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Abstract: This paper studies the autoregressive integrated moving average (ARIMA) state space
model combined with Kalman smoothing to impute missing values in a univariate time series before
detecting change points. We estimate a scale-dependent time-average variance constant that depends
on the length of the data section and is robust to mean shifts under serial dependence. The consistency
of the proposed estimator is shown under the assumption allowing heavy tailedness. Integrating the
proposed estimator with the moving sum and wild binary segmentation procedures to determine the
number and locations of change points is discussed. Furthermore, the performance of the proposed
methods is evaluated through extensive simulation studies and applied to the Beijing multi-site air
quality dataset to impute missing values and detect mean changes in the data.

Keywords: ARIMA; Kalman smoothing; time-average variance constant; robust estimation; moving
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1. Introduction

Change point detection (CPD) has been studied for several decades and remains an
active area of research. It has been employed in various fields such as financial analy-
sis, medical condition monitoring, climatology, and air quality. Recent developments in
machine learning have also contributed to the advancement of CPD methods, with appli-
cations in bioinformatics, speech recognition, image analysis, and monitoring of complex
systems have also been motivated. For an extensive review of change point detection, refer
to Aminikhanghahi and Cook [1] and Truong et al. [2]. The methods used for detecting
and localization of multiple mean shifts in univariate data that search for changes over
the data section at various scales are commonly referred to as the canonical change point
detection [3]. In such methods, it is typically necessary to estimate the level of noise to
distinguish the actual change from the random noise-induced fluctuations, especially when
there is a serial correlation.

A brief review of multiple CPDs in scenarios with serial correlation is provided.
One research direction aims to adopt techniques originally developed for independent
observations to be applicable in the analysis of time series data. This includes the use of
test statistics like the cumulative sum (CUSUM) [4] and moving sum (MOSUM) [5] tests.
The information criteria of Yao [6] was also adopted for dependent data [3,7] which was
initially designed for independent Gaussian random variables. Using specific time series
models, such as the autoregressive (AR) model, and concurrently estimating dependence
and change points are the topics of another area of study. In line with this, refs. [8–11]
utilized the AR model, which is adopted to handle the serial correlations to detect multiple
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change points in the mean of AR processes. Furthermore, another research line suggests
using long-run variance (LRV) estimators to gauge noise levels in CPD that are robust to
multiple mean shifts [12–15]. Estimation of the LRV has been a long-time difficult problem,
even without the presence of mean change [16]. The widely used LRV kernel estimator
tends to have a downward bias [17,18]. Moreover, sometimes it does not guarantee that
the corresponding estimate is always positive unless some underlying assumptions are
imposed on the estimators of the LRV [13]. Even some estimators of the LRV can take
negative values when the LRV approaches zero [19], which renders their application
unsuitable for statistical procedures. This task even becomes more difficult when there are
multiple change points and the data exhibit serial dependence.

Missing values are ubiquitous in real-world datasets. They introduce uncertainty
during data analysis, which can affect the statistical estimator’s properties and reduce
efficiency, leading to incorrect conclusions [20,21]. Usually, the deletion of missing observa-
tions results in a valuable loss of important information, which biases statistical estimation
and inference. The concept of change point analysis with missing values has also been
addressed in the literature [22–24]. Another more application-oriented work includes
Yang et al. [25], among others, who considered the use of threshold-based regression mod-
els, which examine the change based on covariate relationships. The other is Zhao et al. [26]
who applied an online missing value imputation algorithm for mixed-type (continuous and
categorical) data and detected the change points. The aforementioned literature considers
high dimensional data or non-time series data, which depends on the inter-attribute corre-
lation between variables or attributes. Furthermore, most existing univariate change point
detection methods, designed for complete datasets, often delete missing values [27,28].
Such an approach may result in the incorrect identification of genuine change point loca-
tions, especially when these points coincide with the time points where missing data occur.
Given the necessity of replacing missing values with reasonable estimates before applying
CPD methods, it is crucial to develop an effective imputation technique to ensure the
accurate identification of change points. However, there is a significant gap in addressing
change point detection for univariate time series in the presence of missing values.

Therefore, in this paper, we propose the ARIMA state space model combined with
Kalman smoothing to impute missing values in univariate time series. This approach
leverages the ARIMA model and Kalman smoothing capability to handle time series data
with seasonality and trends, making the imputation more accurate and reliable. Moreover,
to tackle the challenges associated with using LRV in change point detection, we apply a
scale-dependent time-average variance constant (TAVC, Mcgonigle and Cho [27]) estimator,
which is resilient to varying mean and serial correlation. For a stationary process {εt}T

t=1,
the scale-dependent TAVC defined as

σ2
D = Var

(
D− 1

2

D

∑
t=1

εt

)
, (1)

which depends on scale D, and is different from the earlier LRV estimators. Combining
a scale-dependent TAVC estimator with multiscale CPD methods, such as the MOSUM
procedure and the wild binary segmentation (WBS) algorithm, effectively addresses the
problem of detecting multiple mean shifts in the series. The performance of our imputation
method and robust TAVC estimator is rigorously evaluated through extensive simulations
and subsequently applied to the Beijing air quality dataset. Thus, this integrated approach
is designed to overcome the challenges posed by missing values and improve the precision
of change point detection in real-world time series data. The contributions of this paper are
summarized as follows. Firstly, we apply the ARIMA state-space model combined with
Kalman smoothing to impute missing values in univariate time series data exhibiting mean
shifts. Secondly, we derive the TAVC estimator, and integrate it into multiscale change point
detection methods. This approach estimates and locates change points for the imputed
time series data, demonstrating robust performance in handling missing values.
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The remainder of this paper is structured as follows: Section 2 discusses the imputation
of missing values using the ARIMA state space model and Kalman smoothing. Section 3
introduces the concept of TAVC, its robust estimator, and demonstrates its consistency.
In Section 4, the application of the TAVC estimator in conjunction with multiscale CPD
methods such as MOSUM and WBS has been given in detail. Section 5 evaluates the
performance of the proposed approaches and apply to Beijing air quality. Finally, Section 6
summarizes the main findings of the paper.

2. Missing Value Imputation

In this section, we briefly discuss the general framework of the ARIMA state space
model and the implementation of Kalman smoothing to estimate missing values. The state-
space model offers a versatile method for analyzing time series data due to the recur-
sive behavior of the model, which is particularly useful for computational simplicity of
maximum-likelihood estimation and handling of missing values [29–31]. The Kalman filter-
ing method, as part of a state-space model, dynamically adjusts to new data and handles
non-stationary series by recursively estimating missing values as new observations be-
come available [32–34]. Moreover, the ARIMA state space and Kalman smoothing method
perform exceptionally well for time series data that exhibit strong seasonality with high
percentages of missing and large gap sizes under the MAR and MCAR mechanisms [35–37].
The state space model is adaptable for various types of time series data; however, in this
paper, we consider the linear time series which follows Gaussian distribution (see, [30,33]).

2.1. State Space Model and Kalman Filter

The state space model comprises a measurement equation that establishes a relation-
ship between the observed data (yt) and an m-dimensional state vector α, and a transition
equation that describes how the state vector changes over time. For a linear Gaussian state
space model, the measurement (observation) equation takes the form

yt = Ztαt + εt, t = 1, . . . , T, (2)

where yt is N × 1 vector of observed value, Zt is N × m matrix, and εt is N × 1 vector
of disturbances, which is normally independently distributed (NID) with mean zero and
N × N covariance matrix Ht. The elements of the state vector αt are unobservable and its
transition equation is the first-order Markov process

αt= Ttαt−1+Rtηt, t = 1, . . . , T, (3)

where Tt is m×m transition matrix, Rt is m× r matrix, and ηt is r × 1 vector of disturbances
which is NID(0, Qt).

Assumption 1.

i. The initial state vector α0 ∼ N(a0, P0).
ii. E(εtη

′
s) = 0, E(εtα

′
0) = 0 and E(ηtα

′
0) = 0 for all s, t = 1, . . . , T.

The matrices Zt, Ht, Tt, Rt and Qt are called the system matrices and contain non-
random elements.

Once the model is translated to a state space model, we apply the Kalman filter to
estimate state vector parameters. The Kalman filter is a recursive algorithm utilized for
the computation of the optimal estimator of the state vector at time t, taking into account
all the available information, including the observations yt [30,32,33]. For the state space
model (2) and (3) assume that the initial state α0 is N(a0, P0), where a0 and P0 are known.
Let Yt−1 denote the set of past observations y1, . . . , yt−1 and at−1 be the optimal estimators
of αt−1 based on Yt−1 with the corresponding mean square error (MSE) matrix, Pt−1.
Then, the Kalman filter consists of two sets of equations, namely prediction equations and
updating equations. Given at−1 and Pt−1 at time t − 1, the optimal estimator of αt and its
corresponding MSE matrix are
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at|t−1 = E(αt|Yt−1) = Ttat−1, (4)

Pt|t−1 = E[(αt − at|t−1)(αt − at|t−1)
′|Yt−1] = TtPt−1T′

t + RtQtR′
t. (5)

Equations (4) and (5) are known as prediction equations. Additionally, the optimal estimator
of yt given the information at t − 1 is ŷt|t−1 = E(yt|Yt−1) = Ztat|t−1. The prediction error
is computed as vt = yt − ŷt|t−1 = Zt(αt − at|t−1) + εt. Usually vt is known as a one-
step ahead prediction error and its MSE matrix becomes Var(vt) = E(vtv′

t) = Ft =
ZtPt|t−1Z′

t + Ht. Therefore, the above components are required to derive the prediction
error decomposition of the log-likelihood function.

When additional new observations yt become available, the knowledge about the
optimal estimator of αt, at|t−1 can be updated. The updating equations for αt given all the
available information Yt are derived following from Durbin [33]. The optimal predictor
at|t−1 and its MSE matrix are updated using

at = E(αt|Yt) = at|t−1 + Pt|t−1Z′
tF

−1
t vt, (6)

Pt = Pt|t−1 − Pt|t−1Z′
tF

−1
t ZtPt|t−1, (7)

where Ft = ZtPt|t−1Z′
t + Ht and it is assumed to be non-singular. Thus, taken together ((4)

and (5)) and ((6) and (7)) make up the Kalman filter. The initial values for the Kalman filter
may be specified as a0 and P0 or a1|0 and P1|0. If the process is stationary and the initial
state α0 ∼ N(a0, P0), the Kalman filter can be initialized as a0 = 0, P0 or a1|0 = 0, P1|0 = P0.
For non-stationary transition equations, the initial distribution of α0 is specified in terms of
a diffuse or non-informative prior [30].

Furthermore, the Kalman filter enables a likelihood to be computed via prediction
error decomposition which opens the way for the estimation of unknown parameters
of the model. The distinguishing feature of a time series model is that the observations
are dependent. Thus, the likelihood function is defined using the conditional probability
density function as

L(y|ψ) =
T

∏
t=1

p(yt|Yt−1), (8)

where p(yt|Yt−1) denotes the distribution of yt which is conditional on the observations
at time t − 1, that is Yt−1 = {yt−1, yt−2, . . . , y1} [30]. For the measurement equation yt =
Ztat|t−1 + Zt(αt − at|t−1) + εt, its conditional distribution is normal with mean

E(yt|Yt−1) = ŷt|t−1 = Ztat|t−1

and covariance matrix, Ft = ZtPt|t−1Z′
t + Ht, t = 1, 2, . . . , T. Therefore, for the Gaussian

model, the log-likelihood function of (8) can be given as

log L = −NT
2

log 2π − 1
2

T

∑
t=1

log |Ft| −
1
2

T

∑ v′
t

t=1
F−1

t vt, (9)

where vt = yt − ŷt|t−1, t = 1, . . . , T. Since the conditional mean, ŷt|t−1 of yt|t−1 is also the
minimum mean square estimator (MMSE) of yt, the N × 1 vector vt can be interpreted as a
vector of prediction error and (9) is known as prediction error decomposition. To maximize
the likelihood function with respect to the unknown parameters ψ, commonly a Newton–
Raphson method will be employed. This method iteratively calculates the roots of the
function until the parameter values reach a stable state (see, [33,38]).

2.2. State Space Formulation for ARIMA Model

This section presents the translation of the ARIMA model to state space represen-
tation and the estimation of the missing value using fixed-point smoothing. Let ∆yt =
yt − yt−1, ∆syt = yt − yt−s, where ∆ and ∆s are non-seasonal and seasonal difference
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operators, respectively. As suggested by Box et al. [39], differencing is continued until
trend and seasonal effects have been eliminated, giving a new variable y∗t = ∆d∆D

s yt for d,
D = 0, 1, . . ., which can be modeled as a stationary ARMA(p, q) model.

A non-stationary ARIMA(p, d, q) model can be defined as

ϕp(B)∆dyt = θq(B)ηt, (10)

where B is the back-shift operator, ϕp(B) = 1 −
p

∑ ϕi
i=1

Bi is an autoregressive operator,

θq(B) = 1 −
q

∑ θi
i=1

Bi is an arbitrary moving average operator, ∆ = 1 − B is the backward

difference operator and ηt ∼ NID(0, σ2). For ease of simplicity, write ∆d = (1 − B)d =
1 − δ1B − δ2B2 − · · · − δdBd. Moreover, the multiplicative seasonal ARIMA(p, d, q)×(P, D,
Q)s is given by

ϕp(B)ΦP(Bs)δd(B)∆D(Bs)yt = θq(B)ΘQ(Bs)ηt

where ΦP(Bs) = 1 − Φ1Bs − · · · − ΦPBPs and ΘQ(Bs) = 1 − Θ1Bs − · · · − ΘQBQs are
seasonal (stationary) AR and MA operators, respectively; δd(B) = (1 − B)d is non-seasonal
differencing and ∆D(Bs) = (1 − Bs)D is seasonal differencing.

For the ARIMA model defined by (10), its state space formulation is presented in
accordance with Ansley and Kohn [29]. Let

wt = ∆dyt. (11)

Following (10)
ϕp(B)wt = θq(B)ηt. (12)

Hence, wt is a stationary ARMA process; now it is able to be written in the state space form
as wt = z′tαt where z′t = (1, 0, . . . , 0) and αt is (d + m)× 1 state vector with ith element αi, t
defined as

αi, t = yt−i+1 for i = 1, . . . , d,

αi+d,t =
m

∑
k=m−i+1

(ϕkwt+i−1−k − θk−1ηt+i−k), i = 1, . . . , m (13)

and m = max(p, q + 1). In (13), θ0 = −1, ϕi = 0 for i > p and θi = 0 for i > q. The state
transition equation for the state vector αt will be given as

αt = Tαt−1+Rηt, (14)

where

T =

[
Td T⋆

0 P

]
, (15)

Td =


δ1 δ2 . . . δd
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 . . . 1 0

, T⋆ =


ϕ1 1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

,

∆d = (1 − B)d = 1 − δ1B − δ2B2 − . . . − δdBd,

P =


ϕ1 1 0 . . . 0
ϕ2 0 1 . . . 0
...

...
...

. . .
...

ϕm−1 0 0 . . . 1
ϕm 0 0 . . . 0
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and R is (m+ d)× 1 dimensional vector which is defined as R = (1, 0, . . . , 1,−θ1, . . . ,−θm−1)
′

and ηt ∼ NID(0, σ2). The matrix P in (15) is similar to the transition matrix for stationary
processes. The first d elements of (14) form the state transition equation for the difference
(11) while the matrix T⋆ provides the link between the stationary and non-stationary parts
of the model (11) and (12).

The likelihood function for the ARIMA model with missing observations can be
formulated in two different ways: level formulation and difference formulation. Level
formulation provides greater flexibility and is recommended for missing observations
occurring not at regular pattern [29,40], which is applied in this paper. Let B be the lag
operator and −δj be the coefficient of Bj in the expansion of ∆d∆D(Bs) = (1 − B)d(1 −
Bs)D. For the stationary ARMA(p, q) process wt, let ᾱt be the state vector of the pro-
cess in state space form and define the augmented state vector αt = (ᾱ′t y∗′t−1)

′, where
y∗t−1 = (yt−1, . . . , yt−d−sD). The transition equation for the augmented state vector is

αt =

[
ᾱt

y∗t−1

]
T | 0′

− − − − | − − −
1 0 . . . 0 | δ1 · · · δk

0′ | Ik−1 0

[ᾱt−1
y∗t−2

]
+

[
R
0

]
ηt, t = 1, . . . , T,

where T and R are matrices associated with state vector ᾱt, Ik−1 is k− 1 dimensional identity
matrix and k = d + sD. If yt is observed for all t = 1, . . . , T, the measurement equation
will be yt = (1, 0′m−1, δ1, . . . , δk) αt, t = 1, . . . , T, where 0m−1 is an (m − 1) vector of zeros.
The initial value for the Kalman filter can be taken at t = k with ak+1|k = (0′, y∗′k+1)

′ and the
covariance matrix

Pk+1|k =

[
P̄1|0 0

0 0

]
,

where P̄1|0 = σ−2E(ᾱtᾱ
′
t). The likelihood function generated by a Kalman filter that is

applied to the differenced observations ∆d∆D
s yt is the same as the likelihood function that

is obtained by using the Kalman filter for the time series [40].

Estimating Missing Observations

Missing observations can be estimated by utilizing fixed-point smoothing to the level
form of the ARIMA model. It proceeds by applying the Kalman filter and augmenting
the state vector each time a missing observation is encountered [30]. After processing all
observations, the augmented state vector provides the MMSE estimates of the missing data,
with the corresponding MSEs derived from the augmented covariance matrix. Let y†

t be
missing at time t = τ. The state vector is augmented by y†

τ and is given as y†
τ = z′ατ . Then

the fixed-point smoothing recursions, which is modified from Anderson and Moore [32]
leads to

ȳτ|t = ȳτ|t−1 + p′
τ|t−1zt f−1

t vt, t = τ, . . . , T, (16)

pτ|t = T(I − xtz
′
t)pτ|t−1, t = τ, . . . , T, (17)

where xt = Pt|t−1zt f−1
t and the initial values are ȳτ|τ−1 = z′aτ|τ−1 and pτ|τ−1 = Pτ|τ−1z.

The values of vt, ft and xt are all generated by the Kalman filter for the original state space
model and the vector zt is being used to define the measurement equation. Whenever a
missing observation is encountered at time t, then (16) and (17) lessen to ȳτ|t = ȳτ|t−1 and
pτ|t = Tpτ|t−1, respectively. Moreover, the MSE of ȳτ|T is given by σ2 fτ|T , where fτ|T is
obtained from the recursion

fτ|t = fτ|t−1 − p′
τ|t−1zt f−1

t z′tpτ|t−1, t = τ, . . . , T

with fτ|τ−1 = z′Pτ|τ−1z. The fixed-point smoothing algorithm, which is set up in this way,
will result in an extremely efficient estimator for the missing value.
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3. TAVC Estimation
3.1. Multiscale Change Point Detection in the Mean

Change point detectability depends on the interrelationship between the magnitude
of changes and their distance to neighboring change points. Large changes are usually de-
tectable even when close to others, but smaller changes need more distance to be identified.
When data shows repeated large fluctuations and minor changes in data over prolonged
stable periods, it demands a multiscale method to accurately detect all change points [3].

The change point model, which allows for multiple changes in the mean, is defined by

Yt = ft + εt = f0 +
p

∑
i=1

µi · I(t ≥ τi + 1) + εt, t = 1, . . . , T, (18)

where ft is piecewise deterministic signal with p change points at locations
τi, i = 1, . . . , p, with τ0 = 0 and τp+1 = T. µi is mean at τi. The error term {εt}T

t=1
is assumed to be a (weakly) stationary time series satisfying E(εt) = 0 with finite LRV

σ2 = limN−→∞ Var
(

N− 1
2

N
∑

t=1
εt

)
∈ (0, ∞). These errors can be serially correlated and

heavy-tailed. The objective is to detect changes in the mean and accurately estimate both
the number and locations of change points.

To address this problem, we use a local testing method for data segmentation. This
method applies a local test for a single change point adopted to detect and estimate multiple
change points [3]. The procedure involves evaluating a test statistic of the form σ̂−1

s,e |Ts,k,e|
to a threshold, say Γ. A change point detector Ts,k,e(Y) is computed on the segment {Yt,
s < t ≤ e} as

Ts,k,e(Y) =

√
(k − s)(e − k)

e − s
(
Ys:k − Yk:e

)
(19)

at some location 0 ≤ s < k < e ≤ T, which is determined in a method-specific way, usually

it can either be fixed, random or data-dependent and Ya:b = 1
b−a

b
∑

t=a+1
Yt. Here, σ2

s,e denotes

variability in {Yt}e
t=s+1, σ̂2

s,e is its estimator. If the error term {εt}T
t=1 is assumed to be

stationarity, then the appropriate choice of the variance will be σ2
s,e = σ2

e−s is the TAVC,
which depends on the scale D = e − s is given in (1). As the result, if σ̂−1

s,e |Ts,k,e| > Γ, then
it indicates that the data segment {Yt}e

t=s+1 contains a change point within the interval;
otherwise, it signals no such change point has been detected in the given data section [3].

However, in the presence of serial correlation, distinguishing a true mean shift from
random fluctuations becomes challenging. Consequently, it is imperative to have a robust
variance estimator which effectively handles the variability in the data section under
consideration. For such a multiscale procedure, using an estimator of the global LRV
instead of σ2

s,e, regardless of the interval length used to compute the detector statistic,
can lead to spurious change point estimations. Therefore, a variance that systematically
captures the variability in the data section under serial correlation for standardization of
multiscale change point detectors will be σ2

D estimator [27].

3.2. Robust Estimation of Multiscale TAVC

Here, the derivation σ2
D estimator is presented. For notational convenience, assume

that the data length D is an even number. To account for temporal dependency, group the
dataset into blocks of the same size G = D

2 . Then, for some starting point h ∈ (0, . . . , G − 1)

with number of blocks N(h) = ⌊ (T−h−G)
G ⌋, define

Ȳj,h =
1
G

(j+1)G+h

∑
t=jG+h+1

Yt, and πj,h =
G(Ȳj,h − Ȳj−1,h)

2

2
for j = 1, . . . , N(h).
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Similarly, define

ε̄ j,h =
1
G

(j+1)G+h

∑
t=jG+h+1

εt and π̃j,h =
G(ε̄ j,h − ε̄ j−1,h)

2

2
.

Then, the mean of π̃j,h expressed as

̂̃σ2
D =

1
N(h)

N(h)

∑
j=1

π̃j,h (20)

considers time dependency in local data sections of length D = 2G. In addition, we have

E(̂̃σ2
D)− σ2

D = o(1) for D → ∞ (see Theorem 1 below). The natural estimate of TAVC is

N(h)−1
N(h)
∑

j=1
πj,h but it is usually contaminated by jumps or the mean shifts. Furthermore, its

counterpart ̂̃σ2
D is indicative of the level of variability but being inaccessible (as it is defined

with ε̄ j,h in place of Ȳj,h).
Thus, the M-estimation technique discussed in [41] is adopted to achieve the required

estimator as detailed in [42]. Consider a non-decreasing influence function ρ : R → R
such that

ρ(x) =


− log(2), x ≤ −1,
log(1 + x + x2

2 ), −1 ≤ x ≤ 0,
− log(1 − x + x2

2 ), 0 ≤ x ≤ 1,
log(2), x ≥ 1.

(21)

Then, the estimator of TAVC at D and h, (σ̂2
D,h), is defined as the solution of the M−

estimation equation

JD,h(θ) =
1

N(h)

N(h)

∑
j=1

ρν(πj,h − θ) = 0, (22)

where ρν(x) = ν−1ρ(νx) for some ν > 0. The condition for ν will be set later under
Section 5.1. Equation (22) may have more than one solution; in such a case, any of them
can be used to define σ̂2

D,h.

3.3. Consistency of the Scale-Dependent TAVC Estimator

Assumption 2.

(i) The error process is assumed to be linear, i.e., εt =
∞
∑

k=0
wkηt−k where {ηt}t∈Z is a sequence of

iid random variables and |wk| ≤ Ξ(k + 1)−β for some constants β > 2.5 and Ξ > 0 for all
k ≥ 0.

(ii) ∃ σ > 0 s.t. σ2 =
(
∑k≥0 wk

)2
< ∞, where σ2 ≥ cσ.

(iii) On the distribution of {ηt}t∈Z, we work under any one of the two following scenarios.

a. For q > 4, ∥η1∥q = (E(|η1|q))
1
q < ∞.

b. For Rη > 0 and ω > 0, ∥η1∥q ≤ Rηqω for all q ≥ 1.

The assumptions stated above have the following underlying basic reasons. Linearity
of the error process {εt}T

t=1 assumed in Assumption 2 (i) enables controlling of the func-

tional dependence in
{

πj,h

}N(h)

j=1
. This allows the temporal dependence of the error process

to decay at an algebraic rate. Whereas Assumption 2 (ii) declared to secure positivity of the
LRV in such a way that it is well-defined while computing change point detector statistics.
Assumption 2 (iii) (a) characterizes the heavy-tailedness of the error process {εt}T

t=1. While
Assumption 2 (iii) (b) claims a stronger condition that requires sub-Weibull tail behavior on
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{ηt}t∈Z. This includes sub-Gaussian distribution for ω = 1
2 such that (E(|η1|q))

1
q ≤ Rηq

1
2

and sub-exponential distribution for ω = 1, where (E(|η1|q))
1
q ≤ Rηq which are defined

based on the growth behavior of moment [43].

Definition 1. Let {an} and {bn} be positive sequences, then an ≍ bn if there exists κ1, κ2 > 0
such that κ1 ≤ an/bn ≤ κ2 as n → ∞; an ≪ bn or an = o(bn) means an/bn → 0; an ≲ bn or
an = O(bn) if there exists a constant C > 0 such that an/bn ≤ C as n → ∞.

Theorem 1. Under Assumption 2. Let TAVC be defined as

σ̃2
D = Var

(
1√
D

(
G

∑
t=1

εt −
D

∑
t=G+1

εt

))
for D = 2G.

Then provided that ν ≍
√

pG
T , under Assumption 2 (iii) (a) the estimator σ̂2

D,h satisfies

∣∣∣σ̂2
D,h − σ̃2

D

∣∣∣ = OP

√ pD
T

+ max


(

D
T

) q−2
q+2

,

√
D log T

T


 (23)

and under Assumption 2 (iii) (b),

∣∣∣σ̂2
D,h − σ̃2

D

∣∣∣ = OP

√ pD
T

+

√
D log4ω+3 T

T

 (24)

for any fixed h ∈ {0, . . . , G − 1}. In addition, σ̃2
D satisfies∣∣∣σ̃2

D − σ2
D

∣∣∣ = O(D−1) (25)

Proof. The concept of the proof is similar to the one discussed in [27].

Theorem 1 illustrates that the proposed robust estimator consistently approximates
the TAVC at scale D. The estimation error is decomposed into two components: the error
from approximating σ2

D by σ̃2
D in (25), and the error in estimating σ̃2

D by σ̂2
D,h. The second

error accounts explicitly for the influence of multiple mean shifts on the estimator through

the term
√

pD
T in (23) and (24), while the remaining terms capture the effect of the error

distribution. Consequently, Theorem 1 establishes that∣∣∣σ̃2
D − σ2

∣∣∣ = O
(

1
D

)
(26)

therefore, as D increases, the scale-D TAVC approximates the global LRV as expected.

3.3.1. Setting the Maximum Time-Scale for TAVC Estimation

In this section, we briefly discuss the maximum time scale or length required for D
in the data section. As shown in (25), the error resulting from approximating σ2

D with
σ̃2

D diminishes as D increases. Conversely, the error in estimating σ̃2
D with σ̂2

D,h increases
with D, as given in (23) and (24). This increase is attributed to the growing effect of mean
shifts with an increase in D, coupled with the decrease in the number of available blocks.
To balance these two errors, Mcgonigle and Cho [27] proposed setting a maximum time-
scale, denoted as M, for use with a multiscale CPD algorithm. Particularly when the change
point detector T s, k, e has e − s ≤ M, we scale the detector using the estimator of σ2

e−s,
the TAVC at scale D = e − s. However, if e − s > M, it is recommended to scale the
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detector using the estimator of σ2
M, the TAVC at the maximum time-scale M, ensuring that∣∣σ2

e−s − σ2
M
∣∣ = O(M−1).

4. Applications of Robust TAVC Estimator

For multiple CPD, the suggested TAVC estimator can be used with the MOSUM
method and WBS algorithms that scan the data using detector statistics of the type (19).

4.1. Multiscale MOSUM Procedure

The MOSUM procedure is utilized for simultaneously detecting and locating points
where the various changes have occurred [5,13,44]. The MOSUM statistic used for detecting
a change in mean at time point k for a given bandwidth G is defined as

TG = max
G≤k≤T−G

|TG(k)|
σ̂k

(27)

with MOSUM detector

TG(k) = TG(k; Y) =
1√
2G

(
k+G

∑
t=k+1

Yt −
k

∑
t=k−G+1

Yt

)
, k = G, . . . , T − G

and σ̂2
k is the estimator of error variance.

As the exact probability distribution of the MOSUM statistic is not well known, we
use an asymptotic result to develop a MOSUM-based test for changes in the mean [13,45].
By utilizing the asymptotic result of a MOSUM-based test with an asymptotic significance
level α ∈ (0, 1), we reject the null hypothesis H0 : p = 0 in favor of the alternative H1 : p ≥ 1
when the MOSUM statistic TG, as indicated in (27), surpasses the asymptotic critical value
given by

ΓT(G; α) =
bG,T + cα

aG,T
with cα = − log log

1√
1 − α

.

Here, aG,T and bG,T are properly chosen scaling and shifting factors that depend on the data
length T and the bandwidth G (see [13]). In practical situations, the performance of the
methodology is significantly determined by choice of the bandwidth G. Employing of mono-
bandwidth MOSUM procedure yields consistent estimators with optimal localization rate
only under the assumption that min0≤i≤p(τi+1 − τi) > 2G, min1≤i≤p µ2

i G/ log(T/G) →
∞ as T → ∞ (see, Theorem 3.2 of [13] and Corollary D1 of [46]). When the change points are
heterogeneous, i.e., if the data sequence contains both large changes over short intervals and
small changes over a long stretches, the mono-bandwidth MOSUM procedure fails to achieve
consistency in the estimation of change points. One way to address this issue is by utilizing
a multiscale MOSUM procedure that incorporates bottom-up merging [47] and localized
pruning [48] techniques to identify a set of candidate change point estimators. A multiscale
MOSUM procedure with bottom-up merging has low computational complexity [45] hence,
we will employ this procedure in our study.

Let G = {Gι, 1 ≤ ι ≤ H : G1 < . . . < GH} represent a range of bandwidths, and let
χ(G) indicate the set of estimators identified with a particular bandwidth G ∈ G. Next,
check if there is a previously accepted change-point k̂1 in the final set of estimators χ
obtained using the finest bandwidth G1, which is in proximity to the current candidate
k̂2 detected with bandwidth G2. Proceed to accept the change point k̂2 ∈ χ(G2) only if∣∣∣k̂2 − k̂1

∣∣∣ > ηG2; otherwise, reject k̂2 as it has already been identified by k̂1. Repeat this
process sequentially for ι = 3, . . . , H. The recommended value of η is 0.4 to have a good
estimate of the change point and its localization [45].

Then, we apply the robust TAVC estimator to the multiscale MOSUM procedure with
bottom-up merging to standardize the MOSUM detector. For each Gι ∈ G, the TAVC at
scale D = 2Gι is estimated by σ̂2

2Gι
solving (22), under the condition that 2Gι ≤ M, where

M represents the maximum scale, as explained in Section 3.3.1. Subsequently, the global
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estimator σ̂k in (27) will be substituted with σ̂2Gι
to standardize the MOSUM detector TGι

(k),
while for 2Gι > M, we will use σ̂M instead of σ̂2Gι

to scale the MOSUM detector. Such a way
of standardizing will correctly reflect the extent of variation over the sliding window and
accurately estimate the change points. The algorithm for the multiscale MOSUM method
combined with the TAVC estimator can be found in [27].

4.2. WBS2 Procedure

Binary segmentation, introduced by [49], is a generic technique that provides a simple
framework to extend single change point detection to multiple changes. It initially scans the
entire dataset for a change point using a CUSUM statistic as defined in (19). If a significant
change point is found, the data are split into two segments, and the process is repeated
recursively until no change point is detected. It has various extensions like circular binary
segmentation [50], wild binary segmentation (WBS) [51], and WBS2 [52], each proposed
to address the shortcomings associated with the earlier versions. WBS2 is designed to
overcome the issues of lack of computational adaptivity and incomplete solution path
associated with WBS. We combine the WBS2 algorithm with the proposed TAVC estimator
for multiple change point detection in the mean under model (18).

Suppose that Bs,e = {(l, r) ∈ Z2 : s ≤ l < r ≤ e, r − l > 1} represents the collection of
all possible intervals within {s + 1, . . . , e} for some 0 ≤ s < e ≤ T. Let Hs,e ⊂ Bs,e selected
either randomly or deterministically (we use a deterministic grid selection approach) with
|Hs,e| = min(M, |Bs,e|) for some given sub-samples M ≤ T(T−1)

2 drawn from {1, . . . , T}.
Starting with (s, e) = (0, T), we identify the candidate change point that maximizes the
absolute CUSUM statistic as

(s0, k0, e0) = arg max(l,k,r):l<k<r
(l,r)∈Hs,e

∣∣Tl,k,r
∣∣

σ̂r−l
with

∣∣Ts0,k0,e0

∣∣
σ̂e0−s0

> Γ (28)

where σ̂2
r−l denotes the estimator of the TAVC with length D = r − l (when r − l is odd,

we use σ̂2
r−l−1 instead) and Γ is the threshold. Γ is determined as Γ = C

√
2 log T where

C is a constant taken based on the recommendation of Fryzlewicz [51]. As described in
Section 3.3.1, for standardizing of CUSUM statistic, we use σ̂M for any interval of length
greater than the maximum scale M. WBS2 marks the first candidate change point (s0, k0, e0)

which satisfies Equation (28) and then splits the entire dataset into {Yt}k0
t=s+1 and {Yt}e

t=k0+1
on which the same step be repeated on the partitioned segments. If there is no such
(s0, k0, e0) found or the minimum segment length defined by the user has been attained,
the search for change point will end up on {Yt}e

t=s+1 and no change point is returned as the
final result. An algorithm for WBS2 combined with TAVC estimator can be found in [27].

5. Numerical Results

This section outlines simulation and real data applications to validate theoretical findings.

5.1. Parameter Tuning for CPD

The tuning parameter ν in (22) is defined as ν = νh = π̄−1
h

√
G/T where π̄h is a fixed

constant for a given starting value h ∈ {0, 1, . . . , G − 1}. For the choice of π̄h, we employ
both the trimmed mean of {πj,h}

N(h)
j=1 proposed by Chen et al. [42] and scaled median value

of {πj,h}
N(h)
j=1 suggested by Mcgonigle et al. [53]. A trimmed mean is defined as

π̄[1],h =
1

⌊3N(h)/4⌋ − ⌈N(h)/4⌉+ 1

⌊3N(h)/4⌋

∑
j=⌈N(h)/4⌉

π(j),h, (29)

where π(1),h ≤ . . . ≤ π(N(h)),h are ordered {πj,h}
N(h)
j=1 . Whereas an appropriately scaled

median value of {πj,h}
N(h)
j=1 that ensures unbiasedness is given as



Mathematics 2024, 12, 3189 12 of 21

π̄[2],h = ∆ · Median{π1,h, . . . , πN(h),h}, (30)

where ∆ is a scaling constant and it is taken to be ∆ = 2.125. Hence, we employ π̄[i],h, i = 1, 2,
in setting the parameter νh in order to observe their effect on the simulation result. The other
is the maximum time scale M, recommended by Mcgonigle and Cho [27] at which the
TAVC to be estimated is M = ⌊2.5

√
T⌋. For tuning the parameters of the multiscale

MOSUM procedure, we follow [27,46]. Moreover, we use the R package ‘mosum’ available
on CRAN [45] suggested default settings to define additional tuning parameters, and set
η = 0.4 and α = 0.05. Whereas, for tuning the parameters of the WBS2 algorithm, we
followed the approaches discussed at [3,27,51].

5.2. Simulation Results

In this section, we conduct an extensive simulation study comparing the performance
of the proposed ARIMA state space and Kalman smoothing with the various competitive
univariate time series imputation methods for the series with mean shift. Moreover, our
proposed CPD approach is compared against that of various competing methods that
consider serial dependence under (18) and are easily accessible in R, with different scenarios
for generating serially correlated {εt}t∈Z. We generate 1000 realizations with T = 1000

under each setting by introducing a mean shift in the data where ut
iid∼ N(0, 1) unless

otherwise stated.

5.2.1. Set-Up

This section first presents settings to examine the performance of missing value impu-
tation methods. The data are generated under different scenarios including change points
(mean shift). Once the data are generated, we artificially deleted varying percentages (20%,
30%, and 40%) of values with missing completely at random (MCAR) mechanism using
‘missMethods’ R package available on CRAN [54]. Then, the missing values for simulated
data are imputed using various univariate time series imputation methods, namely: inter-
polation (linear, spline and Stineman), mean imputation, last observation carried forward
(LOCF), and moving average (simple (SMA), linear weighted (LWMA), and exponential
weighted (EWMA)) methods. We employ ‘imputeTS’ R package available on CRAN [55] to
estimate the missing values. To show the robustness of the proposed ARIMA state space
and Kalman smoothing in estimating missing values in the presence of change point (mean
shift), we calculate the proportion of change points estimated using MOSUM CPD method
scaled by the TAVC estimator.

(M1*) ft undergoes p = 2 with change points at (τ1, τ2) = (200, 600) and ( f0, f1, f2) =
(0, 10, 20), and the model follows seasonal ARIMA (0, 1, −0.4)(0, 1, −0.56)12.

(M2*) ft undergoes p = 2 with change points at (τ1, τ2) = (300, 700) and ( f0, f1, f2) =
(0, 30, 10), and the model follows seasonal ARIMA (0.5, 1, −0.8)(0, 1, 0)12.

(M3*) ft undergoes p = 4 with change points at (τ1, τ1, τ2, τ4) = (200, 400, 600, 800) and
fi = ⌈T ∗ i/16⌉, i = 1, . . . , 4, and the model follows seasonal ARIMA (0.9, 0, 0)(0, 1, 0)12.

Models (M1*) and (M2*) represent nonstationary seasonal series scenarios and model
(M3*) is strongly autocorrelated seasonal series. Model (M1*) is adopted based on modeling
air passenger time series data, which is commonly used in much literature [39,40,56] with
sigma = 0.0025. While model (M2*) is adopted from Dette et al. [14] with modification of in-
troducing nonstationarity to make the model a nonstationary seasonal ARIMA model with
sigma = 1. Finally, model (M3*) is taken from Cho and Fryzlewicz [28] and we added sea-
sonality to produce strongly autocorrelated seasonal AR(1) series with sigma = 1. In model
(M1*), (M2*), and (M3*), we injected 20%, 40% and 30% of the missing values, respectively.
For the detection of change points, we apply the MOSUM procedure scaled with the TAVC
estimator by choosing the tuning parameter ν in (22) using (29), the bandwidth (G) is set
to be 60 and α = 0.05.

Furthermore, we investigate the performance of MOSUM and WBS2 procedures scaled
with the TAVC estimator as described in Section 4 on simulated datasets, in comparison
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with various methods when there is no change (p = 0) and there is at least one change
(p ≥ 1) under different error structures. Moreover, we study the condition where ft = 0 to
examine the performance in size control.

(M1) εt = ut, and ft undergoes p = 4 with change points at (τ1, τ2, τ3, τ4) = (200, 400, 600, 800)
and ( f0, f1, f2, f3, f4) = (0, 2,−2, 2,−2).

(M2) εt = ut, where ut is an independent random variable following t5 distribution,
and ft and τi are same as in (M1).

(M3) εt = ut + 0.9εt−1 follows AR(1) process with σu = 0.4359, and ft undergoes p = 4
with change points τi as in (M2) and ( f0, f1, f2, f3, f4) = (0, 2,−1, 2,−1).

(M4) εt = ut + 0.5εt−1 + 0.3εt−2 follows AR(2) process with σu = 0.6676, and ft and τi
undergo as in (M2).

(M5) εt = ut − 0.9ut−1 follows MA(1) process and ft and τi undergo as in (M2).
(M6) εt = σ2

t ut with σ2
t = 0.5 + 0.4ε2

t−1 follows ARCH(1) model, and ft and τi undergo
as in (M5).

Model (M1) is widely used in various kinds of literature, and (M2) is taken from [46]
to evaluate how well the proposed approach performs other than Gaussian error. In models
(M3) and (M4), εt has a high degree of auto-correlations, which is adapted from Cho and
Fryzlewicz [28]. For model (M5), long-run variance approaches zero, and thus it is difficult
to obtain an accurate estimate and may affect the performance of the methods. Model (M6)
is adopted from Mcgonigle and Cho [27] to examine whether a method works well for non-
linear processes. We apply the proposed TAVC robust estimator to both multiscale MOSUM
and WBS2 procedures, denoted as MOSUM.TAVC[i] and WBS2.TAVC[i], respectively. Here,
i indicates the selection of tuning parameter π̄[i],h related to the parameter ν; refer to (29)
and (30). The selection of tuning parameters is discussed in Section 5.1.

For comparison, we include DeCAFS [9], DepSMUCE [14], and WCM.gSa [28]. DeCAFS
is adaptable to the problem of detecting multiple change points in the mean under the
assumption that the error term follows the stationary AR(1) model. DepSMUCE extends the
SMUCE procedure of [57] to dependent data by estimating the long-run variance (LRV) using
a difference-type estimator. The WCM.gSa is adapted to detect multiple change points in the
mean of an otherwise stationary, autocorrelated, linear time series. It combines solution path
generation based on the wild contrast maximization principle, and an information criterion-
based model selection strategy termed the gappy Schwarz algorithm. The significance levels
α ∈ {0.05, 0.1} are considered for the DepSMUCE method. The tuning parameters not
specified herein are implemented according to the authors’ recommendations.

5.2.2. Results

The comparative simulation study results on missing value imputation, which en-
compassed 1000 realizations for T = 1000, generated according to models (M1*)–(M3*)
with p = 2, 4, are succinctly summarized in Table 1. We report the average mean absolute
percentage error (MAPE), and root mean square error (root MSE) over 1000 realizations
to evaluate the performance of various missing value imputation methods. In addition,
we also report the distribution of the estimated number of change points and the average
covering metric (CM, defined later) for the imputed data returned by applying the MOSUM
procedure scaled with the TAVC estimator. Methods that achieve the best performance
based on the evaluation criteria for each scenario are shown in bold.

MAPE and root MSE between the actual time series value yt and the corresponding
imputed value ŷt can be defined as:

MAPE(yt, ŷt) =

T
∑

t=1

|yt−ŷt |
|yt | ∗ 100%

T
, Root MSE(yt, ŷt) =

√√√√√ T
∑

t=1
(yt − ŷt)

2

T

where T is the time period (number of observations).
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Table 1. Performance comparisons of various univariate imputation methods for model (M1*)–(M3*)
over 1000 realizations for T = 1000.

(p̂ − p)

Model Method MAPE Root MSE ≤−2 −1 0 1 2 ≥3 CM

(M1*) ARIMA.Kalman 0.539 3.940 0.000 0.000 0.957 0.041 0.002 0.000 0.992
Linear interpolation 0.581 3.808 0.000 0.000 0.938 0.057 0.005 0.000 0.989
Spline interpolation 0.603 4.075 0.000 0.000 0.914 0.078 0.006 0.002 0.986
Stineman interpolation 0.570 3.727 0.000 0.000 0.941 0.055 0.004 0.000 0.990
Mean imputation 6.051 36.109 0.040 0.209 0.355 0.244 0.108 0.044 0.571
LOCF 0.911 5.817 0.000 0.000 0.804 0.167 0.026 0.003 0.969
SMA 0.915 6.055 0.000 0.000 0.811 0.170 0.017 0.002 0.970
LWMA 0.800 5.368 0.000 0.000 0.861 0.126 0.011 0.002 0.978
EWMA 0.709 4.785 0.000 0.000 0.895 0.092 0.013 0.000 0.982

(M2*) ARIMA.Kalman 160.729 4.430 0.000 0.000 0.933 0.060 0.007 0.000 0.987
Linear interpolation 199.100 5.888 0.000 0.009 0.896 0.084 0.011 0.000 0.979
Spline interpolation 251.705 7.987 0.021 0.095 0.716 0.129 0.032 0.007 0.916
Stineman interpolation 206.664 6.025 0.000 0.010 0.896 0.083 0.011 0.000 0.978
Mean imputation 566.688 6.512 0.010 0.149 0.777 0.056 0.008 0.000 0.924
LOCF 235.137 6.560 0.005 0.023 0.844 0.113 0.013 0.002 0.967
SMA 161.952 5.055 0.000 0.002 0.919 0.073 0.006 0.000 0.985
LWMA 165.832 5.166 0.000 0.002 0.917 0.073 0.008 0.000 0.984
EWMA 173.513 5.369 0.000 0.003 0.909 0.081 0.007 0.000 0.983

(M3*) ARIMA.Kalman 37.006 3.454 0.000 0.000 0.887 0.112 0.001 0.000 0.988
Linear interpolation 16.695 3.966 0.000 0.000 0.892 0.107 0.001 0.000 0.989
Spline interpolation 19.823 4.279 0.000 0.000 0.895 0.103 0.002 0.000 0.989
Stineman interpolation 15.966 3.484 0.000 0.000 0.889 0.110 0.001 0.000 0.988
Mean imputation 1438.254 49.049 0.032 0.219 0.655 0.087 0.006 0.001 0.913
LOCF 25.292 4.805 0.000 0.000 0.901 0.098 0.001 0.000 0.989
SMA 18.608 4.317 0.000 0.000 0.890 0.108 0.002 0.000 0.988
LWMA 16.948 3.960 0.000 0.000 0.892 0.106 0.002 0.000 0.988
EWMA 15.783 3.713 0.000 0.000 0.889 0.109 0.002 0.000 0.988

Table 1 shows that ARIMA state space and Kalman smoothing imputation outper-
formed other methods in most scenarios, as indicated by their lower MAPE and root MSE
values. Among the other methods, interpolation and moving average methods provided
more accurate approximations than mean imputation and LOCF methods. Conversely,
mean imputation, which relies on a single measure (mean, median, or mode) to fill in all
missing values, exhibited the poorest performance. Moreover, the number of change points
is estimated with great accuracy for the data imputed using the ARIMA state space and
Kalman smoothing method, as indicated by the model selection accuracy, | p̂ − p| and the
covering metric. The proportion of the correctly estimated number of change points and the
covering metric for the data imputed by using ARIMA state space and Kalman smoothing
almost approaches one in many of the cases. Furthermore, the proposed imputation method
has not resulted in under-detecting change points, but a very small percent of spurious
change points are observed. Overall, the proposed approach outperformed most other
univariate imputation methods in the majority of scenarios. Imputation by interpolation
and moving average methods yields a relatively good estimate of the missing value for
the data in the presence of a mean shift. Nevertheless, the worst false positive and false
negative change points are detected for the data imputed by using the mean imputation
method. Therefore, we will employ ARIMA state space and the Kalman smoothing method
to estimate and impute missing values for the real data application and determine change
points by applying multiscale CPD methods scaled with TAVC as discussed in Section 4.

While this method improves the handling of missing data by offering the nearest esti-
mated value, it exhibits a high computational complexity in comparison to other univariate
imputation techniques, particularly when applied to large datasets. This complexity is due
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to the algorithm’s iterative nature, which updates the estimate of the state vector as new
observations become available [37,56].

Table 2 summarizes the results of the simulation study for CPD, showing the perfor-
mance of different methods for T = 1000 generated over 1000 realizations as in (M1)–(M6)
with p ∈ {0, 4}. We report the proportion of realizations of p̂ ≥ 1 when p = 0 (in ‘size’ col-
umn) and the summary of estimated change points based on the distribution of p̂. We also
present the averaged CM and relative mean squared error (RMSE) over 1000 realizations
when p = 4. The modal value of the distribution of the estimated number of change points
with the highest value for each scenario is shown in bold. Based on the evaluation criteria,
the methods that attained the highest performance level when p = 4 are underlined. From
the theoretical point of view, RMSE is one the most common error metrics that is applied in
various literatures [27,28] to evaluate the performance of change point detection methods,
which measures the deviation between the estimated change point positions and the true
change point locations. It assigns a higher weight to larger errors due to its squaring effect,
making it sensitive to substantial deviations in change point detection, which is essential in
the context of time series analysis. Moreover, RMSE serves to evaluate the performance of
change point detection methods in the presence of missing data, illustrating how accurately
the detected change points correspond to the true points, even in light of imputation errors.
It also provides insight into the impact of imputed data on the accuracy of change point
estimates. If imputation is flawed, RMSE will increase, reflecting greater discrepancies
between estimated and actual change points. RMSE is defined as:

RMSE =

T
∑

t=1

(
ft − f̂t

)2

T
∑

t=1

(
ft − f̂ ∗t

)2

where f̂t is the piecewise constant signal constructed with the set of estimated change
point locations τ̂, and f̂ ∗t is an oracle estimator constructed with the true change point
locations, τi.

Covering metric is another evaluation metric, whose concept is a type of clustering
metric that aligns with the aim that CPD fundamentally seeks to partition the time series
into separate segments characterized by a stable data-generating process [58]. It measures
the overlap between predicted region segments produced from the estimated change
point and the ground truth regions obtained from the true change points [59]. Moreover,
the covering metric captures how well the method detects structural changes in time series
data, even when some points are imputed. Thus, it is recommended as an evaluation metric
to measure the performance of CPD algorithms. Let S be a segmentation of the interval
{1, 2, . . . , T} into disjoint sets Ri s.t. Ri is the segment {τi−1 + 1, . . . , τi} for the true change
locations. In the same way, the estimated change locations {τ̂i}

p̂
i=1 generates a partition S ′

of segments R′. Then, we define CM as

CM(S ,S ′) =
1
T ∑

R∈S
|R|max

R′∈S ′

|R ∩ R′|
|R ∪ R′|

The value of CM lies [0, 1]. Together, RMSE and the covering metric provide a balanced
evaluation of the performance, accounting for both exactness (RMSE) and the method’s
ability to cover true structural changes (covering metric), making them valuable tools for
evaluating CPD in datasets with missing values.

Empirical simulation results presented in Table 2 show that, overall, MOSUM.TAVC
tends to have more false positives in terms of size control compared to WBS2.TAVC. This is
because the MOSUM procedure accepts all the candidate change point estimators obtained
from the smallest bandwidth. In addition, MOSUM.TAVC outperforms some of its competi-
tors, including DeCAFS and DepSMUCE, in terms of size control. Apart from this, regarding
the choice of the tuning parameter ν employed in (22), the multiscale procedures corre-
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sponding to subscript 2, obtained by applying the median given in (30) for TAVC estimation,
return better size control. On the contrary, when p ≥ 1, the utilization of the trimmed
mean (represented by subscript 1) defined in Equation (29) exhibits improved power. This
suggests adopting an approach that combines both choices of ν, thereby achieving a more
balanced performance that takes into account the trade-off between power and size.

Table 2. Performance comparisons for the competing methods for (M1)–(M6) for T = 1000 over
1000 realizations.

(p̂ − p)

Model Method Size ≤−2 −1 0 1 ≥2 CM RMSE

(M1) MOSUM.TAVC[1] 0.104 0.000 0.000 1.000 0.000 0.000 0.997 3.007
MOSUM.TAVC[2] 0.066 0.000 0.000 0.999 0.001 0.000 0.997 3.007
WBS2.TAVC[1] 0.035 0.000 0.000 1.000 0.000 0.000 0.999 1.943
WBS2.TAVC[2] 0.035 0.000 0.000 1.000 0.000 0.000 0.999 1.894
DeCAFS 0.007 0.000 0.325 0.671 0.002 0.002 0.934 7.839
DepSMUCE(0.05) 0.003 0.000 0.000 0.893 0.107 0.000 0.821 4.820
DepSMUCE(0.1) 0.020 0.000 0.000 0.711 0.289 0.000 0.857 5.811
WCM.gSa 0.006 0.000 0.000 0.984 0.015 0.001 0.998 1.941

(M2) MOSUM.TAVC[1] 0.116 0.000 0.000 0.998 0.002 0.000 0.995 3.373
MOSUM.TAVC[2] 0.070 0.000 0.000 1.000 0.000 0.000 0.995 3.380
WBS2.TAVC[1] 0.049 0.000 0.000 1.000 0.000 0.000 0.997 2.402
WBS2.TAVC[2] 0.024 0.000 0.000 1.000 0.000 0.000 0.997 2.402
DeCAFS 0.010 0.000 0.087 0.092 0.150 0.671 0.847 21.360
DepSMUCE(0.05) 0.340 0.000 0.008 0.673 0.108 0.211 0.914 11.538
DepSMUCE(0.1) 0.476 0.000 0.010 0.640 0.129 0.221 0.943 12.202
WCM.gSa 0.010 0.000 0.000 0.991 0.006 0.003 0.998 2.429

(M3) MOSUM.TAVC[1] 0.161 0.000 0.052 0.802 0.129 0.110 0.940 2.930
MOSUM.TAVC[2] 0.084 0.001 0.078 0.812 0.106 0.003 0.935 3.023
WBS2.TAVC[1] 0.107 0.000 0.145 0.853 0.002 0.000 0.950 2.509
WBS2.TAVC[2] 0.062 0.001 0.175 0.824 0.000 0.000 0.938 2.785
DeCAFS 0.344 0.000 0.129 0.661 0.180 0.030 0.956 4.130
DepSMUCE(0.05) 1.000 0.000 0.001 0.749 0.237 0.013 0.926 2.547
DepSMUCE(0.1) 1.000 0.000 0.000 0.713 0.261 0.026 0.939 2.633
WCM.gSa 0.044 0.006 0.068 0.793 0.065 0.068 0.943 2.608

(M4) MOSUM.TAVC[1] 0.122 0.000 0.040 0.940 0.015 0.002 0.974 2.491
MOSUM.TAVC[2] 0.015 0.000 0.056 0.923 0.019 0.002 0.970 2.374
WBS2.TAVC[1] 0.055 0.000 0.079 0.921 0.000 0.000 0.973 2.126
WBS2.TAVC[2] 0.037 0.000 0.170 0.830 0.000 0.000 0.956 2.742
DeCAFS 0.370 0.000 0.325 0.671 0.002 0.002 0.883 6.776
DepSMUCE(0.05) 1.000 0.000 0.004 0.821 0.068 0.107 0.950 2.941
DepSMUCE(0.1) 1.000 0.000 0.001 0.778 0.043 0.178 0.964 6.776
WCM.gSa 0.032 0.000 0.000 0.984 0.015 0.001 0.967 2.042

(M5) MOSUM.TAVC[1] 0.027 0.000 0.000 1.000 0.000 0.000 0.998 37.926
MOSUM.TAVC[2] 0.016 0.000 0.000 1.000 0.000 0.000 0.998 37.926
WBS2.TAVC[1] 0.069 0.000 0.000 1.000 0.000 0.000 0.998 25.809
WBS2.TAVC[2] 0.033 0.000 0.000 1.000 0.000 0.000 0.998 25.809
DeCAFS 0.000 0.001 0.006 0.991 0.002 0.000 0.995 70.859
DepSMUCE(0.05) 0.058 0.000 0.005 0.527 0.016 0.452 0.871 492.296
DepSMUCE(0.1) 0.119 0.000 0.000 0.462 0.024 0.514 0.919 512.047
WCM.gSa 0.000 0.000 0.000 1.000 0.000 0.000 0.998 24.396

(M6) MOSUM.TAVC[1] 0.154 0.001 0.000 0.999 0.001 0.000 0.998 1.196
MOSUM.TAVC[2] 0.107 0.000 0.000 0.995 0.004 0.001 0.998 1.198
WBS2.TAVC[1] 0.091 0.000 0.000 0.997 0.003 0.000 0.999 0.815
WBS2.TAVC[2] 0.042 0.000 0.000 0.999 0.001 0.000 0.999 0.815
DeCAFS 0.774 0.000 0.055 0.215 0.071 0.659 0.898 16.904
DepSMUCE(0.05) 0.417 0.000 0.010 0.701 0.193 0.096 0.880 7.476
DepSMUCE(0.1) 0.498 0.000 0.012 0.681 0.182 0.125 0.906 8.363
WCM.gSa 0.017 0.000 0.000 0.972 0.021 0.007 0.997 2.867
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Moreover, when p ≥ 1, WBS2.TAVC performs well in most scenarios across different
evaluation criteria, such as model selection accuracy measured by | p̂ − p|, RMSE, or CM.
In particular, WBS2.TAVC corresponding to the subscript 1 belonging to the trimmed mean
seems to perform exceptionally well according to the evaluation criteria. DepSMUCE
may encounter calibration problems. To inhibit the detection of spurious change points,
it is necessary to use a conservative value for α. Conversely, for better detection power,
a higher α value is preferable. In addition, the LRV estimator proposed in DepSMUCE
tends to underestimate the LRV when it approaches zero, as observed in (M5), leading
to a substantial number of falsely detected change points. DeCAFS works based on εt
follows an AR(1) process. As a result, it is utilized under a model that is not correctly
specified in certain scenarios, yet it continues to show satisfactory performance. However,
it returns spurious change points and fails to adequately control size, even when applied
to the correctly specified model (M3). Based on the evaluation criteria, in most scenarios,
WCM.gSa generally demonstrates strong performance in maintaining size control and
accurately determining the number of change points when p ≥ 1.

Furthermore, Figure 1 shows histogram plots of the detected change point locations
from different methods for model (M6) applied to 1000 realizations of data. The multiscale
MOSUM.TAVC and WBS2.TAVC are highly precise and reliable, showing strong peaks at
the true change points (200, 400, 600, and 800) with minimal spurious detections. DeCAFS
and DepSMUCE(0.1) exhibit more spurious change points, indicating lower precision
compared to the MOSUM.TAVC and WBS2.TAVC methods. DepSMUCE(0.05) shows
better precision than DepSMUCE(0.1) but still has some spurious detections. WCM.gSa
demonstrates high precision, similar to MOSUM.TAVC and WBS2.TAVC methods, making
it a reliable choice as well. Overall, for applications where minimising false positives is
crucial, MOSUM.TAVC and WBS2.TAVC are the best choices.
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Figure 1. Histogram plots of estimated change points obtained from various methods under model (6),
with true change points at 200, 400, 600, and 800.

5.3. Real Data Application: Fine Particulate Matter 2.5 (PM2.5)

Different studies revealed that fine particulate matter, particularly PM2.5, is the main
air pollutant, among others. The main anthropogenic sources of PM2.5 and its acute and
chronic health effects have been well-presented in [60,61]. In this study, we consider the
Beijing multi-site air quality dataset collected from 1 March 2013 to 28 February 2017, par-
ticularly the daily average concentration of PM2.5. The dataset consists of six air pollutants,
including PM2.5, and six meteorological variables collected from twelve monitoring sta-
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tions in Beijing. It has 35,064 data points, which were recorded hourly at each station from
which the daily measure is taken, and consists of randomly missing values. The dataset
was retrieved from the University of California Irvine machine learning repository and is
available from [62].

We have estimated the hourly missing records of PM2.5 by using the ARIMA state
space model and Kalman smoothing. After estimating and imputing the hourly missing
data, the daily average PM2.5 concentration data are the results of averaging the site
according to the hourly data of the environmental protection station recorded that day
(https://www.aqistudy.cn, accessed on 15 February 2024). The data show seasonality, which
may be attributed to heating during the winter season as the primary contributor to PM2.5.
To mitigate this effect, we apply a square root transformation to the data and eliminate
seasonality. We analyze the transformed imputed time series from PM2.5 concentrations for
change points in the level using the proposed MOSUM.TAVC and WBS2.TAVC. We select
the parameter ν in (22) using (29) and choose the other tuning parameters as recommended
in Section 5.1. The daily average PM2.5 concentration along with the detected change points
by MOSUM.TAVC and WBS2.TAVC are plotted in Figure 2. For comparison, we also present
the change points estimated by DeCAFS, DepSMUCE(0.05), and DepSMUCE(0.1) in Table 3.
As WCM.gSa did not detect any change points, it has been excluded from the report.
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Figure 2. Daily average concentrations of PM2.5, plotted together with the change points detected by
MOSUM.TAVC (left) and WBS2.TAVC (right) are denoted by blue vertical lines and estimated means
are given by red horizontal lines.

Table 3. Change points detected from the daily average concentrations of PM2.5.

Method Detected Change Point Location (Time)

MOSUM.TAVC 2015-10-31, 2016-01-03, 2016-10-09
WBS2.TAVC 2016-01-03

DeCAFS 2014-02-12, 2014-02-24, 2014-02-26, 2014-10-07, 2014-10-11, 2015-11-26, 2015-11-30,
2015-12-01, 2015-12-24, 2015-12-26, 2016-01-03, 2016-03-02, 2016-03-04,
2016-09-21, 2016-12-19, 2016-12-21, 2016-12-29, 2017-01-07, 2017-01-27, 2017-01-28

DepSMUCE(0.05) 2014-02-12, 2014-02-26, 2015-11-26, 2016-01-03, 2016-12-16, 2017-01-07
DepSMUCE(0.1) 2014-02-12, 2014-02-26, 2015-05-01, 2015-11-26, 2015-12-01, 2016-01-03, 2016-12-16, 2017-01-07

MOSUM.TAVC and WBS2.TAVC detect three and one change point, respectively, some
of which can be linked to weather conditions and policy changes likely affecting the levels of
air pollutants. Adverse meteorological conditions in November and December 2015 caused
several heavy pollution events in North China, where daily average PM2.5 concentrations
exceeded 150 µg/m3. At the same time, the Beijing–Tianjin–Hebei region experienced two
major pollution episodes, each persisting for more than five consecutive days [61]. This
change more likely corresponds to 31 October 2015, which was detected by MOSUM.TAVC.
On the other hand, China implemented the Action Plan for Prevention and Control of Air
Pollution, along with a reinforced version for the Beijing-Tianjin-Hebei Region (2016–2017).
Measures included optimising the energy structure, switching from coal to electricity or
gas, eliminating small coal-fired boilers, and implementing ultra-low emission technical

https://www.aqistudy.cn
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reforms. Furthermore, old vehicles were phased out, and new emission standards for light-
duty vehicles and ship engines were established [63]. The implementation of the policy has
significantly reduced the level of PM2.5, which can be linked to the change on 3 January
2016 and it is detected by all methods.

6. Conclusions

In this paper, we proposed the ARIMA state space model and Kalman smoothing to
impute missing values for a univariate time series. By utilizing fixed-point smoothing on
the Kalman filter, we have shown that ARIMA state space and Kalman smoothing yield
a minimum mean square estimate for the missing observation. It has also been shown
that the proposed imputation method has better approximated the missing observation
and provides good adaptivity to the mean shift in the series. For detecting change points
in imputed time series, we have applied a robust scale-dependent TAVC estimator and
showed its consistency under heavy tails and serial dependence circumstances. Moreover,
the MOSUM and WBS2 procedures scaled with the proposed TAVC estimator have better
estimated the number of change points and their corresponding locations. Specifically,
WBS2 combined with the TAVC estimator has accurately detected the change in mean shift.
Notably, the method also successfully identified change points in time series with seasonal
variations, without the need for data transformation, highlighting its practical applicability
for real-world datasets and indicating a promising avenue for future research. Furthermore,
our approach has the potential to be applied to local stationarity, providing a promising
direction for future research.

In addition, for detecting change points in a time series exhibiting periodic fluctuations
such as seasonal and cyclic variation, investigating periodic models [64,65] to separate
cyclical changes from genuine shifts. Furthermore, integrating Markov switching models
provides a promising avenue for detecting regime shifts, where the system changes from
one state to another [66]. Finally, threshold models could be explored to address struc-
tural breaks in time series when variables exceed certain critical levels, offering a deeper
understanding of nonlinear dynamics and abrupt shifts in real-world phenomena [67].
By addressing these open problems, future research could extend the applicability and
robustness of the proposed methods, particularly for complex time series with structural or
periodic changes in diverse fields such as economics, finance, and environmental science.
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