Cooperative Game-Based Digital Twin Drives Decision Making: Overall Framework, Basic Formalization and Application Case
Abstract
:1. Introduction
- In order to distinguish the asymmetry of the digital twin and its physical counterpart or its functionality, the digital twin is viewed as a virtual agent, which performs the problem-solving computational simulation. The physical entity acts as a physical agent to undertake real tasks. Both the virtual agent and physical agent improve themselves or help the other reduce the risk of uncertainty by sharing information in the Extensible Markup Language (XML) or JavaScript Object Notation (JSON) format.
- To promote the cooperation of the virtual agent and physical agent, the cooperative game framework is proposed through negotiation objectives, alliance rules and negotiation strategy to autonomously ally them. For task-centered decision making, it is supposed that the game process is purely cooperative games, where the interests of two types of agents coincide perfectly.
- As a proof of concept, a cooperative game-based digital twin planning system was developed for the assembly process planning of large-scale composite skins. In this specific interactive situation, the reconfigurable multi-point loading and multi-sensor feedback physical assembly-commissioning system was developed as the physical player, and the finite element simulation optimization of the virtual assembly system was developed as the virtual player.
2. Research Background
2.1. Decision-Making Paradigm under Industry 4.0
2.2. Research Status of Composite Assembly Decision Making
3. Method
3.1. Overall Framework
- Ideally, the attractive metaphor of DT emphasizes the perfect mirroring or exact mapping to the physical entity. However, neither the sensor data-driven update nor the aggregation of multi-domain models has changed its essence as a virtual model. First, the spatial distribution and temporal sampling frequency of the sensor are limited or partially reachable, in particular, not all desirable attributes can directly be measured by applying advanced IoT technologies [65,66]. Secondly, the time-consuming expense associated with large multi-physics simulations of complex systems means that real-time updating, which may be required in the real system, is not possible [67]. Moreover, the physical processes are compositions of many things occurring at the same time, while the DT essentially depends on formal and procedural continuous computation in a relatively ideal framework [68]. In other words, the DT in the cyberspace and the physical counterpart in the real world cannot behave exactly the same in response to changes. Therefore, from the decision-making perspective, it is naturally beneficial to regard digital twins and physical twins as agents with different behavioral patterns in different spaces, cooperating and complementing each other.
- The behavior encapsulations of twins agents in the game space enable them to act in a social way via cooperation, coordination and negotiation and perform specific tasks according to a common goal. Without this high-level abstraction, in the cyberspace and the real world, the twins agents can only respond to the context changes in a reactive way or perform goal-driven actions in a proactive way. In other words, the introduction of game space helps to develop a generic decision model representing the decision-making process instead of the physical process.
3.2. Basic Formalization
4. Application Case
4.1. Generalization of Composite Part Assembly Task
4.1.1. Decision Variables of Assembly Planning
4.1.2. Goals and Constraints of Assembly Planning
4.2. Digital-Twin-Driven Decision-Making System for Composite Assembly
4.2.1. Digital Twin System
- Owing that the rigidity of frame structures is much higher than the rigidity of large thin composite skins, the frame structures are treated as rigid bodies.
- The geometrical tolerances of frame structures are prone to reach, so the probability of dimensional variation is ignored.
4.2.2. Physical Assembly-Commissioning Domain
4.2.3. Virtual Assembly-Commissioning Domain
4.2.4. Cross-Space Data Fusion Domain
4.3. Experiment
4.3.1. Composite Skin
4.3.2. Digital-Twin-Driven Decision Making of Assembly
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
APDL | ANSYS Parametric Design Language |
AI | Artificial Intelligence |
CFRP | Carbon-Fiber-Reinforced Epoxy |
CZM | Cohesive Zone Material |
CPS | Cyber-Physical System |
FEM | Finite Element Method |
FAM | Forced Assembly Method |
JSON | JavaScript Object Notation |
KCC | Key Control Characteristics |
KRP | Key Reference Point |
MAA | Measurement-Assisted Assembly |
MIC | Method of Influence Coefficients |
PID | Process-Induced Deformation |
PPR | Product–Process–Resource |
RMSE | Root Mean Squared Error |
TU | Transferable Utility |
NTU | Nontransferable Utility |
XML | Extensible Markup Language |
References
- Rosin, F.; Forget, P.; Lamouri, S.; Pellerin, R. Enhancing the Decision-Making Process through Industry 4.0 Technologies. Sustainability 2022, 14, 461. [Google Scholar] [CrossRef]
- Romero, D.; Stahre, J. Towards the Resilient Operator 5.0: The Future of Work in Smart Resilient Manufacturing Systems. Procedia CIRP 2021, 104, 1089–1094. [Google Scholar] [CrossRef]
- Hu, F. Mutual information-enhanced digital twin promotes vision-guided robotic grasping. Adv. Eng. Inform. 2022, 52, 101562. [Google Scholar] [CrossRef]
- Schuh, G.; Anderl, R.; Gausemeier, J.; ten Hompel, M.; Wahlster, W. (Eds.) Industrie 4.0 Maturity Index: Managing the Digital Transformation of Companies (acatech STUDY); Herbert Utz Verlag: Munich, Germany, 2017; Available online: https://www.acatech.de/publikation/industrie-4-0-maturity-index-die-digitale-transformation-von-unternehmen-gestalten/download-pdf?lang=en (accessed on 20 April 2020).
- Kitchin, R. Big Data, new epistemologies and paradigm shifts. Big Data Soc. 2014, 1, 2053951714528481. [Google Scholar] [CrossRef]
- Bousdekis, A.; Lepenioti, K.; Apostolou, D.; Mentzas, G. A Review of Data-Driven Decision-Making Methods for Industry 4.0 Maintenance Applications. Electronics 2021, 10, 828. [Google Scholar] [CrossRef]
- Sanders, N.R. How to use big data to drive your supply chain. Calif. Manag. Rev. 2016, 58, 26–48. [Google Scholar] [CrossRef]
- Huo, Z.; Mukherjee, M.; Shu, L.; Chen, Y.; Zhou, Z. Cloud-based data-intensive framework towards fault diagnosis in large-scale petrochemical plants. In Proceedings of the 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September 2016; pp. 1080–1085. [Google Scholar]
- Ma, S.; Zhang, Y.; Lv, J.; Ge, Y.; Yang, H.; Li, L. Big data driven predictive production planning for energy-intensive manufacturing industries. Energy 2020, 211, 118320. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, S.; Guo, H.; Wu, S. Automated labeling for robotic autonomous navigation through multi-sensory semi-supervised learning on big data. IEEE Trans. Big Data 2019, 7, 93–101. [Google Scholar] [CrossRef]
- Santos, C.H.D.; De Queiroz, J.A.; Leal, F.; Montevechi, J.A.B. Use of simulation in the industry 4.0 context: Creation of a Digital Twin to optimise decision making on non-automated process. J. Simul. 2020, 16, 284–297. [Google Scholar] [CrossRef]
- Granacher, J.; Nguyen, T.V.; Castro-Amoedo, R.; Maréchal, F. Overcoming decision paralysis—A digital twin for decision making in energy system design. Appl. Energy 2022, 306, 117954. [Google Scholar] [CrossRef]
- dos Santos, C.H.; Gabriel, G.T.; do Amaral, J.V.S.; Montevechi, J.A.B.; de Queiroz, J.A. Decision-making in a fast fashion company in the Industry 4.0 era: A Digital Twin proposal to support operational planning. Int. J. Adv. Manuf. Technol. 2021, 116, 1653–1666. [Google Scholar] [CrossRef]
- Hu, F.; Wang, W.; Zhou, J. Petri nets-based digital twin drives dual-arm cooperative manipulation. Comput. Ind. 2023, 147, 103880. [Google Scholar] [CrossRef]
- Sierla, S.; Azangoo, M.; Rainio, K.; Papakonstantinou, N.; Fay, A.; Honkamaa, P.; Vyatkin, V. Roadmap to semi-automatic generation of digital twins for brownfield process plants. J. Ind. Inf. Integr. 2022, 27, 100282. [Google Scholar] [CrossRef]
- West, S.; Stoll, O.; Meierhofer, J.; Züst, S. Digital twin providing new opportunities for value co-creation through supporting decision-making. Appl. Sci. 2021, 11, 3750. [Google Scholar] [CrossRef]
- Marques, M.; Agostinho, C.; Zacharewicz, G.; Jardim-Gonçalves, R. Decentralized decision support for intelligent manufacturing in Industry 4.0. J. Ambient Intell. Smart Environ. 2017, 9, 299–313. [Google Scholar] [CrossRef]
- Rosen, R.; Von Wichert, G.; Lo, G.; Bettenhausen, K.D. About the importance of autonomy and digital twins for the future of manufacturing. Ifac-Pap. 2015, 48, 567–572. [Google Scholar] [CrossRef]
- Hu, F. Digital Twin-Driven Reconfigurable Fixturing Optimization for Trimming Operation of Aircraft Skins. Aerospace 2022, 9, 154. [Google Scholar] [CrossRef]
- Leitão, P. Agent-based distributed manufacturing control: A state-of-the-art survey. Eng. Appl. Artif. Intell. 2009, 22, 979–991. [Google Scholar] [CrossRef]
- Marik, V.; McFarlane, D. Industrial adoption of agent-based technologies. IEEE Intell. Syst. 2005, 20, 27–35. [Google Scholar] [CrossRef]
- Morgan, J.; Halton, M.; Qiao, Y.; Breslin, J.G. Industry 4.0 smart reconfigurable manufacturing machines. J. Manuf. Syst. 2021, 59, 481–506. [Google Scholar] [CrossRef]
- Schuh, G.; Anderl, R.; Dumitrescu, R.; Krüger, A.; ten Hompel, M. (Eds.) Industrie 4.0 Maturity Index: Managing the Digital Transformation of Companies-UPDATE 2020-(acatech STUDY); Herbert Utz Verlag: Munich, Germany, 2020; Available online: https://www.acatech.de/publikation/industrie-4-0-maturity-index-update-2020/download-pdf?lang=en (accessed on 20 January 2021).
- Mrazova, M. Advanced composite materials of the future in aerospace industry. Incas Bull. 2013, 5, 139–150. [Google Scholar]
- Kappel, E. Forced-interaction and spring-in–relevant initiators of process-induced distortions in composite manufacturing. Compos. Struct. 2016, 140, 217–229. [Google Scholar] [CrossRef]
- McEwan, W.; Butterfield, J.; Price, M.; Murphy, A. Development of a digital methodology for composite process & manufacture in aerospace assemblies. In Proceedings of the 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Fort Worth, TX, USA, 13–15 September 2010; p. 9070. [Google Scholar]
- Zhang, T.; Zhang, C.; Zhao, J.; Guo, A. Analysis of Allowable Assembly Forces for Composite Laminates. IOP Conference Series: Materials Science and Engineering. IOP Conf. Ser. Mater. Sci. Eng. 2019, 647, 012011. [Google Scholar] [CrossRef]
- Gao, G.; An, L.; Zhang, W.; Ge, E.; Yue, X.; Yun, Y.; Han, N. Shimming effect on the mechanical behaviors of composite assembly structures of aircraft. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 851–860. [Google Scholar] [CrossRef]
- Greco, A.; Caputo, F.; Caterino, M.; D’Ambra, S.; Fera, M.; Laudante, E. Composite parts assembly operational improvements. Macromol. Symposia 2020, 389, 1900098. [Google Scholar] [CrossRef]
- Jareteg, C.; Wärmefjord, K.; Cromvik, C.; Söderberg, R.; Lindkvist, L.; Carlson, J.; Larsson, S.; Edelvik, F. Geometry assurance integrating process variation with simulation of spring-in for composite parts and assemblies. J. Comput. Inf. Sci. Eng. 2016, 16, 031003. [Google Scholar] [CrossRef]
- Yue, X.; Wen, Y.; Hunt, J.H.; Shi, J. Surrogate model-based control considering uncertainties for composite fuselage assembly. J. Manuf. Sci. Eng. 2018, 140, 041017. [Google Scholar] [CrossRef]
- Roulet, V.; Boucard, P.A.; Champaney, L. An efficient computational strategy for composite laminates assemblies including variability. Int. J. Solids Struct. 2013, 50, 2749–2757. [Google Scholar] [CrossRef]
- Corrado, A.; Polini, W.; Moroni, G. Comparison between two numerical tools for geometrical deviation analysis in composite assemblies. Procedia CIRP 2020, 92, 100–105. [Google Scholar] [CrossRef]
- Corrado, A.; Polini, W.; Sorrentino, L.; Bellini, C. Geometrical deviation analysis of CFRP thin laminate assemblies: Numerical and experimental results. Compos. Sci. Technol. 2018, 168, 1–11. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Wang, Y.Q.; Gao, H.; Bao, Y.; Li, R. An enhanced spring-mass model for stiffness prediction in single-lap composite joints with considering assembly gap and gap shimming. Compos. Struct. 2018, 187, 18–26. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Liu, T.; Li, X. Variation Analysis for Composite Parts with Considering Local Delamination Defects. In ASME International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York City, NY, USA, 2019; Volume 59384, p. V02BT02A061. [Google Scholar]
- Jonsson, M.; Murray, T.; Robertsson, A.; Stolt, A.; Nilsson, K. Force feedback for assembly of aircraft structures. In Proceedings of the 2010 SAE Aerospace Manufacturing and Automated Fastening Conference, Wichita, KS, USA, 28–30 September 2010. [Google Scholar]
- Ramirez, J.; Wollnack, J. Flexible automated assembly systems for large CFRP-structures. Procedia Technol. 2014, 15, 447–455. [Google Scholar] [CrossRef]
- Zhang, W.; An, L.; Chen, Y.; Xiong, Y.; Liao, Y. Optimisation for clamping force of aircraft composite structure assembly considering form defects and part deformations. Adv. Mech. Eng. 2021, 13, 1687814021995703. [Google Scholar] [CrossRef]
- Muelaner, J.E.; Maropoulos, P.G. Design for measurement assisted determinate assembly (MADA) of large composite structures. J. CMSC 2010, 5, 1–10. Available online: https://www.cmsc.org/autumn-2010-design-for-measurement-assisted-determinate-assembly-mada-of-large-composite-structures (accessed on 18 January 2024).
- Maropoulos, P.G.; Muelaner, J.E.; Summers, M.D.; Martin, O.C. A new paradigm in large-scale assembly—Research priorities in measurement assisted assembly. Int. J. Adv. Manuf. Technol. 2014, 70, 621–633. [Google Scholar] [CrossRef]
- Liang, B.; Liu, W.; Liu, K.; Zhou, M.; Zhang, Y.; Jia, Z. A displacement field perception method for component digital twin in aircraft assembly. Sensors 2020, 20, 5161. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.; Hörauf, L.; Vette, M.; Speicher, C. Planning and developing cyber-physical assembly systems by connecting virtual and real worlds. Procedia Cirp 2016, 52, 35–40. [Google Scholar] [CrossRef]
- Sun, X.; Bao, J.; Li, J.; Zhang, Y.; Liu, S.; Zhou, B. A digital twin-driven approach for the assembly-commissioning of high precision products. Robot. Comput.-Integr. Manuf. 2020, 61, 101839. [Google Scholar] [CrossRef]
- Grégorio, J.L.; Lartigue, C.; Thiébaut, F.; Lebrun, R. A digital twin-based approach for the management of geometrical deviations during assembly processes. J. Manuf. Syst. 2021, 58, 108–117. [Google Scholar] [CrossRef]
- Polini, W.; Corrado, A. Digital twin of composite assembly manufacturing process. Int. J. Prod. Res. 2020, 58, 5238–5252. [Google Scholar] [CrossRef]
- Li, J.; Zhou, G.; Zhang, C. A twin data and knowledge-driven intelligent process planning framework of aviation parts. Int. J. Prod. Res. 2021, 60, 5217–5234. [Google Scholar] [CrossRef]
- Sun, X.; Liu, S.; Bao, J.; Li, J.; Liu, Z. A Performance Prediction Method for a High-Precision Servo Valve Supported by Digital Twin Assembly-Commissioning. Machines 2022, 10, 11. [Google Scholar] [CrossRef]
- Cohen, Y.; Faccio, M.; Galizia, F.G.; Mora, C.; Pilati, F. Assembly system configuration through Industry 4.0 principles: The expected change in the actual paradigms. IFAC-Pap. 2017, 50, 14958–14963. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F. Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access 2018, 6, 3585–3593. [Google Scholar] [CrossRef]
- Hu, F.; Qiu, X.; Jing, G.; Zhu, Y. Digital twin-based decision making paradigm of raise boring method. J. Intell. Manuf. 2022, 34, 2387–2405. [Google Scholar] [CrossRef]
- Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital twin: Origin to future. Appl. Syst. Innov. 2021, 4, 36. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar] [CrossRef]
- Shao, G. Use Case Scenarios for Digital Twin Implementation Based on ISO 23247; National Institute of Standards: Gaithersburg, MD, USA, 2021. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y.C. Enabling technologies and tools for digital twin. J. Manuf. Syst. 2021, 58, 3–21. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Wen, X.; Luo, G. Unified modeling for digital twin of a knowledge-based system design. Robot. Comput.-Integr. Manuf. 2021, 68, 102074. [Google Scholar] [CrossRef]
- Redelinghuys, A.J.H.; Basson, A.H.; Kruger, K. A six-layer architecture for the digital twin: A manufacturing case study implementation. J. Intell. Manuf. 2019, 31, 1383–1402. [Google Scholar] [CrossRef]
- Croatti, A.; Gabellini, M.; Montagna, S.; Ricci, A. On the integration of agents and digital twins in healthcare. J. Med. Syst. 2020, 44, 1–8. [Google Scholar] [CrossRef]
- Stary, C. Digital twin generation: Re-conceptualizing agent systems for behavior-centered cyber-physical system development. Sensors 2021, 21, 1096. [Google Scholar] [CrossRef]
- Madani, K.; Lund, J.R. A Monte-Carlo game theoretic approach for multi-criteria decision making under uncertainty. Adv. Water Resour. 2011, 34, 607–616. [Google Scholar] [CrossRef]
- Parsons, S.; Wooldridge, M. Game theory and decision theory in multi-agent systems. Auton. Agents Multi-Agent Syst. 2002, 5, 243–254. [Google Scholar] [CrossRef]
- Sohrabi, M.K.; Azgomi, H. A survey on the combined use of optimization methods and game theory. Arch. Comput. Methods Eng. 2020, 27, 59–80. [Google Scholar] [CrossRef]
- Mei, S.; Wei, W.; Liu, F. On engineering game theory with its application in power systems. Control Theory Technol. 2017, 15, 1–12. [Google Scholar] [CrossRef]
- Hernandez, G.; Mistree, F. Integrating product design and manufacturing: A game theoretic approach. Eng. Optim. + A35 2000, 32, 749–775. [Google Scholar] [CrossRef]
- Yazan, D.M.; Yazdanpanah, V.; Fraccascia, L. Learning strategic cooperative behavior in industrial symbiosis: A game-theoretic approach integrated with agent-based simulation. Bus. Strategy Environ. 2020, 29, 2078–2091. [Google Scholar] [CrossRef]
- Tomko, M.; Winter, S. Beyond digital twins—A commentary. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 395–399. [Google Scholar] [CrossRef]
- Kim, S.; Pérez-Castillo, R.; Caballero, I.; Lee, D. Organizational process maturity model for IoT data quality management. J. Ind. Inf. Integr. 2022, 26, 100256. [Google Scholar] [CrossRef]
- Wright, L.; Davidson, S. How to tell the difference between a model and a digital twin. Adv. Model. Simul. Eng. Sci. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Derler, P.; Lee, E.A.; Vincentelli, A.S. Modeling cyber–physical systems. Proc. IEEE 2011, 100, 13–28. [Google Scholar] [CrossRef]
- Söderberg, R.; Wärmefjord, K.; Lindkvist, L. Variation simulation of stress during assembly of composite parts. CIRP Ann. 2015, 64, 17–20. [Google Scholar] [CrossRef]
- Topac, O.T.; Gozluklu, B.; Gurses, E.; Coker, D. Experimental and computational study of the damage process in CFRP composite beams under low-velocity impact. Compos. Part A Appl. Sci. Manuf. 2017, 92, 167–182. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.M.; Liu, T.; Qiao, P. Influence of Local Delamination on Assembly Variation Modeling of Laminated Composite Beams. J. Aerosp. Eng. 2020, 33, 04020064. [Google Scholar] [CrossRef]
- Glud, J.; Christensen, E.T.; Lindgaard, E.; Bak, B.L.V. Implementation of a state-of-the-art cohesive zone element for ANSYS Mechanical. In Proceedings of the 26th Nordic Seminar on Computational Mechanics, Oslo, Norway, 23–25 October 2013. [Google Scholar]
- Lindgaard, E.; Bak, B.L.; Christensen, E.T.; Glud, J. Cohesive Zone Modelling of Wrinkle Defects in Glass-Epoxy Laminates Using User Finite Element Feature. In Proceedings of the 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI), Barcelona, Spain, 20–25 July 2014. [Google Scholar]
- Ieong, S.; Shoham, Y. Multi-attribute coalitional games. In Proceedings of the 7th ACM Conference on Electronic Commerce, Ann Arbor, MI, USA, 11–15 June 2006; pp. 170–179. [Google Scholar]
- Greco, G.; Malizia, E.; Palopoli, L.; Scarcello, F. On the complexity of core, kernel, and bargaining set. Artif. Intell. 2011, 175, 1877–1910. [Google Scholar] [CrossRef]
Twinning-Based Cooperative Game | Digital Domain | ||
---|---|---|---|
Without Twinning | Coalition-Based Twin Variant | ||
Physical domain | Without twinning | ||
Coalition-based twin variant |
Density | 1920 |
Elasticity | ; ; ; ; ; |
Strength | ; ; ; ; ; ; ; |
Agents | ) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
561 | 50 | 656 | 280 | 774 | 530 | 820 | 780 | 857 | 781 | 51 | 645 | 281 | 748 | 531 | 855 | 782 | 750 | 0.90 | |
360 | 81 | 500 | 320 | 650 | 440 | 783 | 800 | 751 | 651 | 60 | 240 | 180 | 350 | 380 | 600 | 700 | 550 | 0.90 | |
241 | 181 | 701 | 351 | 200 | 551 | 652 | 653 | 501 | 601 | 120 | 654 | 201 | 450 | 400 | 801 | 655 | 656 | 0.90 | |
451 | 61 | 602 | 182 | 502 | 352 | 702 | 580 | 802 | 703 | 45 | 560 | 202 | 807 | 390 | 581 | 752 | 680 | 0.90 | |
503 | 62 | 552 | 250 | 452 | 361 | 885 | 753 | 900 | 740 | 81 | 290 | 190 | 681 | 300 | 890 | 720 | 880 | 0.90 | |
353 | 80 | 803 | 220 | 850 | 391 | 603 | 721 | 754 | 755 | 50 | 453 | 260 | 553 | 381 | 804 | 657 | 658 | 0.40 | |
261 | 121 | 851 | 301 | 682 | 420 | 756 | 806 | 805 | 582 | 63 | 554 | 282 | 785 | 354 | 683 | 704 | 504 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, F.; Bi, S.; Zhu, Y. Cooperative Game-Based Digital Twin Drives Decision Making: Overall Framework, Basic Formalization and Application Case. Mathematics 2024, 12, 355. https://doi.org/10.3390/math12020355
Hu F, Bi S, Zhu Y. Cooperative Game-Based Digital Twin Drives Decision Making: Overall Framework, Basic Formalization and Application Case. Mathematics. 2024; 12(2):355. https://doi.org/10.3390/math12020355
Chicago/Turabian StyleHu, Fuwen, Song Bi, and Yuanzhi Zhu. 2024. "Cooperative Game-Based Digital Twin Drives Decision Making: Overall Framework, Basic Formalization and Application Case" Mathematics 12, no. 2: 355. https://doi.org/10.3390/math12020355
APA StyleHu, F., Bi, S., & Zhu, Y. (2024). Cooperative Game-Based Digital Twin Drives Decision Making: Overall Framework, Basic Formalization and Application Case. Mathematics, 12(2), 355. https://doi.org/10.3390/math12020355