Multiscale Change Point Detection for Univariate Time Series Data with Missing Value
Abstract
:1. Introduction
2. Missing Value Imputation
2.1. State Space Model and Kalman Filter
- i.
- The initial state vector
- ii.
- , and for all .
2.2. State Space Formulation for ARIMA Model
Estimating Missing Observations
3. TAVC Estimation
3.1. Multiscale Change Point Detection in the Mean
3.2. Robust Estimation of Multiscale TAVC
3.3. Consistency of the Scale-Dependent TAVC Estimator
- (i)
- The error process is assumed to be linear, i.e., where is a sequence of random variables and for some constants and for all .
- (ii)
- ∃ s.t. , where
- (iii)
- On the distribution of , we work under any one of the two following scenarios.
- a.
- For .
- b.
- For and , for all .
3.3.1. Setting the Maximum Time-Scale for TAVC Estimation
4. Applications of Robust TAVC Estimator
4.1. Multiscale MOSUM Procedure
4.2. WBS2 Procedure
5. Numerical Results
5.1. Parameter Tuning for CPD
5.2. Simulation Results
5.2.1. Set-Up
- (M1*)
- undergoes with change points at and , and the model follows seasonal ARIMA (0, 1, −0.4)(0, 1, −0.56)12.
- (M2*)
- undergoes with change points at and , and the model follows seasonal ARIMA (0.5, 1, −0.8)(0, 1, 0)12.
- (M3*)
- undergoes with change points at and , and the model follows seasonal ARIMA (0.9, 0, 0)(0, 1, 0)12.
- (M1)
- , and undergoes with change points at and .
- (M2)
- , where is an independent random variable following distribution, and and are same as in (M1).
- (M3)
- follows AR(1) process with , and undergoes with change points as in (M2) and .
- (M4)
- follows AR(2) process with , and and undergo as in (M2).
- (M5)
- follows MA(1) process and and undergo as in (M2).
- (M6)
- with follows ARCH(1) model, and and undergo as in (M5).
5.2.2. Results
5.3. Real Data Application: Fine Particulate Matter 2.5 (PM2.5)
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aminikhanghahi, S.; Cook, D.J. A survey of methods for time series change point detection. Knowl. Inf. Syst. 2017, 51, 339–367. [Google Scholar] [CrossRef] [PubMed]
- Truong, C.; Oudre, L.; Vayatis, N. Selective review of offline change point detection methods. Signal Process. 2020, 167, 107299. [Google Scholar] [CrossRef]
- Cho, H.; Kirch, C. Data segmentation algorithms: Univariate mean change and beyond. Econom. Stat. 2024, 30, 76–95. [Google Scholar] [CrossRef]
- Csorgo, M.; Horváth, L. Limit Theorems in Change-Point Analysis; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Hušková, M.; Slabỳ, A. Permutation tests for multiple changes. Kybernetika 2001, 37, 605–622. [Google Scholar]
- Yao, Y.C. Estimating the number of change-points via Schwarz’ criterion. Stat. Probab. Lett. 1988, 6, 181–189. [Google Scholar] [CrossRef]
- Lavielle, M.; Moulines, E. Least-squares estimation of an unknown number of shifts in a time series. J. Time Ser. Anal. 2000, 21, 33–59. [Google Scholar] [CrossRef]
- Chakar, S.; Lebarbier, E.; Lévy-Leduc, C.; Robin, S. A robust approach for estimating change-points in the mean of an AR(1) process. Bernoulli 2017, 23, 1408–1447. [Google Scholar] [CrossRef]
- Romano, G.; Rigaill, G.; Runge, V.; Fearnhead, P. Detecting abrupt changes in the presence of local fluctuations and autocorrelated noise. J. Am. Stat. Assoc. 2022, 117, 2147–2162. [Google Scholar] [CrossRef]
- Lu, Q.; Lund, R.; Lee, T.C.M. An MDL approach to the climate segmentation problem. Ann. Appl. Stat. 2010, 4, 299–319. [Google Scholar] [CrossRef]
- Gallagher, C.; Killick, R.; Lund, R.; Shi, X. Autocovariance Estimation in the Presence of Changepoints. J. Korean Stat. Soc. 2022, 51, 1021–1040. [Google Scholar] [CrossRef]
- Tecuapetla-Gómez, I.; Munk, A. Autocovariance estimation in regression with a discontinuous signal and m-dependent errors: A difference-based approach. Scand. J. Stat. 2017, 44, 346–368. [Google Scholar] [CrossRef]
- Eichinger, B.; Kirch, C. A MOSUM procedure for the estimation of multiple random change points. Bernoulli 2018, 24, 526–564. [Google Scholar] [CrossRef]
- Dette, H.; Eckle, T.; Vetter, M. Multiscale change point detection for dependent data. Scand. J. Stat. 2020, 47, 1243–1274. [Google Scholar] [CrossRef]
- Chan, K.W. Optimal difference-based variance estimators in time series: A general framework. Ann. Stat. 2022, 50, 1376–1400. [Google Scholar] [CrossRef]
- Robbins, M.; Gallagher, C.; Lund, R.; Aue, A. Mean shift testing in correlated data. J. Time Ser. Anal. 2011, 32, 498–511. [Google Scholar] [CrossRef]
- den Haan, W.J.; Levin, A.T. 12 A practitioner’s guide to robust covariance matrix estimation. In Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 1997; Volume 15, pp. 299–342. [Google Scholar]
- Chan, K.W.; Yau, C.Y. High-order corrected Estimator of Asymptotic Variance with Optimal Bandwidth. Scand. J. Stat. 2017, 44, 866–898. [Google Scholar] [CrossRef]
- Hušková, M.; Kirch, C. A note on studentized confidence intervals for the change-point. Comput. Stat. 2010, 25, 269–289. [Google Scholar] [CrossRef]
- Schmitt, P.; Mandel, J.; Guedj, M. A comparison of six methods for missing data imputation. J. Biom. Biostat. 2015, 6, 1. [Google Scholar]
- Somasundaram, R.; Nedunchezhian, R. Evaluation of three simple imputation methods for enhancing preprocessing of data with missing values. Int. J. Comput. Appl. 2011, 21, 14–19. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, J.; Willett, R. Change-point detection for high-dimensional time series with missing data. IEEE J. Sel. Top. Signal Process. 2012, 7, 12–27. [Google Scholar] [CrossRef]
- Follain, B.; Wang, T.; Samworth, R.J. High-dimensional changepoint estimation with heterogeneous missingness. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2021, 84, 1023–1055. [Google Scholar] [CrossRef]
- Londschien, M.; Kovács, S.; Bühlmann, P. Change-point detection for graphical models in the presence of missing values. J. Comput. Graph. Stat. 2021, 30, 768–779. [Google Scholar] [CrossRef]
- Li, S.; Hu, T.; Wang, L.; McMahan, C.S.; Tebbs, J.M. Regression analysis of group-tested current status data. Biometrika 2024, 111, 1047–1061. [Google Scholar] [CrossRef]
- Zhao, Y.; Landgrebe, E.; Shekhtman, E.; Udell, M. Online missing value imputation and change point detection with the gaussian copula. In Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 27 February–2 March 2022; Volume 36, pp. 9199–9207. [Google Scholar]
- McGonigle, E.T.; Cho, H. Robust multiscale estimation of time-average variance for time series segmentation. Comput. Stat. Data Anal. 2023, 179, 107648. [Google Scholar] [CrossRef]
- Cho, H.; Fryzlewicz, P. Multiple change point detection under serial dependence: Wild contrast maximisation and gappy Schwarz algorithm. J. Time Ser. Anal. 2024, 45, 479–494. [Google Scholar] [CrossRef]
- Ansley, C.F.; Kohn, R. On the estimation of ARIMA models with missing values. In Time Series Analysis of Irregularly Observed Data: Proceedings of a Symposium Held at Texas A & M University, College Station, TX, USA, 10–13 February 1983; Springer: Berlin/Heidelberg, Germany, 1984; pp. 9–37. [Google Scholar]
- Harvey, A.C. Forecasting, Structural Time Series Models and the Kalman Filter; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Tsay, R.S. Analysis of Financial Time Series, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Anderson, B.; Moore, J.B. Optimal Filtering; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1979. [Google Scholar]
- Durbin, J.; Koopman, S.J. Time Series Analysis by State Space Methods, 2nd ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Welch, G.; Bishop, G. An Introduction to the Kalman Filter; University of North Carolina: Chapel Hill, NC, USA, 1997. [Google Scholar]
- Wijesekara, L.; Liyanage, L. Mind the Large Gap: Novel Algorithm Using Seasonal Decomposition and Elastic Net Regression to Impute Large Intervals of Missing Data in Air Quality Data. Atmosphere 2023, 14, 355. [Google Scholar] [CrossRef]
- Wijesekara, W.M.L.K.N.; Liyanage, L. Comparison of Imputation Methods for Missing Values in Air Pollution Data: Case Study on Sydney Air Quality Index. In Advances in Information and Communication; Arai, K., Kapoor, S., Bhatia, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 257–269. [Google Scholar]
- Moritz, S.; Bartz-Beielstein, T. imputeTS: Time series missing value imputation in R. R J. 2017, 9, 207. [Google Scholar] [CrossRef]
- Fletcher, R. Practical Methods of Optimization, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 1987. [Google Scholar]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Harvey, A.C.; Pierse, R.G. Estimating missing observations in economic time series. J. Am. Stat. Assoc. 1984, 79, 125–131. [Google Scholar] [CrossRef]
- Catoni, O. Challenging the empirical mean and empirical variance: A deviation study. Ann. de l’IHP Probabilités et Stat. 2012, 48, 1148–1185. [Google Scholar] [CrossRef]
- Likai Chen, W.W.; Wu, W.B. Inference of Breakpoints in High-dimensional Time Series. J. Am. Stat. Assoc. 2022, 117, 1951–1963. [Google Scholar] [CrossRef]
- Wong, K.C.; Li, Z.; Tewari, A. Lasso guarantees for β-mixing heavy-tailed time series. Ann. Stat. 2020, 48, 1124–1142. [Google Scholar] [CrossRef]
- Chu, C.S.J.; Hornik, K.; Kaun, C.M. MOSUM tests for parameter constancy. Biometrika 1995, 82, 603–617. [Google Scholar] [CrossRef]
- Meier, A.; Kirch, C.; Cho, H. mosum: A package for moving sums in change-point analysis. J. Stat. Softw. 2021, 97, 1–42. [Google Scholar] [CrossRef]
- Cho, H.; Kirch, C. Two-stage data segmentation permitting multiscale change points, heavy tails and dependence. Ann. Inst. Stat. Math. 2022, 74, 653–684. [Google Scholar] [CrossRef]
- Messer, M.; Kirchner, M.; Schiemann, J.; Roeper, J.; Neininger, R.; Schneider, G. A multiple filter test for the detection of rate changes in renewal processes with varying variance. Ann. Appl. Stat. 2014, 8, 2027–2067. [Google Scholar] [CrossRef]
- Niu, Y.S.; Zhang, H. The screening and ranking algorithm to detect DNA copy number variations. Ann. Appl. Stat. 2012, 6, 1306. [Google Scholar] [CrossRef]
- Scott, A.J.; Knott, M. A cluster analysis method for grouping means in the analysis of variance. Biometrics 1974, 30, 507–512. [Google Scholar] [CrossRef]
- Olshen, A.B.; Venkatraman, E.S.; Lucito, R.; Wigler, M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 2004, 5, 557–572. [Google Scholar] [CrossRef]
- Fryzlewicz, P. Wild binary segmentation for multiple change-point detection. Ann. Stat. 2014, 42, 2243–2281. [Google Scholar] [CrossRef]
- Fryzlewicz, P. Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection. J. Korean Stat. Soc. 2020, 49, 1027–1070. [Google Scholar] [CrossRef]
- McGonigle, E.T.; Killick, R.; Nunes, M.A. Detecting changes in mean in the presence of time-varying autocovariance. Stat 2021, 10, e351. [Google Scholar] [CrossRef]
- Rockel, T. R Package, version 0.4.0.; missMethods: Methods for Missing Data; R Foundation for Statistical Computing: Vienna, Austira, 2022.
- Moritz, S.; Gatscha, S. R Package, version 3.3; imputeTS: Time Series Missing Value Imputation in R; R Foundation for Statistical Computing: Vienna, Austira, 2021.
- Moritz, S.; Sardá, A.; Bartz-Beielstein, T.; Zaefferer, M.; Stork, J. Comparison of different methods for univariate time series imputation in R. arXiv 2015, arXiv:1510.03924. [Google Scholar]
- Frick, K.; Munk, A.; Sieling, H. Multiscale change point inference. J. R. Stat. Society. Ser. B (Stat. Methodol.) 2014, 76, 495–580. [Google Scholar] [CrossRef]
- Van den Burg, G.J.; Williams, C.K. An evaluation of change point detection algorithms. arXiv 2020, arXiv:2003.06222. [Google Scholar]
- Arbeláez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour Detection and Hierarchical Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 898–916. [Google Scholar] [CrossRef]
- Liang, X.; Zou, T.; Guo, B.; Li, S.; Zhang, H.; Zhang, S.; Huang, H.; Chen, S.X. Assessing Beijing’s PM2.5 pollution: Severity, weather impact, APEC and winter heating. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20150257. [Google Scholar]
- Dai, Q.; Dai, T.; Hou, L.; Li, L.; Bi, X.; Zhang, Y.; Feng, Y. Quantifying the impacts of emissions and meteorology on the interannual variations of air pollutants in major Chinese cities from 2015 to 2021. Sci. China Earth Sci. 2023, 66, 1725–1737. [Google Scholar] [CrossRef]
- Chen, S. Beijing Multi-Site Air-Quality Data. UCI Machine Learning Repository 2019. Available online: https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+quality+data (accessed on 20 July 2023).
- Ministry of Environmental Protection. 2016 Report on the State of the Environment in China. 31 May 2017. Available online: https://english.mee.gov.cn/Resources/Reports/soe/ (accessed on 13 May 2024).
- Boubacar Maïnassara, Y.; Ilmi Amir, A. Portmanteau tests for periodic ARMA models with dependent errors. J. Time Ser. Anal. 2024, 45, 164–188. [Google Scholar] [CrossRef]
- Ghezal, A.; Alzeley, O. Probabilistic properties and estimation methods for periodic threshold autoregressive stochastic volatility. AIMS Math. 2024, 9, 11805–11832. [Google Scholar] [CrossRef]
- Cavicchioli, M. A matrix unified framework for deriving various impulse responses in Markov switching VAR: Evidence from oil and gas markets. J. Econ. Asymmetries 2024, 29, e00349. [Google Scholar] [CrossRef]
- Tong, H. Threshold Models in Non-Linear Time Series Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 21. [Google Scholar]
Model | Method | MAPE | Root MSE | ≤ | 0 | 1 | 2 | ≥3 | CM | |
---|---|---|---|---|---|---|---|---|---|---|
(M1*) | ARIMA.Kalman | 0.539 | 3.940 | 0.000 | 0.000 | 0.957 | 0.041 | 0.002 | 0.000 | 0.992 |
Linear interpolation | 0.581 | 3.808 | 0.000 | 0.000 | 0.938 | 0.057 | 0.005 | 0.000 | 0.989 | |
Spline interpolation | 0.603 | 4.075 | 0.000 | 0.000 | 0.914 | 0.078 | 0.006 | 0.002 | 0.986 | |
Stineman interpolation | 0.570 | 3.727 | 0.000 | 0.000 | 0.941 | 0.055 | 0.004 | 0.000 | 0.990 | |
Mean imputation | 6.051 | 36.109 | 0.040 | 0.209 | 0.355 | 0.244 | 0.108 | 0.044 | 0.571 | |
LOCF | 0.911 | 5.817 | 0.000 | 0.000 | 0.804 | 0.167 | 0.026 | 0.003 | 0.969 | |
SMA | 0.915 | 6.055 | 0.000 | 0.000 | 0.811 | 0.170 | 0.017 | 0.002 | 0.970 | |
LWMA | 0.800 | 5.368 | 0.000 | 0.000 | 0.861 | 0.126 | 0.011 | 0.002 | 0.978 | |
EWMA | 0.709 | 4.785 | 0.000 | 0.000 | 0.895 | 0.092 | 0.013 | 0.000 | 0.982 | |
(M2*) | ARIMA.Kalman | 160.729 | 4.430 | 0.000 | 0.000 | 0.933 | 0.060 | 0.007 | 0.000 | 0.987 |
Linear interpolation | 199.100 | 5.888 | 0.000 | 0.009 | 0.896 | 0.084 | 0.011 | 0.000 | 0.979 | |
Spline interpolation | 251.705 | 7.987 | 0.021 | 0.095 | 0.716 | 0.129 | 0.032 | 0.007 | 0.916 | |
Stineman interpolation | 206.664 | 6.025 | 0.000 | 0.010 | 0.896 | 0.083 | 0.011 | 0.000 | 0.978 | |
Mean imputation | 566.688 | 6.512 | 0.010 | 0.149 | 0.777 | 0.056 | 0.008 | 0.000 | 0.924 | |
LOCF | 235.137 | 6.560 | 0.005 | 0.023 | 0.844 | 0.113 | 0.013 | 0.002 | 0.967 | |
SMA | 161.952 | 5.055 | 0.000 | 0.002 | 0.919 | 0.073 | 0.006 | 0.000 | 0.985 | |
LWMA | 165.832 | 5.166 | 0.000 | 0.002 | 0.917 | 0.073 | 0.008 | 0.000 | 0.984 | |
EWMA | 173.513 | 5.369 | 0.000 | 0.003 | 0.909 | 0.081 | 0.007 | 0.000 | 0.983 | |
(M3*) | ARIMA.Kalman | 37.006 | 3.454 | 0.000 | 0.000 | 0.887 | 0.112 | 0.001 | 0.000 | 0.988 |
Linear interpolation | 16.695 | 3.966 | 0.000 | 0.000 | 0.892 | 0.107 | 0.001 | 0.000 | 0.989 | |
Spline interpolation | 19.823 | 4.279 | 0.000 | 0.000 | 0.895 | 0.103 | 0.002 | 0.000 | 0.989 | |
Stineman interpolation | 15.966 | 3.484 | 0.000 | 0.000 | 0.889 | 0.110 | 0.001 | 0.000 | 0.988 | |
Mean imputation | 1438.254 | 49.049 | 0.032 | 0.219 | 0.655 | 0.087 | 0.006 | 0.001 | 0.913 | |
LOCF | 25.292 | 4.805 | 0.000 | 0.000 | 0.901 | 0.098 | 0.001 | 0.000 | 0.989 | |
SMA | 18.608 | 4.317 | 0.000 | 0.000 | 0.890 | 0.108 | 0.002 | 0.000 | 0.988 | |
LWMA | 16.948 | 3.960 | 0.000 | 0.000 | 0.892 | 0.106 | 0.002 | 0.000 | 0.988 | |
EWMA | 15.783 | 3.713 | 0.000 | 0.000 | 0.889 | 0.109 | 0.002 | 0.000 | 0.988 |
Model | Method | Size | ≤ | 0 | 1 | ≥2 | CM | RMSE | |
---|---|---|---|---|---|---|---|---|---|
(M1) | MOSUM.TAVC[1] | 0.104 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.997 | 3.007 |
MOSUM.TAVC[2] | 0.066 | 0.000 | 0.000 | 0.999 | 0.001 | 0.000 | 0.997 | 3.007 | |
WBS2.TAVC[1] | 0.035 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.999 | 1.943 | |
WBS2.TAVC[2] | 0.035 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.999 | 1.894 | |
DeCAFS | 0.007 | 0.000 | 0.325 | 0.671 | 0.002 | 0.002 | 0.934 | 7.839 | |
DepSMUCE(0.05) | 0.003 | 0.000 | 0.000 | 0.893 | 0.107 | 0.000 | 0.821 | 4.820 | |
DepSMUCE(0.1) | 0.020 | 0.000 | 0.000 | 0.711 | 0.289 | 0.000 | 0.857 | 5.811 | |
WCM.gSa | 0.006 | 0.000 | 0.000 | 0.984 | 0.015 | 0.001 | 0.998 | 1.941 | |
(M2) | MOSUM.TAVC[1] | 0.116 | 0.000 | 0.000 | 0.998 | 0.002 | 0.000 | 0.995 | 3.373 |
MOSUM.TAVC[2] | 0.070 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.995 | 3.380 | |
WBS2.TAVC[1] | 0.049 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.997 | 2.402 | |
WBS2.TAVC[2] | 0.024 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.997 | 2.402 | |
DeCAFS | 0.010 | 0.000 | 0.087 | 0.092 | 0.150 | 0.671 | 0.847 | 21.360 | |
DepSMUCE(0.05) | 0.340 | 0.000 | 0.008 | 0.673 | 0.108 | 0.211 | 0.914 | 11.538 | |
DepSMUCE(0.1) | 0.476 | 0.000 | 0.010 | 0.640 | 0.129 | 0.221 | 0.943 | 12.202 | |
WCM.gSa | 0.010 | 0.000 | 0.000 | 0.991 | 0.006 | 0.003 | 0.998 | 2.429 | |
(M3) | MOSUM.TAVC[1] | 0.161 | 0.000 | 0.052 | 0.802 | 0.129 | 0.110 | 0.940 | 2.930 |
MOSUM.TAVC[2] | 0.084 | 0.001 | 0.078 | 0.812 | 0.106 | 0.003 | 0.935 | 3.023 | |
WBS2.TAVC[1] | 0.107 | 0.000 | 0.145 | 0.853 | 0.002 | 0.000 | 0.950 | 2.509 | |
WBS2.TAVC[2] | 0.062 | 0.001 | 0.175 | 0.824 | 0.000 | 0.000 | 0.938 | 2.785 | |
DeCAFS | 0.344 | 0.000 | 0.129 | 0.661 | 0.180 | 0.030 | 0.956 | 4.130 | |
DepSMUCE(0.05) | 1.000 | 0.000 | 0.001 | 0.749 | 0.237 | 0.013 | 0.926 | 2.547 | |
DepSMUCE(0.1) | 1.000 | 0.000 | 0.000 | 0.713 | 0.261 | 0.026 | 0.939 | 2.633 | |
WCM.gSa | 0.044 | 0.006 | 0.068 | 0.793 | 0.065 | 0.068 | 0.943 | 2.608 | |
(M4) | MOSUM.TAVC[1] | 0.122 | 0.000 | 0.040 | 0.940 | 0.015 | 0.002 | 0.974 | 2.491 |
MOSUM.TAVC[2] | 0.015 | 0.000 | 0.056 | 0.923 | 0.019 | 0.002 | 0.970 | 2.374 | |
WBS2.TAVC[1] | 0.055 | 0.000 | 0.079 | 0.921 | 0.000 | 0.000 | 0.973 | 2.126 | |
WBS2.TAVC[2] | 0.037 | 0.000 | 0.170 | 0.830 | 0.000 | 0.000 | 0.956 | 2.742 | |
DeCAFS | 0.370 | 0.000 | 0.325 | 0.671 | 0.002 | 0.002 | 0.883 | 6.776 | |
DepSMUCE(0.05) | 1.000 | 0.000 | 0.004 | 0.821 | 0.068 | 0.107 | 0.950 | 2.941 | |
DepSMUCE(0.1) | 1.000 | 0.000 | 0.001 | 0.778 | 0.043 | 0.178 | 0.964 | 6.776 | |
WCM.gSa | 0.032 | 0.000 | 0.000 | 0.984 | 0.015 | 0.001 | 0.967 | 2.042 | |
(M5) | MOSUM.TAVC[1] | 0.027 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.998 | 37.926 |
MOSUM.TAVC[2] | 0.016 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.998 | 37.926 | |
WBS2.TAVC[1] | 0.069 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.998 | 25.809 | |
WBS2.TAVC[2] | 0.033 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.998 | 25.809 | |
DeCAFS | 0.000 | 0.001 | 0.006 | 0.991 | 0.002 | 0.000 | 0.995 | 70.859 | |
DepSMUCE(0.05) | 0.058 | 0.000 | 0.005 | 0.527 | 0.016 | 0.452 | 0.871 | 492.296 | |
DepSMUCE(0.1) | 0.119 | 0.000 | 0.000 | 0.462 | 0.024 | 0.514 | 0.919 | 512.047 | |
WCM.gSa | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.998 | 24.396 | |
(M6) | MOSUM.TAVC[1] | 0.154 | 0.001 | 0.000 | 0.999 | 0.001 | 0.000 | 0.998 | 1.196 |
MOSUM.TAVC[2] | 0.107 | 0.000 | 0.000 | 0.995 | 0.004 | 0.001 | 0.998 | 1.198 | |
WBS2.TAVC[1] | 0.091 | 0.000 | 0.000 | 0.997 | 0.003 | 0.000 | 0.999 | 0.815 | |
WBS2.TAVC[2] | 0.042 | 0.000 | 0.000 | 0.999 | 0.001 | 0.000 | 0.999 | 0.815 | |
DeCAFS | 0.774 | 0.000 | 0.055 | 0.215 | 0.071 | 0.659 | 0.898 | 16.904 | |
DepSMUCE(0.05) | 0.417 | 0.000 | 0.010 | 0.701 | 0.193 | 0.096 | 0.880 | 7.476 | |
DepSMUCE(0.1) | 0.498 | 0.000 | 0.012 | 0.681 | 0.182 | 0.125 | 0.906 | 8.363 | |
WCM.gSa | 0.017 | 0.000 | 0.000 | 0.972 | 0.021 | 0.007 | 0.997 | 2.867 |
Method | Detected Change Point Location (Time) |
---|---|
MOSUM.TAVC | 2015-10-31, 2016-01-03, 2016-10-09 |
WBS2.TAVC | 2016-01-03 |
DeCAFS | 2014-02-12, 2014-02-24, 2014-02-26, 2014-10-07, 2014-10-11, 2015-11-26, 2015-11-30, |
2015-12-01, 2015-12-24, 2015-12-26, 2016-01-03, 2016-03-02, 2016-03-04, | |
2016-09-21, 2016-12-19, 2016-12-21, 2016-12-29, 2017-01-07, 2017-01-27, 2017-01-28 | |
DepSMUCE(0.05) | 2014-02-12, 2014-02-26, 2015-11-26, 2016-01-03, 2016-12-16, 2017-01-07 |
DepSMUCE(0.1) | 2014-02-12, 2014-02-26, 2015-05-01, 2015-11-26, 2015-12-01, 2016-01-03, 2016-12-16, 2017-01-07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haile, T.T.; Tian, F.; AlNemer, G.; Tian, B. Multiscale Change Point Detection for Univariate Time Series Data with Missing Value. Mathematics 2024, 12, 3189. https://doi.org/10.3390/math12203189
Haile TT, Tian F, AlNemer G, Tian B. Multiscale Change Point Detection for Univariate Time Series Data with Missing Value. Mathematics. 2024; 12(20):3189. https://doi.org/10.3390/math12203189
Chicago/Turabian StyleHaile, Tariku Tesfaye, Fenglin Tian, Ghada AlNemer, and Boping Tian. 2024. "Multiscale Change Point Detection for Univariate Time Series Data with Missing Value" Mathematics 12, no. 20: 3189. https://doi.org/10.3390/math12203189
APA StyleHaile, T. T., Tian, F., AlNemer, G., & Tian, B. (2024). Multiscale Change Point Detection for Univariate Time Series Data with Missing Value. Mathematics, 12(20), 3189. https://doi.org/10.3390/math12203189