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Abstract: In this paper, we develop the concept of gradient r-Almost Newton-Ricci-Yamabe solitons
(in brief, gradient r-ANRY solitons) immersed in a Riemannian manifold. We deduce the minimal and
totally geodesic criteria for the hypersurface of a Riemannian manifold in terms of the gradient r-ANRY
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r-Newton-Ricci-Yamabe soliton on the hypersurface of the Riemannian manifold.

Keywords: r-Almost Newton-Ricci-Yamabe soliton; Riemannian manifold; triviality; Schur-type
inequality

MSC: 53C20; 53C21; 53C25; 53C42

1. Introduction

Every steady or increasing compact soliton is rigid for compact manifolds [1–4].
Furthermore, all diminishing compact solitons in dimensions 2 [5] and 3 [1] are rigid.
According to Eminenti et al. [6], compact shrinking solitons are rigid in any dimension
precisely when their scalar curvature is constant.

It should be noted that when a soliton is rigid, the scalar curvature remains constant and
the “radial” curvatures vanish, meaning that Ric( , γ)γ = 0 [7]. On the other hand, we have
observed that rigidity on compact solitons is implied by continuous scalar curvature or radial
Ricci flatness, where Ric(∇γ,∇γ) = 0 for each. It is easy to demonstrate that constant scalar
curvature also implies stiffness in the noncompact steady situation [2,3].

For the first time, Hamilton concurrently proposed the theories of Ricci flow [5] and
Yamabe flow [8] in 1988. The Ricci soliton and Yamabe soliton are the limiting solutions
of the Ricci flow and Yamabe flow. In fact, the Yamabe soliton [9] coincides with the Ricci
soliton for dimension n = 2, but when n > 2, the Yamabe and Ricci solitons are not the
same, and the Yamabe soliton retains the conformal class [10].

For many geometers over the past twenty years, the theory of geometric flows, includ-
ing Ricci flow, Yamabe flow, Einstein flow, and Ricci-Bourguignon has served as a source
of inspiration [10–14]. A certain group of solutions in which the metric evolves through
dilation and diffeomorphisms play a crucial role in investigating the singularities of the
flows because they appear as acceptable singularity analogs [15].

The construction of Ricci-Yamabe solitons from a geometric flow that is a scalar
composition of Ricci and Yamabe flow [16] was recently discussed by Siddiqi et al. in [17].
The Ricci-Yamabe flow of the form (δ, ε) is another name for this. The Riemannian multiple
metric that gives rise to the Ricci-Yamabe flow is represented by

∂tg(t) = −2δRic(t) + εR(t)g(t), g0 = g(0), t ∈ (a, b), (1)
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where the terms Ric and R refer to the Ricci tensor and scalar curvature, respectively. Ad-
ditionally, the authors in [16] treated the Ricci-Yamabe flow of type (δ, ε), which is precisely

• Ricci flow [5] if δ = 1, ε = 0 (Ricci solitons [5]).
• Yamabe flow [5] if δ = 0, ε = 1 (Yamabe solitons [5]).
• Einstein flow [18] if δ = 1, ε = −1 (Einstein solitons [18]).

As the limit of the Ricci-Yamabe flow solution, Ricci-Yamabe solitons naturally occur.
This serves as a significant source of motivation for learning Ricci-Yamabe solitons. In the
Ricci-Yamabe flow, a Ricci-Yamabe soliton is one that evolves exclusively by diffeomor-
phism and scales by a single parameter group. A Ricci-Yamabe soliton is a data (g, F, Λ, δ, ε)
obeying the Riemannian manifold (M, g).

1
2
LFg + δRic =

(
Λ +

ε

2
R
)

g, (2)

where LF shows the Lie derivative along the vector field F, and Λ, δ, and ε are real numbers.
A Ricci-Yamabe soliton is called shrinking, expanding, or steady, depending on whether
Λ > 0, Λ < 0, or Λ = 0, respectively.

Also, if (2) holds for Λ, δ, ε smooth functions, then, the soliton is called almost Ricci-
Yamabe soliton [19,20].

If there exists a smooth function γ : M → R such that F = ∇γ, then the (δ, ε)-type
Ricci-Yamabe soliton is called a gradient Ricci-Yamabe soliton of type (δ, ε), denoted by
(M, g, γ, Λ, δ, ε), and, in this case, (2) takes the form

h̄ess(γ) + δRic =
(

Λ +
ε

2
R
)

g, (3)

where h̄ess is the Hessian of function γ, and γ is called potential of the gradient Ricci-
Yamabe soliton of type (δ, ε).

Example 1. Let us take the example of the Einstein soliton, which produces solutions to the Einstein
flow that are self-similar in such a manner that [18]

∂tg(t) = −2
(
Ric − R

2
g
)

.

Therefore, an Einstein soliton occurs as the limit of the Einstein flow solution, such that

1
2
LFg +Ric =

(
Λ − R

2

)
g. (4)

Comparing Equations (2) and (4), we find a (1, 1)-type Ricci-Yamabe soliton.

Example 2. Let us take the example of the Riemann soliton, which produces solutions to the
Riemann flow that are self-similar in such a manner that [21]

∂

∂t
G(t) = −2Rie(g(t)), (5)

where Rie is a (0, 4)-type Riemann curvature tensor generated by metric g and G = 1
2 g ⊙ g with

Kulkarni–Nomizu product ⊙, defined by

(E ⊙ F)(U, V, W, Z) = E(U, Z)F(V, W) + E(V, W)F(U, Z) (6)

−E(U, W)F(V, Z)− E(V, Z)F(U, W),

for any vector field U, V, W, Z ∈ M.
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Definition 1. A Riemann soliton on a manifold M is specifically a particular solution of the
Riemann flow equation and it is given by

Rie +
1
2

g ⊙ LFg +
1
2

λg ⊙ g = 0. (7)

For a Riemann soliton, Equations (6) and (7) together entail the following

2
(n − 2)

Sric(U, V) + (LFg)(U, V) +
2[divU + (n − 1)λ]

(n − 2)
g(U, V) = 0, (8)

where divU = −R+n(n−1)λ
2(n−1) , where R indicates the scalar curvature of n-dimensional manifolds.

Consequently, in light of Equation (8), the Riemann soliton is expressed by the following shape

2
(n − 2)

Sric(U, V) + (LFg)(U, V) =

{
R

(n − 1)(n − 2)
− λ

}
g(U, V) = 0, (9)

Now, after comparing Equations (2) and (8), we find a
(

2
(n−2) , 1

(n−1)(n−2)

)
-type Ricci-Yamabe soliton.

Remark 1. In view of the above example, we can state that the Riemann soliton is a Ricci-
Yamabe soliton.

Based on the ideas of Cunha et al. [22,23], consider a connected and oriented hyper-
surface Mn that is immersed into a (n + 1)-dimensional Riemannian manifold N n+1. For
some 0 ≤ r ≤ n, we declare that Mn is a gradient r-Almost Newton-Ricci-Yamabe soliton
(gradient r-ANRY soliton) if the smooth function γ : Mn → R exists and the following
equation holds:

Pr ◦ h̄ess(γ) + δRic =
(

Λ +
ε

2
R
)

g, (10)

where g denotes the Riemannian metric , Λ indicates a smooth function on M, and R
symbolizes the scalar curvature of M with respect to g. In addition, Pr ◦ h̄ess(γ) illustrates
the tensor generated by

Pr ◦ h̄ess(γ)(U, V) = ⟨Pr∇U∇γ, V⟩, (11)

for tangent vector fields U, V ∈ X(M). In [24], Shaikh et al. discussed the triviality in
terms of Ricci solitons, which are closed in this paper. Moreover, Siddiqi et al. [25–27] also
studied the notions of r-ANR solitons and r-ANY solitons.

The study of Equation (10) is fascinating since a gradient r-ANRY soliton is reduced to
a gradient RY soliton when r = 0. Trivial refers to the gradient r-ANRY soliton whenever
the potential γ is constant. It is considered nontrivial if not. Additionally, we refer to the
gradient r-ANRY soliton as a gradient r-NRY soliton when Λ is a constant.

The structure of his manuscript is as follows. We review several fundamental details
and notations that will appear throughout the work in Section 1. We approach the compact
situation in Section 3 and demonstrate some trivial results. We also provide a Schur-type
inequality. In Section 4, we investigate the entire case and, for some conditions on the
potential function, find constant scalar curvature. Finally, in Section 5, we present some
minimal r-Almost Newton-Ricci-Yamabe soliton nonexistence results. Additionally, we
discuss that the gradient r-almost Newton-Yamabe soliton must be steady, totally geodesic,
and flat, and, in particular circumstances, we discover that an immersed r-almost Newton-
Yamabe soliton is isometric to the Euclidean sphere.
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2. Preliminaries

Let Mn be a connected and oriented hypersurface immersed into a Riemannian
manifold N (n+1). The Gauss formula for immersion is well known to be given by

Rie(U, V)W = (Rie(U, V)W)⊤ + ⟨AU, W⟩AV − ⟨AV, W⟩AU

for tangent vector fields U, V, W ∈ X(M), where ( )⊤ stands for a vector field’s tangential
component in X(M) along Mn. In this case, A : X(M) → X(M) denotes the second
fundamental form (or shape operator) of Mn in N n+1 with respect to a given orientation,
and Rie and Rie stand for the curvature tensors of N n+1 and Mn, respectively. Specifically,
the scalar curvature R of hypersurface Mn fulfills the requirements.

R = ∑
1≤i,j≤n

⟨Rie(vi, vj)vj, vi⟩+ n2H2 − |A|2, (12)

where {v1, . . . , vn} is an orthonormal frame on TM and | · | indicates the Hilbert–Schmidt
norm. In case of a space form N n+1(c) of constant sectional curvature c, we have the value

R = n(n − 1)c + n2H2 − |A|2. (13)

Associated to the second fundamental form A of hypersurface Mn, there are n− algebraic
invariants, which are the elementary symmetric functions Rr of its principal curvatures
k1, . . . , kn, given by

R0 = 1 and Rr = ∑
i1<...<ir

ki1 · · · kir .

The following equation describes the r-th mean curvature of the immersion(
n
r

)
Hr = Rr.

If r = 1, we have H1 = 1
n tr(A) = H, the mean curvature of Mn.

The r-th Newton transformation is defined as Pr : X(M) → X(M) for each 0 ≤ r ≤ n.
On the hypersurface Mn by using the identity operator (P0 = I) and the recurrence relation
for 1 ≤ r ≤ n

Pr =
r

∑
j=0

(−1)r−j
(

n
j

)
HjA(r), (14)

where j times (A(0) = I) represent the composition of A with r. Observe that the second
order linear differential operator Lr is connected to each Newton transformation Pr, defined
by Lr : C∞(M) → C∞(M)

Lr(γ) = tr(Pr ◦ h̄ess γ).

We observe that L0 is just the Laplacian operator for r = 0. Additionally, it is apparent that

divM(Pr∇γ) =
n

∑
i=1

⟨(∇viPr)(∇γ), vi⟩+
n

∑
i=1

⟨Pr(∇vi∇γ), vi⟩

= ⟨divMPr,∇γ⟩+ Lr(γ), (15)

where the equation for the divergence of Pr on Mn is

divMPr = tr(∇Pr) =
n

∑
i=1

(∇viPr)(vi).

Because divMPr = 0, Equation (15) is reduced to Lr(γ) = divM(Pr∇γ), in particular
when the ambient space has constant sectional curvature (see [28] for more information).
The following lemma gives useful conclusions.
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Lemma 1 ([28]). If M is compact without boundary or if M is noncompact and γ has compact
support, then

(i)
∫
M

Lr(γ) = 0,

(ii)
∫
M

γLr(γ) = −
∫
M
⟨Pr∇γ,∇γ⟩.

The so-called traceless second fundamental form of the hypersurface, denoted by
Φ = A−HI, will likewise work for our purposes. Take into account that tr (Φ) = 0 and
|Φ|2 = tr(Φ2) = |A|2 − nH2 ≥ 0 are equivalent if and only if Mn is totally umbilical [29].
Let us study Yau’s lemma, which is Theorem 3 of [30], to conclude this topic.

Lemma 2. Let γ be a non-negative smooth subharmonic function on a complete Riemannian
manifold Mn. If γ ∈ Lp(M), for some p > 1, then γ is constant.

Here, we adopt the symbol Lp(M) = {γ : Mn → R|
∫
M |γ|p <}, for each p ≥ 1.

Additionally, if the scalar curvature of Mn is constant, Equation (10) becomes valid.

δRic + Pr ◦ h̄ess(γ) = µg, (16)

where µ = Λ − ε
2R. So, we can recall Example 2 of [22] as another example of a gradient

r-Almost-Newton Ricci-Yamabe soliton.

3. Results of Triviality

With the gradient r-Newton-Ricci-Yamabe soliton (gradient r-NRYS) closed and Λ
constant, we spend this part presenting our key findings. The Riemannian manifold
with constant sectional curvature c is denoted by the symbol N n+1

c throughout the text.
More specifically:

Theorem 1. Let (Mn, g, γ, Λ, δ, ε) be a closed gradient r-NRYS immersed into a Riemannian
manifold N n+1

c of constant sectional curvature c, such that Pr is bounded from above or from below
(in the sense of quadratic forms). If any one of the following holds,

(i) δ > −nε
2 and R ≥ 0 and Λ ≥ 0, or R ≤ 0 and Λ ≤ 0,

(ii) δ < −nε
2 and R ≥ 0 and Λ ≤ 0, or R ≤ 0 and Λ ≥ 0,

(iii) δ ̸= −nε
2 and either R ≥ 2nΛ

2δ+nε or R ≤ 2nΛ
2δ+nε ,

the scalar curvature of Mn is constant and Mn is trivial.

Proof. In light of Lemma 1 and the structural equation, we obtain

0 =
∫
M

Lr(γ) =
∫

M
(nΛ − (2δ + nε)R).

Therefore, if (i) and (ii) are true, we derive R = Λ = 0 and Lr(γ) = 0 from the structural
equation. There is a positive constant C > 0 such that because the quadratic form of Pr is
bounded above or below,

0 = Lr(γ) ≤ C∆γ or 0 = Lr(γ) ≥ −C∆γ,

respectively. γ is a subharmonic function as a result. Hopf’s theorem tells us that γ is a
constant function since M is compact. Therefore, the soliton is trivial. Finally, (iii) follows
identically to (i) and (ii).
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Remark 2. Items (i) and (ii) in the above theorem entail that M is steady and R = 0. Since Mn is
trivial, we obtain Ric ≡ 0. Finally, (iii) implies R = −Λn

ρn−1 . Since M is trivial, we obtain

δRic =
(

Λ − nεΛ
(2δ + ε)

)
g =

2δΛ
(2δ + nε)

g = δ
R
n

g,

i.e., Mn is Einstein.

Theorem 2. If (Mn, γ, Λ, δ, ε) is a closed gradient r-NRYS immersed into a N n+1
c , such that Pr

is bounded above or bounded below (in the sense of quadratic form) and δ ̸= −nε
2 , then, the scalar

curvature of Mn is constant, and Mn is Einstein and trivial.

Proof. In view of structural equation Lemma 1, we have∫
M

|nΛ − (2δ + nε)R|2 =
∫
M
(nΛ − (2δ + nε)R)Lr(γ) = (nΛ − (2δ + nε)R)

∫
M

Lr(γ) = 0.

Hence, we obtain R = 2nΛ
2δ+nε and Lr(γ) = 0. Adopting that Pr is bounded above or

bounded below (in the sense of quadratic form) to demonstrate that M is trivial, we can
adopt the same steps as in the proof of Theorem 1. Last but not least, since Mn is trivial, we
can move on to Remark 2 to conclude that Mn is Einstein.

We established a Schur-type inequality in the following theorem.

Theorem 3. Let (Mn, g, γ, Λ, δ, ε) be a closed gradient r-NRYS immersed into a Riemannian
manifold N n+1

c of constant sectional curvature c, such that Pr is bounded from below (in the sense
of quadratic forms) and δ > −nε

2 . Then,

∫
M

|R −R|2 ≤ nC
(n − 2)

(
δ + nε

2
) ◦
∥Ric∥L2

∥∥∥∥∇2γ − ∆γ

n
g
∥∥∥∥

L2
. (17)

Proof. The contracted second Bianchi identity states

div(Ric)− 1
2
∇R = 0,

and hence
div(

◦
Ric) =

n − 2
2n

∇R,

where
◦

Ric is the traceless Ricci tensor. Since M is compact, we obtain, using our assumption

on Pr, that ⟨
◦

Ric, g⟩ = 0. Provided that M is compact, we obtain

nΛ = (2δ + nε)R,

where R indicates the average of R. Therefore,

(2δ + nε)2
∫

M
|R −R|2 =

∫
M
|nΛ − (2δ + nε)R|2,

i.e.,

(2δ + nε)2
∫
M

|R −R|2 ≤ 2nC(2δ + nε)

n − 2
∥

◦
Ric ∥

L2

∥∥∥∥∇2γ − ∆γ

n
g
∥∥∥∥
L2

,

i.e., ∫
M

|R −R|2 ≤ 2nC
(n − 2)(2δ + nε)

∥(
◦

Ric)∥
L2

∥∥∥∥∇2γ − ∆γ

n
g
∥∥∥∥
L2

. (18)

This completes the proof.



Mathematics 2024, 12, 3173 7 of 14

Remark 3. Due to the fact that both sides of the expression (17) diminish in the foregoing the-
orem if Mn ′′ is Einstein, the equality is maintained. To demonstrate the rigidity would be a
fascinating problem.

4. Complete Noncompact r-Newton-Ricci-Yamabe Solitons

This section begins with the following finding.

Theorem 4. Let (Mn, g, γ, λ, δ, ε) be a complete r-NRYS immersed into a Riemannian manifold
N n+1

c of constant sectional curvature c, such that the potential function is non-negative and
γ ∈ Lp(M), for some p > 1. If any one of the following holds,

(i) δ > −nε
2 , Pr is bounded above (in the sense of quadratic forms), and R ≥ 2nΛ

(2δ+nε)
,

(ii) δ > −nε
2 , Pr is bounded below (in the sense of quadratic forms), and R ≤ 2nΛ

(2δ+nε)
,

(iii) δ < −nε
2 , Pr is bounded below (in the sense of quadratic forms), and R ≥ 2nΛ

(2δ+nε)
,

(iv) δ < −nε
2 , Pr is bounded above (in the sense of quadratic forms), and R ≤ 2nΛ

(2δ+nε)
,

then, R = 2nΛ
(2δ+nε)

, and Mn is Einstein trivial.

Proof. Let Pr be bounded above (in the sense of quadratic form); there exists a positive
constant σ > 0 such that

0 ≤ nΛ − (2δ + nε)R = Lr(γ) ≤ σ∆γ.

Thus, γ is a subharmonic function, so in light of Lemma 2, we obtain that γ is a constant.
Therefore, R = 2nΛ

(2δ+nε)
and M is trivial. Since M is trivial, we have from the structural

equation that

δRic =
(

Λ − nεΛ
(2δ + ε)

)
g =

2δΛ
(2δ + nε)

g = δ
R
n

g,

i.e., Mn is Einstein.
Eventually, if (ii) holds, there exists a positive constant σ > 0 such that

Lr(γ) ≥ −σ∆γ.

Hence, the same steps as for (i) are followed. Cases (iii) and (iv) are analogous.

Theorem 5. Let (Mn, g, γ, Λ, δ, ε) be a complete gradient r-ARYS of dimension n immersed into
a Riemannian manifold N n+1

c of constant sectional curvature c, such that M has non-negative
scalar curvature. Assume that the potential function f satisfies the condition∫

MB(b,r)

γ

d(x, q)2 < ∞, (19)

where B(b, r) is a ball with radius r > 0 and center at q, and d(x, q) is the distance function from
q ∈ M. If any one of following holds,

(i) M is non-expanding, Pr is bounded above (in the sense of quadratic forms), and δ > −nε
2 ,

(ii) M is expanding, Pr is bounded below (in the sense of quadratic forms), and δ < −nε
2 ,

then, R = 0.

Proof. Let us look at item (i); item (ii) is analogous. Taking the trace in the structural
equation, we obtain

nΛ − (2δ + nε)R = Lr(γ). (20)
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Consider a cut-off function that was proposed in [2], Ψr ∈ C∞
0 (B(b, 2r)) for r > 0 such that

0 ≤ Ψr ≤ 1 in B(b, 2r)
Ψr = 1 in B(b, r)
|∇Ψr|2 ≤ C

r2 in B(b, 2r)
∆Ψr ≤ C

r2 in B(b, 2r),

(21)

wherein C > 0 is a constant. Now adopting (20), integration by parts, and that Pr is
bounded from above (in the sense of quadratic forms), we obtain

0 ≤
∫
B(b,2r)

ΨrR =
∫
B(b,2r)

Ψr

(
1

−(2δ + nε)
Lr(γ) +

nΛ
(2δ + nε)

)
≤ 1

−(2δ + nε)

∫
B(b,2r)

ΨrLr(γ) ≤
C1

−(2δ + nε)

∫
B(b,2r)

Ψr∆γ

≤ C1

−(2δ + nε)

∫
B(b,2r)−B(b,r)

γ∆Ψr

≤ C1

−(2δ + nε)

∫
B(q,2r)−B(q,r)

C2

r2 γ → 0,

as r → ∞. Since ψr = 1 in B(q, r), with inequality from above, we have R = 0. This
concludes the proof.

Remark 4. The theorem above still guarantees that a gradient r-ANRYS is in fact a gradient
r-ANRS in [22]. Therefore, any gradient r-ANRYS satisfying the conditions of Theorem 5 is a
gradient r-ANRS with scalar curvature R = 0.

Theorem 6. Let (Mn, g, γ,− nε
2 ) be a non-expanding gradient traceless r-NRYS, such that Pr is

bounded from above (in the sense of quadratic form) with a non-negative potential function γ. If
γ ∈ Lp(M), for some p > 1, then M is steady, Einstein, and trivial.

Proof. Given that for non-expanding solitons, Λ ≥ 0, it follows from the structural
equation that

Lr(γ) = nΛ ≥ 0.

From the hypothesis on Pr, there exists a positive constant C > 0 such that

0 ≤ nΛ = Lr(γ) ≤ C∆γ,

i.e., γ is a subharmonic non-negative function. Hence, from Lemma 2, we have γ constant,
and 0 = ∆γ ≥ nΛ ≥ 0. Therefore Λ = 0 and M is trivial. Finally, since M is trivial, we
obtain Ric = R

n g, so M is Einstein.

5. Nonexistence Results

The following lemma from Caminha et al. [31] will be used in this section:

Lemma 3. Let E be a smooth vector field on the n-dimensional, non-compact, complete, oriented
Riemannian manifold Mn, such that divME does not change the sign on M. If |E| ∈ L1(M),
then divME = 0.

By following the idea of Cunha et al.’s theory [22],

Theorem 7. If (Mn, g, γ, Λ, δ, ε) is a complete r-ANRYS immersed into a Riemannian manifold
N n+1

c of constant sectional curvature c, with bounded second fundamental form and potential
function γ : Mn → R such that |∇γ| ∈ L1(M), then, we have
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(i) if c ≤ 0, Λ > 0, and δ < −nε
2 , then Mn cannot be minimal,

(ii) if c < 0, Λ ≥ 0, and δ < −nε
2 , then Mn cannot be minimal,

(iii) if c = 0, Λ ≥ 0, δ < −nε
2 , and Mn is minimal, then Mn is steady and isometric to the

Euclidean space.

Proof. By using Equation (15), we can determine that the operator Lr is a divergent-type
operator if the ambient space has a constant sectional curvature. On the other hand, since
the Newton transformation Pr has a bounded norm, it follows from (14) that Mn has a
bounded second fundamental form. More specifically,

|Pr∇γ| ≤ |Pr||∇γ| ∈ L1(M). (22)

Since Mn is minimal, and using (i) and (ii), the scalar curvature of Mn thus fulfills R ≤
0(R < 0) according to equation (13) and the assumption that c ≤ 0 (c < 0). Thus,
contracting (10), we find that

Lr(γ) = nΛ − (2δ + nε)R > 0.

In both situations, the fact that follows contradicts Lemma 3. The first two claims are now
validated by this. Given that the ambient space has constant sectional curvature c = 0 and
that Mn is minimal [32] for claim (iii), Equation (13) becomes applicable.

R = −|A|2 ≤ 0. (23)

So, since Λ ≥ 0 and ρ < 1
n , we have

Lr(γ) = nΛ − (2δ + nε)R ≥ 0.

Now, using the fact that Lr is a divergent-type operator and |Pr∇γ| ∈ L1(M), again
from Lemma 3, we have Lrγ = 0 on Mn. So, we obtain the conclusion that R ≥ 0,
i.e., 2nΛ

(2δ + nε)
≥ 0, and, R = Λ = 0. This means that |A|2 = 0. Hence, the gradient r-ANRYS

is steady, totally geodesic, and flat.

Additionally, we may prove the following conclusion, which is valid when the ambient
space is an arbitrary Riemannian manifold.

Theorem 8. Let (Mn, g, γ, Λ, δ, ε) be a complete r-ANRYS immersed into a Riemannian manifold
N n+1 of sectional curvature κ, such that Pr is bounded from above (in the sense of quadratic form)
and its potential function γ : Mn → R is non-negative, and γ ∈ Lp(M), for some p > 1. Then,
we have

(i) if κ ≤ 0, Λ > 0, and δ < −nε
2 , then Mn cannot be minimal,

(ii) if κ < 0, Λ ≥ 0, and δ < −nε
2 , then Mn cannot be minimal,

(iii) if κ ≤ 0, Λ ≥ 0, δ < −nε
2 , and Mn is minimal, then Mn is steady, flat, and totally geodesic.

Proof. For proving (i), the sectional curvature of the ambient space and the Equation (12)
suggest that R ≤ 0 because we assume that Mn is minimal. Consequently, by reducing
Equation (10), we have

Lr(γ) = nΛ −
(

δ +
nε

2

)
R > 0. (24)

There exists a positive constant C > 0 such that, given that we are assuming that Pr is
bounded above,

C∆γ ≥ Lr(γ) > 0. (25)
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Lemma 2, in particular, leads to the conclusion that γ must be a constant, which is contra-
dictory. Therefore, using the same logic used to prove Theorem 7, we can easily derive
(ii) and (iii).

Example 3. Let us consider the standard immersion of Sn into Sn+1(c), which we know is totally
geodesic, for c = 0 and c = 1. In particular, Pr ≡ 0, for all 1 ≤ r ≤ n, and choosing Λ = 2δ−(n−1)ε

2(n−1) ,
we obtain that Equation (10) is fulfilled by the immersion. Moreover, for c = −1, it is well known
that the hyperbolic space Hn is the only totally geodesic hypersurface immersed into the Sn+1.

For the situation when U = ∇γ, we re-establish Theorem 1.5 of [33], providing
the prerequisites for a r-ANRYS to be totally umbilical because it has a bounded second
fundamental form. As a result, we establish the following theorem.

Theorem 9. Let (Mn, g, γ, Λ, δ, ε) be a complete r-ANRYS immersed into a Riemannian manifold
N n+1

(c) of constant sectional curvature c, with bounded second fundamental form and potential

function γ : Mn → R, such that |∇γ| ∈ L1(M). Then, we have

(i) if δ < −nε
2 and Λ ≥ n(δ + nε

2 )H2 − (n − 1)(δ + nε
2 )c, then, Mn is totally geodesic, such

as Λ = (δ + nε
2 )(n − 1)c, and scalar curvature R = n(n − 1)c,

(ii) if Mn is compact, δ < −nε
2 , and Λ ≥ n(δ + nε

2 )H2 − (n − 1)(δ + nε
2 )c, then, Mn is

isometric to a Euclidean sphere Sn,
(iii) if δ < −nε

2 and Λ ≥ (n + 1)(δ + nε
2 )H2 − (n − 1)(δ + nε

2 )c, then, Mn is totally um-
bilical and the scalar curvature R = n(n − 1)c − n(n + 1)κM is constant, where κM =[

Λ
(n+1)(δ+ nε

2 )
+ n−1

n+1 c
]

is the sectional curvature of Mn.

Proof. For proving (i), we can use Equation (13) and the structural equation to obtain

Lr(γ) = n
[
Λ + (n − 1)

(
δ +

nε

2

)
c − n

(
δ +

nε

2

)
H2

]
−

(
δ +

nε

2

)
|A|2. (26)

After that, we conclude from our analysis of Λ that Lr(γ) is a non-negative function on
Mn. Lemma 3 enables us to determine that Lr(γ) = 0. Therefore, we conclude from
Equation (26) that Mn is totally geodesic and Λ = (δ + nε

2 )(n − 1)c. Additionally, it is
evident from the structural equation that

R =
nΛ

δ + nε
2

= n(n − 1)c,

that conclusively proves (i).
Given that Mn is totally geodesic and therefore compact, Mn is isometric to the Eu-

clidean sphere (Sn), demonstrating that the ambient space must necessarily be a sphere (ii).
For assertion (iii), we start with Equation (26), which can be expressed in terms of the

traceless second basic form Φ

Lr(γ) = n[Λ + (n − 1)
(

δ +
nε

2

)
c

−(n + 1)
(

δ +
nε

2

)
H2]−

(
δ +

nε

2

)
|Φ|2. (27)

Consequently, Lr(γ) ≥ 0 is the result of our assumption that Λ and δ + n
ε2 are equal. Then,

by once more using Lemma 3, we obtain Lr(γ) = 0. This suggests that Mn is a totally
umbilical hypersurface since |Φ|2 = 0. In particular, the principal curvature ρ of Mn is
constant and Mn has a constant sectional curvature provided by κM = c + ρ2. This, along
with (27), implies

Λ = (n + 1)
(

δ +
nε

2

)
H2 − (n − 1)

(
δ +

nε

2

)
c (28)
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= (n + 1)
(

δ +
nε

2

)
(c + ρ2)− (n − 1)

(
δ +

nε

2

)
c

= (n + 1)
(

δ +
nε

2

)
κM − (n − 1)

(
δ +

nε

2

)
c.

Since Lr(γ) = 0, we obtain

R =
n(n − 1)Λ

δ + nε
2

= n(n − 1)c − n(n + 1)KM,

as desired.

Example 4. Let us consider the standard immersion of the n-sphere Sn into Euclidean space Rn+1

endowed with induced metric g. According to [22], by choosing the functions

Λα(x) = −g(x, α) + n − 1

and
γ(α)(x) = −Λα + c,

where α ∈ Rn+1, α ̸= 0, c ∈ R, and x = (x1, ..., xn+1) ∈ Sn is the position vector, we obtain that
(Sn, g,∇γα, Λα) satisfies (10).

On the other hand, it is well known that Sn+1 is totally umbilical with r-th mean curvature
Hr = 1 and second fundamental form A = I. In particular, for every 0 ≤ r ≤ (n − 1), the Newton
tensors are given by Pr = aI, where a = ∑r

j=0(−1)r−j(n
j). Hence, taking the smooth function

γ = a−1γα, we obtain that the immersion satisfies Equation (10).

We can now assert the following result of Theorem 9.

Corollary 1. Let (Mn, g, γ, Λ, δ, ε) be a compact r-ANRYS immersed into Rn+1, such that
δ < −nε

2 . If Λ ≥ (n + 1)(δ + nε
2 )H2, then Mn is isometric to Sn.

In Theorem 1.6 [33], it was proved that a nontrivial ARS Mn minimally immersed into
Sn+1 with R ≥ n(n − 2) and the norm of second fundamental form A must be isometric to
Sn in order for it to gain its maximum value [34]. We now establish a generalization of this
result by using Theorem 9.

Corollary 2. Let (Mn, g, γ, Λ, δ, ε) be a complete r-ANRYS minimally immersed into Sn+1, such
that δ < −nε

2 . Assume that R ≥ n(n − 2), the norm of the second fundamental form attains its
maximum, and Λ ≥ (n − 1)(δ + nε

2 ). Then, Mn is isometric to Sn.

Proof. Using the minimality of the immersion and that R ≥ n(n − 2), from (13) we
obtain that

|A|2 = n(n − 1)−R ≤ n.

By Simons’s formula [35], we obtain

∆|A|2 = |∇A|2 + (n − |A|2)|A|2 ≥ 0. (29)

Hopf’s strong maximum principle can be used to prove that ∇A = 0 on Mn. As a result,
Proposition 1 of [36] provides that Mn must be compact, and we infer the conclusions from
Theorem 9.

We can also arrive at the following theorem by applying Lemma 2.
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Theorem 10. Let (Mn, g, γ, Λ, δ, ε) be a complete r-ANRYS immersed into a Riemannian mani-
fold N n+1

(c) of constant sectional curvature c , such that Pr is bounded from above (in the sense of
quadratic form) with non-negative potential function γ ∈ Lp(M), for some p > 1. Then, we have
the following:

(i) if δ < −nε
2 and Λ ≥ n(δ + nε

2 )H2 − (n − 1)(δ + nε
2 )c, then, Mn is totally geodesic, with

Λ = (δ + nε
2 )(n − 1)c, and scalar curvature R = n(n − 1)c,

(ii) if δ < −nε
2 and Λ ≥ (n + 1)(δ + nε

2 )H2 − (n − 1)(δ + nε
2 )c, then, Mn is totally umbili-

cal. In particular, the scalar curvature R = n(n − 1)c − n(n + 1)κM is constant, where
κM = Λ

(n+1)(δ+ nε
2 )

+ n−1
n+1 c is the sectional curvature of Mn.

Proof. Notice that from Equation (26) and the assumption on Λ, we obtain

Lr(γ) = n
[
Λ + (n − 1)

(
δ +

nε

2

)
c − n

(
δ +

nε

2

)
H2

]
−

(
δ +

nε

2

)
|A|2 ≥ 0. (30)

Since we are assuming that Pr is bounded from above, there exists a positive constant
C > 0 such that

C∆γ ≥ Lr(γ) ≥ 0. (31)

It follows from Lemma 2 that γ must be a constant. In light of the fact that Lr(γ) = 0,
Equation (30) leads us to the conclusion that Mn is totally geodesic with

Λ = −(n − 1)
(

δ +
nε

2

)
c and R = n(n − 1)c,

which provides the proof for (i). In conclusion, assertion (ii) is easily proven by using the
same logic as in Theorem 9.

6. Conclusions

We introduced the concept of gradient type r-almost-Newton-Ricci-Yamabe solitons
immersed into a Riemannian manifold, which extends the notion of Ricci solitons and
Yamabe solitons to immersions to constant sectional curvature space. These new objects
were approached through nonexistence result and characterizations. We also proved some
triviality results for the compact case and, under some conditions, we obtained constant
scalar curvature.

r-almost Newton Ricci-Yamabe solitons submerged into a Riemannian manifold were
the framework of this research. We gained the triviality criteria for compact gradient
r-Almost Newton-Ricci-Yamabe solitons. Our computation concentrated on the hypersur-
face of a Riemannian manifold that has a bounded second fundamental form, and the
conditions for a r-Almost Newton-Ricci-Yamabe soliton on the hypersurface to be totally
umbilical were met. It was also shown that the steady r-Almost Newton-Ricci-Yamabe
soliton admits a complete r-almost Newton-Ricci-Yamabe soliton on the hypersurface of
Riemannian manifolds. Furthermore, we deduced Hopf’s strong maximum principle and a
Schur-type inequality in terms of the immersed r-Almost Newton-Ricci-Yamabe soliton in
Riemannian manifolds which is compact and totally geodesic. Additionally, our findings
contribute to understanding that the Euclidean sphere S4m is isometric to the immersed
r-Almost Newton-Ricci-Yamabe soliton in Riemannian manifolds.

Future Work: We can anticipate studying submanifolds in ambient space forms, such
as Lorentzain manifolds, almost normal contact manifolds, and paraconatct manifolds,
in the characterization of our primary conclusion. Furthermore, we can investigate the
setting of Riemann solitons [21] in different ambient spaces that have some kind of induced
connection, such as non-metric and semi-symmetric connections. Furthermore, r-almost-
Newton-Ricci-Yamabe solitons can be established. Golden Riemannian manifolds with
constant sectional curvature space will be a new and interesting problem.
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