tail distribution, in
terms of the TVaR). The top 20 composite models provide fair estimates for the VaR at both
95% and 99% security levels, although the VaR at a 95% security level is underestimated
by all the models (see Table 10). Using the Burr distribution as a tail distribution leads to
much higher estimates for the TVaR than using the inverse Weibull distribution, the inverse
paralogistic distribution, or the loglogistic distribution. Using the inverse gamma or the
paralogistic distribution as the tail distribution leads to TVaR estimates that are lower than
the empirical estimates at a 95% security level.
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Table 10. Summary of the empirical risk estimates, the risk measures of the top 20 composite models
for Danish fire loss data (reported in Grün and Miljkovic [8]) and the percentage deviation with
respect to the empirical risk estimates in parenthesis.

VaR0.95 VaR0.99 TVaR0.95 TVaR0.99

Empirical Estimates 8.406298 24.61378 22.15509 54.60396

Parametric

Head Tail

Weibull Inverse Weibull 8.02 (−4.6%) 22.77 (−7.5%) 22.64 (2.2%) 63.86 (17.0%)

Paralogistic Inverse Weibull 8.02 (−4.6%) 22.79 (−7.4%) 22.67 (2.3%) 64.00 (17.2%)

Inverse Burr Inverse Weibull 8.01 (−4.7%) 22.73 (−7.7%) 22.59 (2.0%) 63.67 (16.6%)

Weibull Inverse
paralogistic 8.03 (−4.5%) 22.64 (−8.0%) 22.38 (1.0%) 62.65 (14.7%)

Inverse Burr Inverse
paralogistic 8.03 (−4.5%) 22.65 (−8.0%) 22.39 (1.1%) 62.69 (14.8%)

Paralogistic Inverse
paralogistic 8.03 (−4.5%) 22.68 (−7.9%) 22.44 (1.3%) 62.89 (15.2%)

Weibull Loglogistic 8.05 (−4.2%) 22.7 (−7.8%) 22.43 (1.2%) 62.8 (15.0%)

Inverse Burr Loglogistic 8.04 (−4.4%) 22.64 (−8.0%) 22.35 (0.9%) 62.46 (14.4%)

Paralogistic Loglogistic 8.05 (−4.2%) 22.71 (−7.7%) 22.46 (1.4%) 62.89 (15.2%)

Loglogistic Inverse Weibull 8.05 (−4.2%) 22.96 (−6.7%) 22.93 (3.5%) 65.02 (19.1%)

Weibull Burr 8.22 (−2.2%) 25.18 (2.3%) 26.98 (21.8%) 82.59 (51.3%)

Paralogistic Burr 8.22 (−2.2%) 25.18 (2.3%) 26.98 (21.8%) 82.61 (51.3%)

Inverse Burr Burr 8.22 (−2.2%) 25.13 (2.1%) 26.88 (21.3%) 82.15 (50.4%)

Loglogistic Inverse
paralogistic 8.05 (−4.2%) 22.79 (−7.4%) 22.6 (2.0%) 63.55 (16.4%)

Inverse Burr Inverse gamma 8.1 (−3.6%) 22.33 (−9.3%) 21.42 (−3.3%) 57.83 (5.9%)

Paralogistic Inverse gamma 8.11 (−3.5%) 22.44 (−8.8%) 21.57 (−2.6%) 58.48 (7.1%)

Loglogistic Loglogistic 8.06 (−4.1%) 22.82 (−7.3%) 22.61 (2.1%) 63.52 (16.3%)

Weibull Paralogistic 8.11 (−3.5%) 22.6 (−8.2%) 21.98 (−0.8%) 60.35 (10.5%)

Paralogistic Paralogistic 8.11 (−3.5%) 22.62 (−8.1%) 21.99 (−0.7%) 60.41 (10.6%)

Inverse Burr Paralogistic 8.1 (−3.6%) 22.47 (−8.7%) 21.78 (−1.7%) 59.52 (9.0%)

Fitting mixture models to the Danish data

Using the 16 loss distributions outlined in Appendix A’s Table A1, it is observed
from the results in Table 11 that the Burr distribution seems to be an ideal component
distribution for most of the best mixture models. For the Danish fire loss data, the two-
component Burr mixture performs better than the two-component gamma mixture, the two-
component Pareto mixture, the two-component Weibull mixture, and the two-component
exponential mixture as also concluded in Abu Bakar et al. [15] for the three fire loss datasets
considered (i.e., Danish, Belgian and Norwegian). In an effort to conserve writing space,
the corresponding parameter estimates of the top 20 models in Table 11 are provided in
Table A5 in Appendix A.
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Table 11. Summary of the information criteria of the top 20 mixture models for Danish fire loss data
(based on the BIC).

First Component Second
Component p NLL AIC BIC

Burr Burr 7 3786.47 7586.95 7627.69

Inverse Weibull Burr 6 3790.61 7593.22 7628.15

Loglogistic Burr 6 3791.60 7595.20 7630.13

Inverse
paralogistic Burr 6 3792.02 7596.03 7630.96

Paralogistic Burr 6 3794.36 7600.72 7635.64

Inverse Burr Burr 7 3790.73 7595.46 7636.21

Gamma Burr 6 3798.004 7608.01 7642.93

Lognormal Burr 6 3799.06 7610.12 7645.05

Generalised
Pareto Burr 7 3797.91 7609.83 7650.57

Inverse Gaussian Burr 6 3801.97 7615.94 7650.86

Inverse gamma Burr 6 3803.79 7619.57 7654.5

Inverse
exponential Burr 5 3810.03 7630.06 7659.17

Exponential Burr 5 3811.32 7632.63 7661.74

Inverse Pareto Burr 6 3810.06 7632.12 7667.04

Weibull Burr 6 3810.82 7633.65 7668.57

Pareto Burr 6 3811.33 7634.65 7669.58

Inverse Weibull Inverse Burr 6 3833.76 7679.53 7714.45

Inverse
paralogistic Inverse Weibull 5 3840.24 7690.49 7719.59

Inverse Weibull Inverse gamma 5 3840.53 7691.07 7720.17

Inverse Burr Inverse Burr 7 3833.79 7681.57 7722.32

Other than the Burr distribution, the inverse Weibull distribution and the inverse
gamma distribution also seem like optimal component distributions for the mixture models
of the Danish fire loss data.

Table 12 reports the empirical risk estimates, the estimated risk measures for the top
20 mixture models for the Danish fire loss data, and the percentage deviation in parenthesis
of each estimated risk measure with respect to the empirical risk estimates. The mixture
distributions considered provide fair estimates for the VaR at both 95% and 99% security
levels. Most of the mixture models have TVaR estimates much higher than the empirical
estimates. For the Danish data, the mixture models proposed, especially the ones with the
Burr component, do not adequately capture the area under the tail.



Mathematics 2024, 12, 335 18 of 25

Table 12. Summary of the empirical risk estimates, the risk measures of the top 20 mixture models
for Danish fire loss data and the percentage deviation with respect to the empirical risk estimates
in parenthesis.

VaR0.95 VaR0.99 TVaR0.95 TVaR0.99

Empirical Estimates 8.406298 24.61378 22.15509 54.60396

Parametric

First Component Second
Component

Burr Burr 8.26 (−1.7%) 27.0 (9.7%) 34.74 (56.8%) 119.72 (119.3%)

Inverse Weibull Burr 8.19 (−2.6%) 25.23 (2.5%) 27.21 (22.8%) 83.83 (53.5%)

Loglogistic Burr 9.245 (10.0%) 36.07 (46.5%) 60.00 (170.8%) 234.13 (328.8%)

Inverse
paralogistic Burr 8.2025 (−2.4%) 25.32 (2.9%) 27.37 (23.5%) 84.498 (54.7%)

Inverse Burr Burr 8.1902 (−2.6%) 25.23 (2.5%) 27.22 (22.9%) 83.87 (53.6%)

Gamma Burr 9.395 (11.8%) 36.48 (48.2%) 59.80 (169.9%) 232.22 (325.3%)

Inverse Gaussian Burr 8.59 (2.2%) 31.88 (29.5%) 46.53 (110.0%) 172.91 (216.7%)

Lognormal Burr 8.71 (3.6%) 32.67 (32.7%) 48.82 (120.4%) 183.18 (235.5%)

Generalised Pareto Burr 8.81 (4.8%) 33.31 (35.3%) 50.72 (128.9%) 191.77 (251.2%)

Inverse gamma Burr 9.14 (8.7%) 32.64 (32.6%) 43.71 (97.3%) 156.09 (185.9%)

Inverse
exponential Burr 9.61 (14.3%) 34.555 (40.4%) - -

Exponential Burr 9.51 (13.1%) 33.85 (37.5%) 45.41 (105.0%) 162.22 (197.1%)

Inverse Pareto Burr 9.61 (14.3%) 34.55 (40.4%) - -

Paralogistic Burr 8.43 (0.3%) 26.85 (9.1%) 30.07 (35.7%) 95.73 (75.3%)

Weibull Burr 8.44 (0.4%) 26.89 (9.2%) 30.14 (36.0%) 96.04 (75.9%)

Pareto Burr 9.51 (13.1%) 33.85 (37.5%) 45.39 (104.9%) 162.15 (197.0%)

Inverse Weibull Inverse Burr 8.15 (−3.0%) 21.51 (−12.6%) 20.11 (−9.2%) 51.88 (−5.0%)

Inverse
paralogistic Inverse Weibull 8.13 (−3.3%) 19.92 (−19.1%) 17.89 (−19.3%) 42.34 (−22.5%)

Inverse Weibull Inverse gamma 8.53 (1.5%) 22.16 (−10.0%) 19.84 (−10.4%) 48.35 (−11.5%)

Inverse Burr Inverse Burr 8.15 (−3.0%) 21.49 (−12.7%) 20.096 (−9.3%) 51.83 (−5.1%)

Finally, although the results in Tables 5, 7, 9 and 11 are sorted in terms of the BIC (in
the last column), the boldfaced value in each column provides the best goodness of fit with
respect to the minimum model selection criterion (NLL, AIC, BIC).

4. Conclusions

For the composite models, it seems that the composite Paralogistic-Burr, composite
Weibull-Burr, and composite Inverse Burr-Burr are optimal models for both datasets as they
both appear in the top 20 composite models. However, for the mixture models, it seems
that the two-component Burr mixture, the two-component paralogistic and Burr mixture,
and the two-component lognormal and Burr mixture are optimal models for both datasets
as they also both appear in the top 20 mixture models. In general, the composite models
provide better risk estimates for both of the datasets. The mixture models seem to not
adequately capture the area under the tail, especially when using the Burr distribution as a
component distribution for the Danish data. Finally, model selection criteria (NLL, AIC,
BIC) evaluate the quality of fit of the entire model and not just the tail, so both the model
selection criteria and risk estimates are important for deciding which model is optimal.
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As it can be observed here, there is no single universal composite or mixture model
that is better than the others. Stated differently, the best model depends on the underlying
data being used to fit the model and the corresponding risk metrics. Finally, care needs to
be taken when interpreting the risk metrics because a model with an excessively large risk
metric as compared to the empirical estimate implies that more funds need to be kept in
reserve rather than being invested elsewhere, which leads to less profits.

For future research, composite and mixture models (with more than two components)
can be fitted to the taxi claims data to evaluate their suitability and other appropriate risk
metrics. More importantly, it would be of interest to investigate what would be the best
possible back-testing technique that is appropriate for the considered models and risk
metrics. While a lot of composite and mixture distributions were considered in this paper,
a reader can extend this list by considering the distributions that are discussed in [30].
Next, if data are time-dependent, readers are advised to also investigate analytical methods
that involve hidden Markov models. Given that this paper used the ‘single best model’
approach, it would be interesting to investigate the ‘grid map’ and ‘model averaging’
methods discussed in [28,29,31,32] using the datasets and models discussed in this paper.
There is also a need for academics to engage with the private sector so that they can be
granted access to large datasets and be able to use more advanced and accurate machine
learning techniques where data can be split into training, validation, and test sets, as well
as for back-testing purposes. However, considering that the data from private companies
are usually under many proprietary laws, this is a major limitation when it comes to the
analysis of real-life insurance data.
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Appendix A

Table A1. Sixteen distributions that are considered as head and/or tail in the composite model, or
first and second components in the mixture model.
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Table A1. Cont.

Distribution Parameters PDF CDF E
[
Xk]
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Pareto
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Table A2. Parameter estimates and standard errors in parenthesis of the top 20 composite models for
the taxi claims data.

Head Tail ϑ1 ϑ2 θ ϕ

Gamma Weibull α = 1.8955 (0.0229),
1
θ = 0.0599(0.0014)

τ = 0.3325 (0.0058),
θ = 7.1857(0.72095)

35.5261 1.3957

Paralogistic Inverse Gaussian α = 1.6984(101.315),
1
θ = 0.0231(17.4617)

µ = 101.31497 (3.7430),
θ = 17.46168 (1.4671)

37.1193 1.2982

Loglogistic Inverse Gaussian γ = 1.7352 (0.0155),
θ = 32.5366 (0.4623)

µ = 99.64726 (4.2422),
θ = 16.8705 (1.6193)

40.5153 1.1594

Paralogistic Weibull α = 1.7090 (0.0154),
1
θ = 0.02368 (0.0003)

τ = 0.3338 (0.0058),
θ = 7.3820 (0.735)

34.7893 1.4319

Inverse
paralogistic Inverse Gaussian τ = 1.3895 (0.0072),

1
θ = 0.0364 (0.0005)

µ = 91.2859 (6.0897),
θ = 14.0619 (2.0543)

51.2797 0.8695

Weibull Weibull τ = 1.6529 (0.0166),
θ = 28.8585 (0.4634)

τ = 0.3376205 (0.0058),
θ = 7.9324 (0.76697)

30.8894 1.6791

Gamma Burr α = 1.8953(0.0236),
1
θ = 0.05999 (0.0015)

α = 9290451(2166981),
γ = 0.3324 (0.0061),
1
θ = 1.519089×10−22(
1.195389×10−23

) 35.5336 1.3953
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Table A2. Cont.

Head Tail ϑ1 ϑ2 θ ϕ

Loglogistic Weibull γ = 1.7465 (0.016),
θ = 31.722669

τ = 0.3335(0.0058),
θ = 7.3185(0.7314)

37.162 1.314

Paralogistic Burr α = 1.7090 (0.0152 ),
θ = 0.0237(0.0003)

α = 132231.5, γ = 0.3338,
1
θ = 6.186885×10−17 34.7898 1.4319

Weibull Burr τ = 1.6528 (0.0166),
θ = 28.8594 (0.4602)

α = 873910.9,
γ = 0.3376(0.0057),
1
θ = 3.173873×10−19

30.891 1.6789

Inverse Burr Weibull
τ = 0.8631 (0.0595),
γ = 1.9451 (0.1031),
1
θ = 0.0301(0.0007)

τ = 0.3341 (0.0058),
θ = 7.4239(0.7363)

35.0194 1.4186

Loglogistic Burr γ = 1.7465 (0.0156),
θ = 31.7227 (0.41667)

α = 31127.62, γ = 0.3335,
1
θ = 4.603593×10−15 37.1616 1.3140

Inverse Burr Burr
τ = 0.8632(0.0599 ) ,
γ = 1.9450 (0.1035 ),
1
θ = 0.03012(0.00066)

α = 18358.92 ,
γ = 0.334237,
1
θ = 2.354395×10−14

35.01608 1.4188

Inverse
paralogistic Weibull τ = 1.3941(0.0077),

1
θ = 0.0372 (0.0006)

τ = 0.3313 (0.0062),
θ = 6.9658 (0.7622)

44.1095 1.0634

Inverse
paralogistic Burr τ = 1.3941(0.0077),

1
θ = 0.0372 (0.0006)

α = 29397.29,
γ = 0.3313(0.0006),
1
θ = 4.6688×10−15(
1.0827×10−17

) 44.1084 1.0634

Burr Pareto
α = 0.3761 (0.0112),
γ = 1.8324 (0.0187),
1
θ = 0.0487 (0.0010)

α = 2.6827 (0.164),
θ = 443.996 (61.2433)

371.0913 0.0883

Weibull Lognormal τ = 1.68 (0.0180),
θ = 27.3341 (0.5253)

µ = 3.2995 (0.0398),
σ = 1.6521 (0.0180)

27.3694 2.0122

Gamma Lognormal α = 1.9054 (0.0247),
1
θ = 0.0614 (0.0017)

µ = 3.2496 (0.0443),
σ = 1.6686 (0.0188)

32.3335 1.6029

Gamma Generalised Pareto α = 1.9193 (0.0243),
1
θ = 0.063 (0.0016)

α = 2.00855 (0.0590),
τ = 0.00000008(

1.4945×10−15
)

,
1
θ = 0.00263 (0.00015)

33.0272 1.5616

Paralogistic Lognormal α = 1.7207(0.0264),
1
θ = 0.0243(0.0005)

µ = 3.2653(0.0550),
σ = 1.6637 (0.0264)

30.9552 1.6977

Table A3. Parameter estimates of the top 20 mixture models for the taxi claims data.

First Component Second Component ϑ1 ϑ2 ϕ

Inverse gamma Lognormal α = 3.8170, θ = 93.6396 µ = 4.074, σ = 1.4041 4.4276

Inverse Gaussian Lognormal µ = 29.8338, θ = 107.9798 µ = 4.0794, σ = 1.3961 4.7267

Generalised Pareto Lognormal α = 4.1712, τ = 45.299,
θ = 2.2854 µ = 4.0765, σ = 1.4031 4.4435

Inverse paralogistic Lognormal τ = 2.4166, θ = 17.1673 µ = 4.0813, σ = 1.4069 4.0799

Inverse Weibull Lognormal τ = 2.0034θ = 23.086563 µ = 4.060686, σ = 1.4098 4.1863

Inverse Burr Lognormal τ = 4.5381, γ = 2.1940,
θ = 12.0926 µ = 4.0736, σ = 1.4101 4.0411

Loglogistic Lognormal γ = 2.9332, θ = 26.4047 µ = 4.1085, σ = 1.3974 3.9066
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Table A3. Cont.

First Component Second Component ϑ1 ϑ2 ϕ

Burr Lognormal α = 0.5817, γ = 3.4263,
θ = 21.4809 µ = 4.0956802, σ = 1.4086 3.6253

Gamma Lognormal α = 4.2428, θ = 6.5837 µ = 4.091793, σ = 1.3857 4.769

Paralogistic Lognormal α = 2.403, θ = 40.2599 µ = 4.126997, σ = 1.3822 4.002

Lognormal Weibull µ = 4.1531, σ = 1.3612 τ = 1.9636, θ = 29.5290 0.2536

Loglogistic Generalised Pareto γ = 1.7759, θ = 29.8996 α = 2.2800, τ = 1.5141,
θ = 247.543 0.52375

Generalised Pareto Paralogistic α = 2.0570, τ = 1.614,
θ = 168.3791 α = 1.7326, θ = 39.1302 1.1726

Loglogistic Paralogistic γ = 1.7641, θ = 30.5826 α = 1.3814, θ = 228.3339 0.4576

Burr Loglogistic α = 1.6342, γ = 1.2558,
θ = 256.4782 γ = 1.7836, θ = 30.326 1.9518

Paralogistic Paralogistic α = 1.7332, θ = 40.1747 α = 1.3464, θ = 180.1915 0.7779

Burr Burr α = 0.95765, γ = 1.7884,
θ = 29.6828

α = 1.663, γ = 1.2498,
θ = 264.2923 0.4903

Inverse gamma Paralogistic α = 1.7495, θ = 294.6358 α = 1.6836, θ = 43.7961 2.4313

Inverse gamma Generalised Pareto α = 1.8386, θ = 334.996 α = 6.2739, τ = 1.9704,
θ = 107.74715 2.2563

Paralogistic Burr α = 1.7378, θ = 40.1805 α = 1.3951, τ = 1.3194,
θ = 184.542 0.797

Table A4. Parameter estimates and standard errors in parenthesis of the top 20 composite models for
the Danish fire loss data.

Head Tail ϑ1 ϑ2 θ ϕ

Weibull Inverse Weibull τ = 16.094(1.554),
θ = 0.955(0.0149)

τ = 1.555(0.0505),
1
θ = 1.102(0.0994)

0.955 9.854

Paralogistic Inverse Weibull α = 16.088(1.581 ),
1
θ = 0.879(0.0232)

τ = 1.554(0.0507),
1
θ = 1.105(0.101)

0.957 9.688

Inverse Burr Inverse Weibull
τ = 0.204(0.235),
γ = 68.745(73.872 ,
1
θ = 1.046(0.0176)

τ = 1.557(0.0493),
1
θ = 1.096(0.0919)

0.934 12.609

Weibull Inverse
paralogistic

τ = 15.806(1.728),
θ = 0.960(0.0176)

τ = 1.567(0.0565),
1
θ = 1.777(0.213)

0.961 9.256

Inverse Burr Inverse
paralogistic

τ = 0.000383(0.00001),
γ = 35290(1049),
1
θ = 1.078(0.00005)

τ = 1.567(0.053),
1
θ = 1.775(0.181)

0.928 14.086

Paralogistic Inverse
paralogistic

α = 15.745(1.968),
1
θ = 0.872(0.0301)

τ = 1.566(0.057),
1
θ = 1.787(0.221)

0.964 9.054

Weibull Loglogistic τ = 15.652(1.939),
θ = 0.962(0.0206)

γ = 1.568(0.0593),
θ = 0.680(0.0979)

0.964 9.030

Inverse Burr Loglogistic
τ = 0.000395(0.00002),
γ = 34285(1.517),
1
θ = 1.078(0.00005)

γ = 1.570(0.0278),
θ = 0.688(0.00275)

0.928 14.020
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Table A4. Cont.

Head Tail ϑ1 ϑ2 θ ϕ

Paralogistic Loglogistic α = 15.683(1.205),
1
θ = 0.871(0.0174)

γ = 1.567(0.0569),
θ = 0.678(0.0888)

0.965 8.906

Loglogistic Inverse Weibull γ = 16.267(1.264),
θ = 0.975(0.0127)

α = 1.547(0.0502),
1
θ = 1.130(0.105)

0.976 8.216

Weibull Burr τ = 16.267(1.264),
θ = 0.949(0.00107)

α = 0.395(0.104),
γ = 3.646(0.880),
1
θ = 1.182(0.0693)

0.947 11.13

Paralogistic Burr α = 16.278(1.257),
1
θ = 0.887(0.887)

α = 0.394(0.104),
γ = 3.649(0.884),
1
θ = 1.182(0.0697)

0.947 11.043

Inverse Burr Burr
τ = 0.262(0.108),
γ = 53.766(19.976),
1
θ = 1.046(0.0099)

α = 0.406(0.107),
γ = 3.549(0.853),
1
θ = 1.190(0.0713)

0.932 13.251

Loglogistic Inverse
paralogistic

γ = 16.197(1.358),
θ = 0.977(0.0141)

τ = 1.561(0.0554),
1
θ = 1.819(0.216)

0.980 7.876

Inverse Burr Inverse gamma
τ = 4.4300(0.000000225),
γ = 30761(0.885),
1
θ = 1.078(0.0000315)

α = 1.641(0.0399),
1
θ = 1.148(0.0263)

0.928 13.945

Paralogistic Inverse gamma α = 15.635(1.285),
1
θ = 0.869(0.0186)

α = 1.635(0.0733),
1
θ = 1.119(0.188)

0.967 8.753

Loglogistic Loglogistic γ = 16.153(1.387),
θ = 0.978(0.0145)

γ = 1.562(0.0573),
θ = 0.666(0.0911)

0.981 7.761

Weibull Paralogistic τ = 15.511(1.314),
θ = 0.965(0.00129)

α = 1.267(0.0273),
1
θ = 1.607(0.265)

0.968 8.660

Paralogistic Paralogistic α = 15.557(1.3555),
1
θ = 0.867(0.020)

α = 1.266(0.0273),
1
θ = 1.611(0.267)

0.969 8.551

Inverse Burr Paralogistic
τ = 0.000929(0.0000014),
γ = 14718(2.036),
1
θ = 1.077(0.0000152)

α = 1.270(0.0136),
1
θ = 1.559(0.0307)

0.928 13.775

Table A5. Parameter estimates of the top 20 mixture models for the Danish fire loss data.

First Component Second Component ϑ1 ϑ2 ϕ

Burr Burr α = 0.2706, γ = 6.6542,
θ = 1.2869

α = 0.0257, γ = 49.3079,
θ = 0.8573 2.1565

Inverse Weibull Burr τ = 10.5701, θ = 0.9465 α = 0.1577, γ = 9.0711,
θ = 1.1658 4.3468

Loglogistic Burr γ = 5.1028, θ = 1.7185 α = 0.028, γ = 41.8835,
θ = 0.8645 4.6562

Inverse paralogistic Burr γ = 11.85025, θ = 0.7666 α = 0.1541, γ = 9.2683,
θ = 1.1497 4.7785

Inverse Burr Burr τ = 136.2773, γ = 10.6678,
θ = 0.5971

α = 0.1574, γ = 9.0858,
θ = 1.1646 4.3782

Gamma Burr α = 8.7777, θ = 0.2029 α = 0.0298, γ = 39.7623,
θ = 0.8677 5.40768
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Table A5. Cont.

First Component Second Component ϑ1 ϑ2 ϕ

Inverse Gaussian Burr µ = 2.1500, θ = 8.79 α = 0.0315, γ = 38.8700,
θ = 0.8699 4.7799

Lognormal Burr µ = 0.6349, σ = 0.4417 α = 0.0308, γ = 39.48825,
θ = 0.8686 4.7594

Generalised Pareto Burr α = 12.2499, τ = 10.915,
θ = 2.0900

α = 0.0303, γ = 39.960,
θ = 0.8679 4.7499

Inverse gamma Burr α = 3.6500, θ = 6.61997 α = 0.0404, γ = 31.330,
θ = 0.877 4.2999

Inverse exponential Burr θ = 0.98115 α = 0.04097, γ = 25.728,
θ = 0.8903 134.9374

Exponential Burr 1
θ = 0.3686

α = 0.04999,
γ = 25.2807, θ = 0.8908 119.5614

Inverse Pareto Burr τ = 66.423, θ = 0.015575 α = 0.0491, γ = 25.7105,
θ = 0.8903 134.9823

Paralogistic Burr α = 20.0916, θ = 1.1077 α = 0.1294, γ = 10.7409,
θ = 1.0445 10.19554

Weibull Burr τ = 19.9054, θ = 0.95505 α = 0.1291, γ = 10.7569,
θ = 1.0427 10.3812

Pareto Burr α = 37.699, θ = 100.9595 α = 0.0501, γ = 25.2500,
θ = 0.8908 121.669

Inverse Weibull Inverse Burr τ = 3.9523, θ = 1.1564 τ = 5.8476, γ = 1.714638,
θ = 0.866 0.7465

Inverse paralogistic Inverse Weibull τ = 1.9012, θ = 2.3835 τ = 3.4688, θ = 1.2099 2.2879

Inverse gamma Inverse Weibull α = 3.6924, θ = 1.183 τ = 1.91129, θ = 4.8491 0.6334

Inverse Burr Inverse Burr τ = 5.8468, γ =
1.7148, θ = 0.866

τ = 4119.4997,
γ = 3.9533, θ = 0.1408 1.33905
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