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Abstract: Greedy search (GS) or exhaustive search plays a crucial role in decision trees and their various
extensions. We introduce an alternative splitting method called smooth sigmoid surrogate (SSS) in which the
indicator threshold function used in GS is approximated by a smooth sigmoid function. This approach allows
for parametric smoothing or regularization of the erratic and discrete GS process, making it more effective in
identifying the true cutoff point, particularly in the presence of weak signals, as well as less prone to the inher-
ent end-cut preference problem. Additionally, SSS provides a convenient means of evaluating the best split by
referencing a parametric nonlinear model. Moreover, in many variants of recursive partitioning, SSS can be
reformulated as a one-dimensional smooth optimization problem, rendering it computationally more efficient
than GS. Extensive simulation studies and real data examples are provided to evaluate and demonstrate
its effectiveness.

Keywords: CART; decision trees; end-cut preference; greedy search; recursive partitioning;
sigmoid function

MSC: 62G08; 62N01; 62J02

1. Introduction

Recursive partitioning or tree-structured methods [1,2], together with their various ex-
tensions such as multivariate adaptive regression splines MARS; [3], bagging [4], boosting [5],
and random forests [6], have formed an important class of learning and modeling tools for pat-
tern recognition, data mining, and statistical analysis. Greedy search (GS, also called exhaustive
search or brute-force search) is the dominating method for identifying the best split or knot at
each step of recursive partitioning. In this discrete process, all permissible splits are compared
via some criterion and the best one is selected.

Consider data that consist of i.i.d. observations {(yi, xi) : i = 1, . . . , n}, where yi is the
i-th observed value on the response or target variable Y and xi ∈ Rp is the associated input
vector on predictor variables (X1, . . . , Xp). The response Y can be either continuous, as in
regression trees, or categorical, as in classification trees, while the predictor variables can be
of mixed types. A split of data is induced by a binary question such as “is Xj greater than
c?" for a continuous Xj or “does Xj belong to C0?” for a categorical Xj, where c is a cutoff
point (or cutpoint for short) and C0 is a subset of categories or levels that Xj can assume.
A greedy search for the best split can be viewed as a two-step process. In the first step,
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the best way to split each predictor, i.e., the best cutoff point or the best subset, is sought;
then, in the second step, a comparison is made across all p predictors.

Consider the first step, namely, how to determine the best cutoff point for a given predictor
Xj. There are two general approaches of splitting data in the literature: either by minimizing
within-node impurity, or by maximizing between-node difference. The conventional approach, as
in CART ([1], pp. 230–232), splits data by minimizing the within-node impurity. Let ı(t) denote the
impurity measure for node t and let ∆ı = ı(t)−{p(tL) ı(tL) + p(tR) ı(tR)} denote the reduction
in impurity due to a split of the data, where tL and tR denote the left and right child nodes,
while p(tL) is the proportion of observations falling into tL and analogously for p(tR). For splits
based on variable X, the best cutoff point c⋆j achieves the greatest reduction in the sense that
c⋆j = arg maxc ∆ı. The other splitting approach is to maximize the between-node heterogeneity,
as examined by LeBlanc and Crowley [7]. This approach is somehow more appealing from the
statistical perspective and allows for the extension of tree methods to other data types, as any
appropriately defined two-sample statistic may be used to bisect the data. In many scenarios,
these two approaches lead to equivalent splitting criteria.

Although GS is the standard method for splitting data, it has a few deficiencies. First
of all, the splitting statistic in GS is a random process that shows erratic patterns with
substantial variations, as mentioned by [8] (Figure 1 on p. 8) in a recent rpart documentation,
for example. As a result, it often occurs that local spikes overpower the overall peak
associated with the true cutpoint, especially when the signal strength is relatively weak.
Second, some commonly used splitting statistics in GS tend to favor unbalanced cuts
that leave a child node with very small sample sizes, a problem referred to as end-of-cut
preference (see Section 11.8 of CART [1]). This would eventually lead to tree structures that
are hard to interpret. Figure 1 provides an illustration of the problems with simulated data.
The goodness-of-split measures shows an overall pattern climaxing at the true cutpoint
of 0.5, yet with high variation and many high local spikes; in particular, one prevailing
local peak at the end is erroneously selected by GS. Third, variable selection bias has been
considered inherent with GS. This refers to the phenomenon of a predictor with more values
or levels being more likely to be selected as the splitting variable than a predictor with
fewer values or levels. Loh and colleagues have pioneered excellent efforts in addressing
this issue with a series of papers, as exemplified in Loh [9]. They also view GS as a two-
step process, yet in a different way. Their main idea is to first select the most important
variable and then evaluate splits based on the selected variable only. Another suggestion
regarding this issue is to derive the distribution of maximally selected test statistics. This
approach is exemplified by Miller and Siegmund [10], Shih and Tsai [11], and Hothorn and
Zeileis [12]. Finally, searching over all permissible cutoff points for each predictor can be
time-consuming. One common way for speeding up GS is to apply an updating formula to
compute the splitting statistic for two consecutive cutoff points on a predictor. Examples
can be seen in (Section 2.2, [13]), LeBlanc and Crowley [7], and Su, Tsai, and Wang [14]
(Appendix A). Other strategies include splitting on percentiles, sub-sampling, and online
incremental learning (see, e.g., [15]), which nevertheless reduces the search space and
consequently provides no guarantee of success in finding the optimal cutoff point. Despite
all of these efforts, greedy search can be time-consuming, especially when dealing with
continuous variables or categorical variables that have many levels in large datasets.

In this article, we propose an alternative splitting method to greedy search, termed
smooth sigmoid surrogate (SSS). The main idea is to replace the step functions involved
in splitting with smooth sigmoid functions. The best cutoff point for each predictor can
be estimated as a parameter in a nonlinear model. Very often, the estimation can be
appropriately reformulated into a one-dimensional optimization problem that can be
quickly solved. We demonstrate that this new method provides superior performance
to GS along with correction or amelioration of its common deficiencies. First of all, SSS
facilitates a parametric smoothing or regularization of the erratic splitting statistics in GS,
yielding improved stability in the objective function to be optimized. As a result, SSS is
more capable of identifying weak signals. As shown in Figure 1, smoothing preserves
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the overall parabola pattern while flattening the local spikes and reducing variations.
A cutpoint close to the true one of 0.5 is successfully recovered for a range of smoothing
parameter values. The smoothing effect also leads to substantial amelioration of the end-cut
preference problem in practice. Furthermore, because the search for the best cutoff is cast
in a nonlinear regression framework, conventional statistical inference can be exploited to
facilitate convenient comparisons across different predictors for finding the best split of
data. We show that this alternative splitting method helps to alleviate the variable selection
bias problem. In addition, SSS potentially reduces computational cost without sacrificing
performance. Lastly, SSS can be flexibly extended to many other recursive partitioning
methods designated for different analytic purposes. In most scenarios, the optimization
problem remains one-dimensional with appropriate reformulation.
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Figure 1. Plot of the goodness-of-split measure ∆ı(c) and its approximation ∆̃ı(c) versus the permis-
sible cutoff point c. Data of sample size n = 50 were generated from Model A in (7) with β = 0.2.
The dark line corresponds to the goodness-of-split measures or splitting statistics ∆ı(c) in greedy
search, while the lines in gray scale are approximated ∆̃ı(c) values in SSS with a = 1, 2, . . . , 100.
The red solid triangle point corresponds to the best cutpoint found by GS, while the blue disc points
are the best cutpoints obtained from SSS with different a values. The solid green line corresponds to
the true cutoff point c0 = 0.5.

We note that replacing step functions with smooth sigmoid functions is not an entirely new
idea. Notably, this tactic has impacted the development of artificial neural networks (ANN).
One well-known initial ANN proposal by Rosenblatt [16] consisted of single-layer networks
called perceptrons, which contain threshold activation functions. In later developments such as
multilayer perceptrons (MLPs) the step function is replaced by the differentiable logistic function,
which has advanced ANNs tremendously. In the recursive partitioning context, the hierarchical
mixture of experts (HME) architecture studied by Jordan and Jacobs [17] is essentially a mixture
model where mixing probabilities are hierarchically modeled via multivariate sigmoid or softmax
functions. Along similar lines, Ciampi, Couturier, and Li [18] proposed a ‘soft tree’ procedure at
each node in which an observation goes to the left or right child node with a certain probability that
is estimated via soft threshold functions or logistic models. To the best of our knowledge, however,
our current proposal is the first attempt to use the sigmoid function as an alternative to GS for
partitioning data. Therneau [8] also noted the potential of nonparametric smoothing in stabilizing
the erratic pattern shown on the splitting statistic in GS; however, he applied nonparametric
smoothing splines directly to the computed goodness-of-split measures, which could only add to
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the computational cost of GS. Comparatively, SSS facilitates a parametric way of smoothing that is
embedded in the process that generates the splitting statistic.

The remainder of this paper is organized in the following manner: Section 2 intro-
duces the SSS method for regression trees, where the response variable is continuous,
and compares it to GS using various numerical studies in many aspects; classification
trees with binary outcomes are treated in Section 3; Section 4 outlines the usage of SSS in
several other recursive partitioning-based methods; finally, Section 4 ends the article with a
brief discussion.

2. SSS for Regression Trees

In regression trees, the node impurity ı(t) is commonly measured by the mean squared
error ı(t) = ∑i∈t(yi − ȳt)

2/nt. In this case, minimizing the within-node impurity is equiva-
lent to maximizing a two-sample F test statistic that compares the two child nodes. For the
time being, we consider continuous predictors only. The scenario for categorical predictors
as well as binary variables will be discussed later. For simplicity, we denote Xj as X. The
splitting statistic can be cast into the following linear model:

yi = β0 + β1 δ(xi; c) + εi (1)

where δ(xi; c) = I{xi ≥ c} ≜ δi is the indicator function corresponding to the split and

εi
iid∼ N(0, σ2). The two-sample F test is the same as the squared t test for testing H0 : β1 = 0

vs. Ha : β1 ̸= 0. The indicator function in (1) can be written as δ(x; c) = I{x − c ≥ 0} =
H(x − c), where H(x) = I{x ≥ 0} denotes the Heaviside (unit) step function. Often used
in integration, the value of H(x) at x = 0 does not really matter, whereas one natural choice
is H(0) = 1/2 for the sake of rotational symmetry.

Given that this search must be carried out over all variables, this can lead to a signifi-
cant computational strain in a big data context whenever many features are present, with
each containing several potential splits; it also suffers from other problems, as discussed ear-
lier. This motivates us to consider a new way of splitting data. Our idea is to approximate
the threshold indicator function with a smooth sigmoid surrogate (SSS) function.

2.1. Sigmoid Functions

A sigmoid function is a mathematical function with an ‘S’ shape. Very often, the sig-
moid function refers to the special case of the logistic function (also called the expit function):

π(x) = π(x; a) = {1 + exp(−ax)}−1 =
exp(a x)

1 + exp(a x)
. (2)

While there are various types of sigmoid functions, we primarily choose the logistic function
due to its widespread use in statistics, such as in logistic regression, and the extensive
research on its properties, e.g., dπ(x; a)/dx = a π(x; a) {1 − π(x; a)}. Readers are referred
to Balakrishnan [19], Johnson, Kotz, and Balakrishnan [20] and Rosenblatt [16] (Section 23)
for a book-length account of the logistic function and the logistic distribution as well as
their properties and applications.

Figure 2 plots the logistic function with different values of the shape or scale parameter
a = 1, 2, . . . , 100. Note that π(x − c;−a) = 1 − π(x − c; a), hence; π(x − c; a) with a < 0
approximates I{x < c}. Either π(x − c; a) or π(x − c;−a) can be used to represent a split
in the recursive partitioning setting. Therefore, without loss of generality (WLOG), our
consideration is restricted to a > 0. As a increases, π(x) provides a better approximation
of the indicator function I{x ≥ 0}. Similarly, π(x − c; a) approximates I{x ≥ c}. On
the other hand, π(x) becomes linear for small a. Because tree methods model data with
threshold effects, we are primarily interested in seeking an approximation to the indicator
function, where a relatively large a is desirable; hence, leaving a as a free parameter for
estimation is not advisable. To fix a, we first note that the spread or scale of the predictor X
on which the best cutoff is sought would affect the choice of a values. This concern leads
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to the specification of a as a := a/sx, where sx denotes the sample standard deviation of
the predictor. This is equivalent to working with the standardized predictor. To make
this more clear, standardization is a necessary first step in SSS splitting. In terms of
approximation, note that lima→∞ π(x; a) = H(x) for any x ̸= 0 with exponential rate,
i.e., |π(x; a)− H(x)| = O{exp(−a)}. Thus, a reasonably large constant a would provide
a good approximation. Another possibility is to have a adaptive of the sample size n
such that a ≡ an satisfies limn→∞ an = ∞. Many rates can be used for an because of the
exponential convergence rate. The choice of a will be further explored and discussed in the
subsequent sections.
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Figure 2. Plot of the logistic function π{x; a} for different values of a = 1, 2, . . . , 100. The dark line
corresponds to the Heaviside step function H(x) = I{x ≤ 0}.

2.2. Estimating the Best Cutoff Point

To continue, a natural approach is to replace δ(xi; c) in (1) with a sigmoid function.
The model then becomes

yi = β0 + β1 s(c; xi) + εi, (3)

where s(c; xi) = π(xi − c; a). Note that we have suppressed the parameter a in the notation,
as it is fixed a priori. By choosing a large a that corresponds to a sharper ‘S’ shape and
estimating the c corresponding to the best fit, we are essentially finding a sharp step
function-type change in the data. Model (3) is a nonlinear parametric model involving
four parameters {β0, β1, c, σ2}. Its estimation and related inference can be accomplished
via nonlinear least squares [21]. In fact, the related optimization is a separable least squares
problem (Section 9.4.1, [22]).

Estimating Model (3) involves multivariate optimization. However, we only need to
estimate c for splitting purposes. This motivates us to approximate the splitting statistic
directly and reduce the problem to a one-dimensional optimization with decision variable c
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only. We first note that the splitting statistic ∆ı used in CART can be treated as an objective
function for c and rewritten as follows:

∆ı(c) =
n

∑
i=1

(yi − ȳ)2 −
{

∑
i∈tL

(yi − ȳL)
2 + ∑

i∈tR

(yi − ȳR)
2

}

=̂
1

nL
·
(

∑
i∈tL

yi

)2

+
1

nR
·
(

∑
i∈tR

yi

)2

=
1

nL
·
(

∑
i∈tL

yi

)2

+
1

n − nL
·
(

n

∑
i=1

yi − ∑
i∈tL

yi

)2

, (4)

where {nL, ȳL} denote the sample size and the average response in the left child node,
respectively; similarly, {nR, ȳR} for the right child node. Throughout this article, we use the
notation =̂ to indicate ‘equivalence or correspondence up to some irrelevant constant’. In
particular, we have ignored irrelevant terms that do not involve c in rewriting ∆ı(c) in (4).

To approximate ∆ı(c) in (4), it is only necessary to approximate nL and ∑i∈tL
yi by

replacing δ(xi; c) with s(c; xi) such that

nL =
n

∑
i=1

δ(xi; c) ≈
n

∑
i=1

s(c; xi)

and

∑
i∈tL

yi =
n

∑
i=1

yi δ(xi; c) ≈
n

∑
i=1

yi s(c; xi).

The approximated objective function, denoted as ∆̃ı(c), becomes

∆̃ı(c) =
sT(yyT)s

jTs
+

(j − s)T(yyT)(j − s)
jT(j − s)

, (5)

where y = (yi), s = {si} with si = (s(c; xi)), and j = (1) are n-dimensional vectors.
Suppose further that, WLOG, the response has been centered y := (In − jjT/n)y

such that ∑n
i=1 yi = 0. It follows that ∑i∈tL

yi = −∑i∈tR
yi; hence, ∆ı(c) can be further

simplified as
(
∑i∈tL

yi
)2/{nL(n − nL)} up to some irrelevant constant. Its approximation

∆̃ı(c) reduces to

∆̃ı(c) =
sT(yyT)s

sT(jjT)(j − s)
. (6)

The objective Function (5) or (6) involves a scale parameter a. Whereas leaving a
for estimation is important in HME [17] and soft trees [18], it is not a good idea for our
purpose. If a is treated as a free parameter, a small a estimate that corresponds to a nearly
linear relationship may provide a better fit, but may not be well suited for identifying
the best cutoff point in ordinary tree procedures. This is because tree models account for
the relationships between response and predictors via hard threshold functions. Second,
if the best cutoff point is estimated for each predictor with a different scale parameter a,
comparison across predictors becomes groundless. Specific recommendations on the choice
of a will be provided in the subsequent sections. As discussed earlier, in order to fix a it is
crucial to standardize the predictor xij := (xij − x̄j)/σ̂j, where (x̄j, σ̂j) denote the sample
mean and standard deviation of variable Xj, respectively. Alternatively, the range of the data
may be normalized into the unit interval [0, 1] by setting xij := (xij − x(1)j)/(x(n)j − x(1)j),
where x(1)j and x(n)j are the minimum and maximum of Xj, respectively.

With fixed a, the best cutoff point ĉ can be obtained by maximizing ∆̃ı(c) in (5) or (6)
with respect to c, then transformed it back to the original data scale for interpretability.
This is a one-dimensional optimization problem. It can be conveniently solved by many
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standard algorithms. In this paper, we use the method in [23] as implemented in the R [24]
function optimize. Brent’s derivative-free method is very popular because it combines
the bisection method, the secant method, and inverse quadratic interpolation by taking
advantage of their best aspects.

One issue concerns non-concavity. The objective function in (5) or (6), although smooth,
is not concave, as demonstrated in Figure 1. As a result, the algorithm may become stuck at a
local optimum. In this case, global optimization procedures (see, e.g., [25,26]) can be helpful.
Again thanks to the one-dimensional nature of the problem, one simple solution is to divide the
search range into several intervals, find the maximum within each, and then identify the highest
maximum among them. We have included this step as an option in our implementation, which
may occasionally improve performance yet slow down the splitting procedure. This option is
not used in any of the results reported throughout this paper. As shown in our numerical studies
later, Brent’s method seems quite practically effective in locating the true cutpoint.

An immediate advantage of SSS over GS is computational efficiency. The follow-
ing proposition provides an asymptotic quantification of the computational complexity
involved in both GS and SSS splitting.

Proposition 1. Consider a typical dataset of size n in the regression tree setting. Both GS and
SSS are used to find the best cutoff point of a continuous predictor X which has O(n) distinct
values. In terms of computation complexity, GS is at best O{ln(n) n} with the updating scheme
and O(n2) without the updating scheme, while SSS is O(mn), where m is the number of iterations
in Brent’s method.

The proof of Proposition 1 is provided in Appendix B. It is a common wrong im-
pression that LS splitting with updating is only O(n). This is because updating entails
sorting the response values according to the X values. It turns out that this step would
dominate the algorithm asymptotically in terms of complexity. Comparatively, SSS depends
on the number of iterations in Brent’s method, denoted as m. Although the number of
iterations is affected by the convergence criterion and the desired accuracy, m is generally
small, as Brent’s method has guaranteed convergence at a superlinear rate. Based on our
limited numerical experience, m rarely reaches over 12 even for large n. In other words,
the O(mn) rate for SSS essentially amounts to the linear rate O(n). Therefore, SSS can be
more computationally efficient in least squares splitting. Additionally, SSS can be even
more advantageous in other recursive partitioning scenarios where an updating formula
is not readily available, especially when evaluating each individual split point involves
iterative model estimation procedures.

To speed up GS, subsampling or splitting on percentiles are two common strategies.
Clearly, subsampling can be combined with SSS as well. Nevertheless, reduced samples
could weaken performance and leave weaker signals undetectable. For percentile splitting,
the number g of percentiles used is an issue. In a single tree analysis, the investigator is
keenly interested in the ‘best’ cutoff point for the sake of interpretability and relevance to
the scientific or business question at hand. Using percentiles reduces the fineness level
to 1% at best in identification of the best cutpoint, which is undesirable, especially when
dealing with big data. Moreover, computing all g percentiles of X is not computationally
thrifty. In terms of complexity, this step is only O(gn), and g could be much larger than m,
i.e., the number of iterative steps in SSS.

2.3. Simulation Studies on Single Splits

To evaluate SSS and investigate several relevant issues, we simulated data from the
following model:

Model A: y = 1 + β · I{x ≤ c0}+ ε with ε
I ID∼ N (0, 1), (7)
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where the predictor X is generated from a uniform [0, 1] distribution. Two sample sizes
n ∈ {50, 500} were investigated, as recursive partitioning always involves both small sam-
ple and large sample problems. We considered two true cutoff points c0 ∈ {0.50, 0.80}, corre-
sponding to the balanced and unbalanced scenarios, and three values for β ∈ {0.0, 0.2, 1.0},
corresponding to null, weak, and strong signals, respectively. These considerations form
ten combinations in total, as the choice of c0 no longer matters in the null case of β1 = 0.
For each model configuration, 200 simulation runs were used. For each simulated dataset,
both GS and SSS were used to identify the best cutoff point ĉ. For SSS, a spread of choices
were considered for a ∈ {1, 2, . . . , 100}. With the identified cutpoints from all simulation
runs, we obtained the empirical density curves of ĉ, as presented in Figure 3.
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Figure 3. Empirical density of estimated cutpoint ĉ: SSS vs. GS (a–j). Ten scenarios were considered by
combining two sample sizes n ∈ {50, 500}, signal strength β1 ∈ {0, 0.2, 1}, and two true cutoff points
c0 ∈ {0.5, 0.8} (indicated via vertical blue lines). Each scenario was examined with 200 simulation
runs. In each plot, the density curve of ĉ from GS is shaded and outlined in red. The a value in SSS
falls within the range {1, 2, . . ., 100}, corresponding to the curves in grayscale, where darker colors
represent larger a values.

Figure 3a,b corresponds to the null model case. The results of GS show extraordinarily
high peaks at both ends. This phenomenon can be explained by the ‘end-cut preference’
(ECP) problem (see Section 11.8 of CART; [1]), which is known for the fact that the least
squares criterion tends to favor unbalanced splits, i.e., splits in which one child node has
only a very small proportion of observations. Comparatively, the smoothing effect of SSS
substantially ameliorates the ECP problem. Although SSS is intended to approximate GS,
weighting introduced by the SSS smoothing process mitigates the ECP problem markedly
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by changing the summations, e.g., ∑i∈tL
yi, into weighted sums ∑n

i=1 siyi. A smaller a is
associated with more distributed weights, and seems more beneficial for this purpose. It
is also of note that logistic(0) = 1/2 in SSS regardless of the choice of a, as opposed to
0/1 indicator values in GS. These features make cutting at the extreme ends less likely for
SSS. To remedy ECP for least squares splitting in regression trees, Torgo [27] suggested
setting a minimum number of observations allowable for either child node, which can be
implemented via the minbucket argument in the R function rpart [28]. A similar strategy
can be made available in SSS as well. Because Brent’s method asks for a range over which
the optimum is sought, it is convenient to define the search interval as (qγ, q1−γ), where
qγ and q1−γ denote the sample γ-th and (1 − γ)-th quantiles of X, respectively. In our
implementation, we have included γ = 0.02 as an option.

Figure 3c–f corresponds to the weak signal scenarios, where it can be seen that SSS
outperforms GS by a great deal in finding the true cutpoint with all choices of a. The failure
of GS in Model B can be partly attributable to the ECP problem. Breiman et al. [1] showed
that ECP in LS splitting is a joint result of the Kolmogorov inequality and the law of the
iterated logarithm in theory, as further confirmed in a recent article of [29] for other splitting
criteria. Ishwaran [29] argued that although ECP is unfavorable for single tree analysis, it is
a beneficial feature for random forests, as it maximizes the sample size for a tree to recover
from a bad split based on a pure noise predictor. However, we note that the ECP effect can
undesirably block out weaker signals, as illustrated here. In addition to the adverse effect
of ECP, the splitting statistics computed with GS can be rather turbulent, with considerable
variation, especially when the signal grows weak. An illustration from one simulation run
is provided in Figure 1. In this scenario, the overall weak signal is likely to be surmounted
by some local spikes owing to the large variation. Smoothing can be very helpful here,
as in general smoothing preserves the global pattern more than the local ones. Because
SSS facilitates a parametric mode of smoothing, in which a plays the role of a smoothing
parameter, it is reasonable to expect that SSS helps to remove irregular local fluctuations
in order to better isolate the weak signal with a more stable objective function, especially
with a smaller a. A relatively smaller a is even preferable in recovering weak signals, as a
smaller a helps to smooth out more local erratic patterns. Figure 3g–j illustrates the strong
signal scenarios, in which both GS and SSS perform exceptionally well.

We also computed the mean squared error MSE = ∑200
i=1(ĉi − c0)

2/200 as a performance
measure for each non-null model configuration. The results are presented in Figure 4.
Figure 4a–d depicts the weak signal scenarios and reinforces our earlier conclusion that SSS
is more advantageous than GS in these contexts. The figure also reveals a pattern where
MSE decreases as a decreases for a certain range of a values, say, a ≥ 5. However, excessively
small a a values result in poor approximations, leading to diminished performance. This
indicates a tradeoff between approximation and smoothness in terms of the choice of a.
Figure 4e–h represents the strong signal scenarios, where both GS and SSS perform very
well. Notably, SSS outperforms GS in the small sample scenario with n = 50 across all
choices of a considered. In contrast, with larger samples n = 500 the results are mixed,
and the difference between SSS and GS becomes negligible for reasonably large a values
(e.g., a ≥ 10). Additionally, both GS and SSS demonstrate better performance with the
balanced cutpoint c0 = 0.5 compared to the unbalanced cutpoint c0 = 0.8, as illustrated by
the MSE scales in Figure 4.

To further investigate the sensitivity with respect to a, Figure 5 plots ĉ versus a in
each simulation run for 100 simulation runs with β = 1. It can be seen that the lines are
essentially flat, except for very small a values. This indicates that the performance of SSS
remains fairly stable with respect to a, particularly for reasonably large values. Similar
patterns are observed in the weaker signal case (β = 0.2), although these results are not
presented here. This suggests that while the scale parameter a functions as a smoothing
parameter and further research on its fine-tuning may be valuable, setting a as a constant
seems to be a sensible approach.
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Figure 4. MSE of the estimated cutpoint ĉ vs. a in SSS. In Panels (a,b,e,f), the true cutpoint is c0 = 0.5, while
in Panels (c,d,g,h) it is c0 = 0.8. The solid red horizontal line corresponds to the MSE value from GS.
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(solid green line). In Panel (b), the median cutoff is also added (solid blue line). Four scenarios were
considered by combining two sample sizes n ∈ {50, 500} and two true cutoff points c0 ∈ {0.5, 0.8}.



Mathematics 2024, 12, 3190 11 of 28

Additionally, the averaged best cutoff point ĉ at each a overlaps well with the true
cutoff point c0, except in Panel (b), where the estimation is biased downwards. GS exhibits
a similar downward bias; see panel (i) in Figure 3. Figure 5b highlights the increased
difficulty in estimating an unbalanced cutoff point, especially with a small sample size.
On the other hand, the notable difference between the mean ĉ values and c0 in Panel (b) can
be partially attributed to the nonrobustness of means. If we consider the median ĉ values
(represented by the blue line), they align much more closely with the true value c0. As the
sample size increases, the bias becomes negligible, as shown in panel (d).

Another alternative for specifying a is to make a adaptive to the sample size n. To
investigate this, we reran the experiments by considering sample sizes while varying
in {50, 100, 150, . . . , 1000}. Two strategies for setting a values were tried: constant a in
{10, 30, 50}, and adaptive choices of a in {n,

√
n, ln(n)}. A total of 200 simulation runs was

taken for each scenario and the MSE values were recorded. Because the scale for MSE drops
dramatically as n increases, we computed the relative difference in MSE for the selected
cutpoints from SSS as opposed to GS; thus, a negative value indicates improvement upon
GS. Figure 6 plots the results versus n for each choice of a. It can be seen that SSS constantly
outperforms GS with weaker signals (β = 0.2) and that a smaller a seems preferable. In the
stronger signal (β = 1.0) scenario, the constant choices a ∈ {30, 50} work very well, while
the adaptive choice a =

√
n outperforms the other two.
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Figure 6. Relative difference in MSE of SSS versus GS for different sample sizes
n ∈ {50, 100, 150, . . . , 1000}. A few constant a choices in {10, 30, 50} are considered for SSS, together
with n-adaptive choices {n,

√
n, ln(n)}. Negative values indicate advantages over GS.

In summary, a larger a yields a better approximation of the threshold effect, while a
smaller a offers increased smoothness. With a larger a, the performance of SSS is relatively
more stable, as shown in Figures 3–5. Conversely, a smaller a can be beneficial for detecting
weak signals and addressing the end-cut preference (ECP) problem. Our empirical results
demonstrate that the performance of SSS remains stable as a varies, as well as that SSS
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outperforms GS in most scenarios with a reasonable choice of a. While some optimization
of a could be explored, we believe that a reasonable choice of a will suffice for practical
applications. Based on our findings, we tentatively recommend fixing a in the range of
[20, 60], while the adaptive choice of a =

√
n also seems advisable.

To investigate computational efficiency, we generated data from Model A in (7) with
β = 1 and n ∈ {20, 30, . . . , 100, 200, 300, . . . , 10,000}. Because x ∼ unif(0, 1), the number
of distinct values that it has increases with n. We considered different constant choices
of a ∈ {1, 2, . . . , 100} and an adaptive choice a =

√
n. For greedy search, we used the R

function rpart [28] by setting its options rpart.control such that it produces one single
split only and all other features, such as competitive and surrogate splits, are suppressed.
The implementation of SSS was accomplished solely in R with the optimize function.
Figure 7a plots the CPU time (in seconds) that SSS and GS spent on ten simulation runs. It
can be seen that SSS consistently outperforms GS. Figure 7b plots the averaged number m
of iterative steps in Brent’s method for SSS. It can be seen that m ranges from 7 to 10 in this
example. In addition, a smaller a, corresponding to a smoother objective function, leads
to a smaller number of iterative steps, as expected. In practice, similar experiments can
be performed on specific datasets to determine the approximate threshold at which SSS
becomes more advantageous than GS.
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Figure 7. Computing time comparison between GS and SSS. The sample size n varies in
{20, 30, . . . , 100, 200, 300, . . . , 10,000}. The total CPU time (in seconds) for ten simulation runs in
each setting was recorded for both GS and SSS. For SSS, the number m of iterative steps in Brent’s opti-
mization algorithm was also obtained and averaged over ten simulation runs. Panel (a) plots the CPU
computing time versus the sample size n. The computing times from GS are plotted with black circles
and superimposed with a smooth curve from lowess. The curves from SSS with a ∈ {1, 2, . . . , 100}
are plotted. In addition, an adaptive choice a =

√
n is also included and its associated computing

times are plotted with gray diamonds. In Panel (b), the averaged number of iterative steps involved
in Brent’s method are plotted vs. n.
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2.4. Variable Selection Bias

The variable selection bias problem is deemed inherent in recursive partitioning.
By optimally selecting a goodness-of-split measure across all permissible splits from all
variables, greedy search gives preference to variables that have more distinct levels or
values. As a remedy, Loh [9] (GUIDE) proposed first selecting the most important splitting
variable and then finding its best cutoff point via greedy search. In addition to its negligible
variable selection bias, the method is advantageous in reducing the computational cost.
A similar idea was followed in [30] (MOB). However, determination of the most important
splitting variable is an equally if not more difficult problem. A predictor that is important
in its threshold effect may not be so in other senses. In GUIDE, residuals from linear models
are first grouped. Every predictor is treated or otherwise made categorical to form two-way
contingency tables with residual-based grouping. The most important variable is then
selected based on Pearson χ2 tests. In MOB, the selection is based on a stability assessment
of the estimated coefficients in a linear model. One potential problem with both methods is
that the variable selected via linear models may not be the one with the most important
threshold effect for the partitioning purpose. Furthermore, these methods lose power
in detecting the true threshold signal on continuous or nominal predictors, leading to a
different type of bias in variable selection.

In other approaches, the best cutoff point is associated with a maximally selected
random variable. Akin to change-point problems (see, e.g., [31,32]), asymptotic infer-
ence on maximally selected statistics resorts to standard results in stochastic processes
(see, e.g., [10]), while their exact distributions can be determined with permutation-based
methods (see, e.g., [12], 2008). Shih and Tsai [11] evaluated these approaches in partitioning
data and demonstrated their potential in reducing variable selection bias via simulations.
In these approaches, the p-value associated with the best cutpoint for each predictor is first
computed and possibly transformed. These p-values are then compared across predictors to
determine the best split of the data. Different methods might be used to obtain the p-value
for the best cutpoint of each predictor depending on the type of the predictor. Nevertheless,
the associated distributions for maximally selected statistics may not be easily available,
and the computation could be intensive when either the sample size n or the number of
distinct levels K become large. For example, the permutation-based methods are clearly
not a good choice for this purpose, as the exact p-value is often computationally infeasible
while the approximate p-value does not have the necessary precision in order to compare
with p-values obtained from the Brownian bridge for example. Moreover, most of the
above-mentioned works on the distribution of maximally selected statistics are applicable
or feasible only to continuous or at least ordinal predictors, and not to nominal variables in
the strict sense.

The SSS method can help to get around the variable selection bias problem by pro-
viding a simple alternative way of evaluating splits. The significance assessment of the
best cutoff point on a continuous predictor can be made via its connection to a nonlinear
parametric model (3). While other testing procedures are available, it is convenient to use
the likelihood ratio test for H0 : β2 = 0 in Model (3). Computing the LRT entails estimation
of Model (3). This is a separable nonlinear least squares problem that can be efficiently
solved by the variable projection method of Golub and Pereyra [33]. The main idea is that
β can be readily estimated given c. We define matrix S = [j, s] ∈ Rn×2. The nonlinear least
square criterion is ∥ y − Sβ ∥2

2 with β = (β0, β1)
T . For a given c, the estimate of β can be

obtained via ordinary LS: β̂ = (STS)−1STy. Plugging it into the LS criterion leads to an
objective function for c only:

∥ y − Sβ̂ ∥2 = ∥ y − S(STS)−1STy ∥2 = ∥ PC⊥(S)y ∥2 (8)

where C(S) denotes the column subspace of matrix S, C⊥(S) is the subspace perpendicular
to C(S), matrix PC⊥(S) = In − S(STS)−1ST denotes the orthogonal projector to C⊥(S), and
∥ · ∥ denotes the Euclidean norm unless otherwise specified. Estimates of c can be obtained
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by minimizing (8), which is equivalent to maximizing ∆̃ı(c) in (5). A popular implemen-
tation is to combine the Gauss–Newton method with variable projection, as considered
by Kaufman [34] and summarized in Osborne [35]. The algorithm is iterative with an
approximately quadratic convergence rate. The corresponding pseudocode for estimating
Model (3) is provided in Appendix A.

In our approach, the best cutoff ĉ is efficiently obtained by optimizing (8) or the
approximated splitting statistic directly. Given ĉ, Model (3) becomes linear and β̂ can be
obtained via OLS. The LRT statistic (see, e.g., Section 12.4 of [21], 2003) is provided by

LRT = n log
yT(In − jjT/n)y
∥ y − S(ĉ)β̂ ∥2

,

where S(ĉ) denotes the S matrix evaluated at ĉ. This test compares Model 3 with the null
model yi = β0 + εi. Because a is fixed, the resulting LRT statistic follows a χ2(2) distribution
under H0. Alternatively, an F test can be used (see Section 5 of Seber and Wild [21]). This
result suggests a conjecture that there may be a connection between the χ2(2) distribution
and the asymptotic distribution derived from the Brownian bridge [10], which could be
further investigated in future research. We define the associated logworth

logworth = − log10 Pr
{

χ2(2) ≥ LRT
}

as the minus base-10 logarithm of the resulting p-value when referring to a χ2(2) distribution. The
logworth provides a coalescent measure of the strength for the best cutoff point of each predictor
regardless of the variable type or the methods used to evaluate its best cutpoint. The best split of
the data is then the one with the maximum logworth among all predictors.

We next discuss how to handle other types of predictors in combination with SSS.
For a 0–1 binary variable, the LRT for H0 : β1 = 0 in Model (1) with c = 0.5 can be used to
evaluate the single split. The corresponding p-value, together with the associated logworth,
can be computed by referring to the χ2(1) distribution. For an ordinal variable with K
distinct values, we process with SSS by treating as if it is continuous. However, when
3 ≤ K ≤ 10 is small, it is possible to resort to the maximally selected statistics approaches.
Several approaches are available for computing the associated p-value. A method that
combines the change-point approach of Hawkins [36] and Genz [37], as implemented in
the R package maxstat [38], is particularly appealing for the small K scenario in terms of
computational feasibility and efficiency.

For a nominal variable X with K distinct levels, we first ‘ordinalize’ its levels by sorting
its group means and then proceed by treating it as if it were continuous. This standard
strategy in GS greatly reduces the total number of splits to be evaluated, and is theoretically
justified (see CART, Section 9.4, [1]); however, both its steps introduce overoptimism or
bias in terms of the association between Y and X. The ordinalization step may make an
irrelevant X artificially correlated with Y, while the maximal selection of splitting criteria
over the ordinalized levels of X induces additional overoptimism. Clearly, SSS can be
used in the latter step to find the best cutpoint and help avoid bias owing to maximal
selection. However, the overoptimism stemming from the ordinalization step remains an
issue. In general, how to splitting nominal variables in regression trees without bias is not
satisfactorily addressed in the extant literature, and further research is warranted.

To demonstrate this, we simulate data from a null model where the response Y has nothing
to do with any of the nine either predictors {X1, X2, . . . , X9}. For the above discussed reasons,
we have restricted ourselves to ordinal or continuous predictors only. The numbers of distinct
values for {X1, X2, . . . , X9} were set as {2, 3, 4, 5, 10, 20, 50, 100, 500}, respectively. Two sample
sizes n = 50 and n = 500 were considered. Figure 8 plots the frequency of each variable being
selected for splitting data by SSS (combined with maximally selected statistics) and GS. For SSS,
we tried different choices of a in {10, 30, and 50}. It can be seen that greedy search suffers severely
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from selection bias, while SSS substantially alleviates the problem. Different choices of a for SSS
yield very similar results, with a slight preference to smaller a values.
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Figure 8. Bar plot of frequencies (from 1000 simulation runs) of splitting variables selected by SSS
vs. greedy search. The data were generated from a null model. Nine variables {X1, X2, . . . , X9},
with the possible number of distinct values equal to {2, 3, 4, 5, 10, 20, 50, 100, 500}, respectively, were
included in each dataset. Two sample sizes n = 50 and n = 500 were considered. For SSS, three
choices of a ∈ {10, 30, 50} were tried.

For further exploration, we consider another trial where data were generated from

Model B: y = 1 + β · I{x1 ≤ 0.5}+ ε with ε
I ID∼ N (0, 1), (9)

where X1 is binary 0–1 valued and we include a second variable X2 ∼ N (0, 1). In this
model, Y is only related to the binary predictor X1; nevertheless, the unrelated predic-
tor X2 has distinct values of K ≈ O(n). We then allowed the coefficient β to vary from
{0.01, 0.02, . . . , 1}. We recorded the percentage of correct selection of the true split X1 ≤ 0.5
made by GS and SSS. For SSS, we also tried different choices of a ∈ {10, 30, 50, 100}. Figure 9
plots the results against β for two sample sizes, n = 50 and n = 500. SSS clearly outper-
forms GS in picking up the correct split. For weak signals, it is more likely for GS to have
spurious splits introduced into the tree structure. As expected, both perform better as the
signal grows stronger or the sample size grows larger. For SSS, a smaller a tends to yield a
higher percentage of correct selection, yet with seemingly unimportant differences.
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Figure 9. Percentages of correct selection (out of 500 simulation runs) by GS vs. SSS: (a) n = 50 and
(b) n = 500. The data were generated from Model B in (9).

In the above simulation, we included only one binary predictor in order to better
isolate the specific challenges of variable selection bias. As one reviewer noted, the effects
of multiple predictors on the response can complicate the delineation of a variable’s impact.
While future research with more extensive simulations is necessary to address this issue,
we would like to emphasize that the approach used in recursive partitioning is somewhat
analogous to coordinate descent in optimization, where each variable is handled separately.
This allows us to focus on the individual impact of each predictor at each split.

2.5. Tree Performance

Although our primary focus is on one single split of data, it is interesting to see how
SSS compares with GS in whole-tree performance as well. To this end, we implemented
SSS using the user-written splitting functions [8] in rpart. While this may not be a good
idea with regard to computing speed, it allows us to utilize many useful features available
in rpart [28], such as surrogate splits for missing value treatment.

2.5.1. Simulation Studies

We first consider simulation studies. Data were generated from the following models:

Model C: y = 0.5 + 0.5 · x1 + 0.5 · I{x2 ≤ 0.5}+ ε (10)

Model D: y = 2 + 2 · x1 · I{x2 ≤ 0.5}+ ε (11)

with ε
I ID∼ N (0, 1). Models C and D are expected to have four and three terminal nodes and

correspond to weaker and stronger signals, respectively. Five predictors were generated,
with X1 being binary 0–1 and X2, . . . , X5 from unif(0, 1), where only X1 and X2 are related
to Y in either an additive or interaction form.

There are a few approaches available for determining the best tree size. To facilitate the
comparison, a unified ‘test sample’ approach (see, e.g., Section 11.4 of CART, [1]) was taken for
both SSS and GS. Specifically, we first constructed a large initial tree based a training sample L1 of



Mathematics 2024, 12, 3190 17 of 28

size n and pruned it to obtain a nest sequence of subtrees. Then, we generated an independent
validation sample L2 of the same size n and applied each subtree in the sequence to predict
the responses in L2. The subtree yielding the minimum prediction mean squared error (PMSE)
was identified as the ‘best’. Two sample sizes n = 100 and n = 500 were considered in our
experiments. For SSS, the scale parameter was fixed at a = 50.

To compare the predictive accuracy, another independent testing sample L3 of size n′ = 5000
was generated from the same model. In every simulation run, the best tree structure we identified
was applied to L3 for prediction. The resulting PMSE = ∑i∈L3

(yi − ŷi)
2/n′ was recorded. A total

of 200 simulation runs was carried out, and the averaged PMSE is reported in Table 1. Note that
L3 remained the same across all simulation runs. Table 1 also reports the ‘best’ tree size averaged
over the simulation runs. It can be seen that SSS consistently outperforms GS in detecting weak
signals. In the weak signal scenario (Model C), SSS leads to a final tree size that is closer to the true
one of 4 and yields a smaller averaged PMSE. SSS is also highly competitive for Model F with
stronger signals.

Table 1. Comparison of SSS vs. GS for whole tree performance in regression problems. For simulated
data, the table reports the final tree size and PMSE, both averaged over 200 simulation runs. For
benchmark datasets, the performance measures are based on one single tree procedure. The comput-
ing time refers to the duration (in seconds) taken to construct the initial tree using the entire dataset.
For simulated data, the reported time is the average from 20 simulation runs.

Data SSS GS

Set n p Size PMSE Time Size PMSE Time

Simulated Model C 100 5 2.295 1.155 0.0715 1.800 1.163 0.0350
500 5 4.080 1.036 0.0790 3.850 1.045 0.2365

Model D 100 5 3.385 1.121 0.0675 3.380 1.136 0.0285
500 5 3.135 1.060 0.0725 3.190 1.058 0.2315

Benchmark airfoil 1503 5 35 19.795 0.20 36 19.227 1.14
auto 398 7 9 23.940 0.12 9 24.606 0.22
concrete 1030 8 59 58.326 0.27 42 71.689 1.30
energy: heating 768 10 35 0.978 0.11 33 0.968 0.40
energy: cooling 768 10 33 5.709 0.17 34 5.790 0.34
wiki4HE 907 48 9 0.401 1.57 9 0.434 4.22

2.5.2. Real Data Examples

For real-world example illustrations, we first considered the 1987 baseball salary data,
which have been widely analyzed in the literature. The final CART tree, selected with
the 0-SE rule, has eight terminal nodes, as plotted in Figure 10a. Loh [9] commented that
the two splits based on team86 and team87 (highlighted with dashed lines) are hard to
interpret and may be attributable to the selection bias of greedy search. The 1-SE rule yields
a final tree of four terminal nodes, which is a complete full tree of depth 3. Figure 10b
plots the final SSS tree with a = 50, which has five terminal nodes. This tree structure
was determined following the tree methodology based on the goodness-of-split [7], which
combines split-complexity pruning with bootstrap-based bias correction. Of note is that
the two categorical variables concerning baseball team membership no longer show up in
the final SSS tree. The yrs variable is deemed important in the GUIDE tree, which can be
confirmed via variable importance ranking in random forests as well. It does not show up
in the CART tree, but does in the SSS tree. We also conducted a 10-fold cross-validation to
compare their predictive performance. The mean squared prediction error measures for the
SSS tree, 0-SE CART tree, and 1-SE CART tree were 0.1867, 0.1194, and 0.1915, respectively.
Thus, the final SSS tree is highly competitive in terms of predictive accuracy.
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is the sample size.
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Figure 10. Analysis of 1987 baseball salary data. In (a), S1 and S2 represent specific subsets of baseball
teams. Within each terminal node is the mean response (log-transformed salary); underneath is the
sample size.

For further illustration, we selected five more benchmark datasets from the Regression
category at UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/, accessed
on 20 September 2024). These were Airfoil Self-Noise (airfoil), Auto MPG (auto), Con-
crete Compressive Strength (concrete), Energy Efficiency (energy), and Teaching Uses of
Wikipedia (wiki4HE). As an “off-the-shelf” tool, tree analysis requires little data preparation.
Of brief note, there are two responses in energy, namely, heating load and cooling load,
which were analyzed separately. In wik4HE, we summed up the item scores for the last
category (“experience with Wikipedia usage”) and used it as the response variable. All
missing values were handled using the surrogate splits approach.

http://archive.ics.uci.edu/ml/
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The following paradigm was taken to analyze each dataset. We randomly partitioned
the dataset into three parts, the training sample L1, validation sample L2, and testing
sample L3, with approximately equal proportions 1:1:1. A large tree was grown and
pruned using L1 and the best subtree was selected according to the minimum PMSE based
on L2. The best tree size and the PMSE measure recomputed from L3 are reported in Table 1.
It can be seen that SSS generally compares favorably to GS in predictive performance in
most cases, although not always. This can be attributed to its superior ability to detect
weak signals and its immunity to issues such as end-cut preference and variable selection
bias. Despite the potential advantages of SSS over GS in various scenarios, its superiority
in prediction accuracy ultimately depends on the specific dataset being analyzed.

2.5.3. Computing Time Comparison

To compare computing times, we recorded the duration (in seconds) required to
construct the initial large tree using the entire dataset. To ensure a fair comparison, we
implemented both SSS and GS with the user-defined splitting function from the R package
rpart [8]. The maximum tree depth was set to 10 and the minimum node size was 20. All
programs were executed on a ThinkPad workstation equipped with a 2.40 GHz CPU and
36 GB of memory. The results are presented in Table 1. For simulated data, the reported
times are the average from 20 simulation runs.

Table 1 shows that SSS outperforms GS across all benchmark datasets. However, for sim-
ulated data, GS is faster than SSS when n = 100, although it quickly becomes slower as the
sample size increases to n = 500. It is noteworthy that while the increase in sample size has a
minimal impact on the computing time of SSS, it significantly influences the performance of GS.
This intriguing result suggests that adaptive use of SSS and GS in practical implementations is
advisable depending on factors such as sample size n and the number m of distinct values of a
covariate. When n is small or m is limited, GS tends to be faster than SSS. These scenarios are
commonly encountered as the tree continues to grow. Thus, a threshold might be established
for n and m to determine when to use GS instead of SSS, applying GS when either n or m falls
below the threshold.

3. SSS for Classification Trees

SSS can be extended to classification trees in a similar manner. Consider data {(yi, xi) :
i = 1, . . . , n} with binary responses yi ∈ {0, 1}. Commonly-used node impurities for
classification trees include the misclassification error rate, Gini index, and entropy. The Gini
index corresponds to treating binary Y as if continuous and applying OLS directly with the
linear regression model. With the entropy measure, minimizing the within-node impurity
is equivalent to maximizing the LRT for testing H0 : β1 = 0 in a logistic model:

logit(πi) = log
πi

1 − πi
= β0 + β1 δ(xi; c) (12)

where πi = Pr(yi = 1 | xi).
Among the three common measures, the misclassification error rate is not recom-

mended due to its serious defects, as discussed in Section 4.1 of CART [1]. The Gini index
and entropy behave similarly. They both work well with strong signals and generalize well
to multiclass responses, but suffer from the end-cut preference (ECP) problem. To remedy
this, Morgan and Messenger [39] introduced a ‘delta splitting rule’ by replacing the squared
Euclidean distance with the absolute deviation in the Gini index; however, this is slightly
harder to compute. Breiman et al. [1] considered a ‘twoing rule’ in CART, which was shown
to be equivalent to the delta splitting rule.

Just as earlier, replacing the threshold term δ(xi; c) with an SSS term yields a nonlinear
logistic model:

logit(πi) = β0 + β1 s(c; xi). (13)
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To avoid optimization with multiple parameters, it is preferable to first form an objective
function by approximating a legitimate splitting statistic and then optimizing it with respect
to the cutpoint c only. This strategy, along a similar line to Neyman [40], shows considerable
yield in terms of computational simplicity. For a node t, let n1 = ∑i∈t yi denote the number
of observations with y = 1, nL the number of observations in the left child node, and nL1
the number of observations with y = 1 in the left child node. The following proposition
expresses the reduction in impurity ∆ı in classification trees in terms of nL and nL1 only.

Proposition 2. Let πt denote the proportion of observations with y = 1 in node t. Let ∆ı be the
reduction in node impurity when node t is split into tL and tR. With entropy impurity measure
ı(t) = −πt log πt − (1 − πt) log(1 − πt), we have

∆ı =̂ nL1 log nL1 + (nL − nL1) log(nL − nL1) + (n1 − nL1) log(n1 − nL1)

+ {(n − n1)− (nL − nL1)} log{(n − n1)− (nL − nL1)}
− nL log nL − (n − nL) log(n − nL) (14)

up to some constant. With Gini index ı(t) = πt(1 − πt), we have

∆ı =̂ − nL1(nL − nL1)

nL
− (n1 − nL1){(n − nL)− (n1 − nL1)}

n − nL
. (15)

Proposition 2 provides the grounds for an efficient way of estimating the best cutoff
point c via SSS. To do so, we need to approximate only nL = ∑n

i=1 δ(xi; c) with ñL = ∑n
i=1 si

and nL1 = ∑n
i=1 yi δ(xi; c) with ñL1 = ∑n

i=1 yisi in either (14) or (15). The approximated
∆ı becomes a smooth objective function of c alone; we denote it as ∆̃ı(c). The best cutoff
point ĉ can be found as ĉ = arg maxc ∆̃ı(c). This is again a one-dimensional optimization
problem, and can be efficiently solved with the Brent [23] method.

SSS is flexible with the general idea of approximation and optimization. It is obvious
that any other two-sample test statistic, such as Pearson χ2, can be used in this approach
as well. An analogous strategy for dealing with variable selection bias, as in Section 2.4,
can be used in classification trees. Estimation of the nonlinear logistic model (13) can be
carried out by combining the iteratively re-weighted least squares (IRWLS) method with
the Gauss–Newton plus variable projection method discussed earlier. The algorithm is
described in Appendix A. The LRT for testing H0 : β1 = 0 with the nonlinear logistic
model (13) can be shown to have the following form:

LRT = 2 ∑
d∈{L,R}

∑
k=0,1

ñdk log
ñdk
Edk

, with Edk =
nk ñd

n
,

which is similar to its counterpart in the linear logistic model except that the counts ndk in-
volving the split are now replaced with their approximated surrogates ñdk. The statistical sig-
nificance of LRT refers to a χ2(2) distribution except for the scenario with binary predictors

where LRT
H0∼ χ2(1). Alternatively, Pearson χ2 of form ∑d∈{L,R} ∑k=0,1 (ñdk − Edk)

2/Edk
can be used instead. Comparing across predictors, each with its best cutoff point, the split
that yields the smallest p-value or the largest logworth is selected to partition the data. As
before, both ordinal variables (with small 3 ≤ K ≤ 10 distinct levels) and nominal variables
can be treated separately, resulting in a hybrid approach. In particular, Boulesteix [41,42]
provided explicit formulas for computing the exact p-values associated with the maximally
selected χ2 variables in the classification scenario for both nominal and ordinal variables,
as implemented in the R package exactmaxsel. However, the combinatorial approach
of [42] becomes computationally infeasible when both n and K are large, a scenario that
warrants further research.
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3.1. Simulation Studies

To illustrate, we simulated data from a logistic model

Model E : Pr{y = 1} = logistic(−0.5 + I{x ≤ 0.5}), (16)

with x ∼ Unif[0, 1]. Two sample sizes (n = 50 and n = 500) and 500 simulation runs were
considered. We also experimented with different choices of a {5, 10, 15, . . . , 100 } with SSS.
Figure 11a,b provides the empirical density curves of ĉ identified by the entropy-based
GS and SSS for n = 50 and n = 500, respectively. It can be seen that GS and SSS have
very similar performances for the large (n = 500) samples. When n = 50, SSS substantially
outperforms GS. The distribution of GS shows two bumps at either end. This can be
explained again by the end-cut performance problem. To see this, Figure 11c presents a
smooth scatterplot of the best cutoff point found by GS versus that found by SSS with
a = 30 in the smaller samples scenario with n = 50. Because there are many overlapping
points, we have smoothed the scatterplot in such a way that the frequencies of overlapped
points are represented in the electromagnetic spectrum. The zigzag pattern clearly indicates
that GS selects more cuts that are near to either end of the data range. This is because the
signal strength of Model E in (16) is not strong enough to overpower the inherent end-cut
tendency, while SSS largely avoids this issue. To this end, a smaller a seemingly provides
even better performance for SSS. Figure 11d plots the MSE with respect to the true cutoff
point c0 = 0.5 versus the a value. SSS has very comparable performance with GS in the
case of larger samples, but triumphs with smaller samples for all choices of a.
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Figure 11. Comparison of SSS and GS in finding the best cutoff point c = 0.5 for classification trees.
The results are based on 500 simulation runs. Panels (a,b) plot the estimated density curves for ĉ
with n = 50 and n = 500, respectively. Panel (c) is the scatterplot (smoothed in such a way that
the frequencies of overlapped points are represented in the electromagnetic spectrum) of the cutoff
point identified by GS versus that identified by SSS when n = 50. Panel (d) plots the MSE vs. a,
superimposed as orange solid lines with MSE from GS.
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To investigate the variable selection bias, we simulated data from a null logistic model
with similar settings to those in Section 2.4. Specifically, each dataset contained nine features
{X1, X2, . . . , X9}, with the possible number of distinct values being equal to {2, 3, 4, 5, 10, 20, 50,
100, 500}, respectively. Three choices of a, namely, {10, 30, 50}, were experimented with for SSS.
The bar plots in Figure 12 provide a comparison of the selection frequencies from SSS and GS,
where the hybrid method with SSS largely eliminates the selection bias of GS.
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Figure 12. Comparison of SSS (combined with Boulesteix [42]’s method) and GS in terms of selection
bias for classification trees. The bar plots are based on frequencies (out of 500 simulation runs) of
splitting. Variables were selected by either method. Data were generated from a null model. Two
sample sizes of n = 50 and n = 500 were considered.

3.2. Example: Credit Card Default Data

To illustrate the use of SSS in classification trees, we considered the credit card default
dataset [43] available at the UCI Machine Learning Repository. The primary objective of the
study was to predict the default status of credit card holders based on 23 predictor variables
related to their financial information, such as business financial statements, customer
transactions, and repayment records. The dataset contains 30,000 observations, presenting
a relatively large-scale problem. More details about the dataset can be found in [44].

As before, we randomly partitioned the data into three sets, the training sample L1, vali-
dation sample L2, and test sample L3, each containing one-third of the entire data. A large
initial tree was grown and pruned using entropy as the impurity measure with L1. The final
tree structure was determined through validation on L2 based on the misclassification error.
Finally, the resulting tree structure was evaluated using the test sample L3. Two performance
metrics were computed: the misclassification error rate, and the area (AUC) under the receiver
operating characteristic (ROC) curve.

Figure 13 displays the final tree structures for both GS and SSS. The GS tree contains
eight terminal nodes, while the SSS tree has sixteen terminal nodes. The splits in the top
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levels are essentially the same for both models. Based on the test sample, the misclassifica-
tion error rates are 0.1792 for the SSS tree and 0.1798 for the GS tree, indicating that they are
quite similar. These results align closely with those reported in [44]. Figure 13 also shows
the ROC curves. The SSS tree achieves an AUC value of 0.760, significantly surpassing
the AUC value of 0.692 for the GS tree. This indicates that the SSS tree is more effective at
distinguishing between credible and non-credible cardholders.
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Figure 13. Final classification trees for the credit card default data. The misclassification error rates
are 0.1792 for the SSS tree and 0.1798 for the GS tree.

4. Discussion

In this paper, we have explored an intuitive alternative to greedy search in decision
trees by approximating step functions with smooth sigmoid functions. We demonstrate
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that the proposed SSS method can be reformulated as a one-dimensional optimization in
various recursive partitioning procedures, resulting in improved computational efficiency.
SSS facilitates a parametric smoothing or regularization of the erratic goodness-of-split
measures computed in greedy search. The smoothing effect provides SSS with remarkable
immunity to the end-cut preference problem in GS. By smoothing out local peaks that
stem from large variation and end-cut preference, SSS outperforms GS substantially in
identifying weak signals. Moreover, its natural connection with nonlinear regression
renders a way of alleviating the variable selection bias problem. To this end, our ongoing
research efforts are being directed towards investigating how valid statistical inferences can
be made based on the best split on nominal predictors and fully addressing overoptimism
owing to ‘ordinalization’.

We have confined our attention to the use of SSS in settings where the splitting statistic
is of explicit form. This allows us to formulate identification of the best cutoff point as
a one-dimensional smooth optimization problem. To solve the optimization, we have
chosen the Brent [23] method for its easy accessibility and fast and stable performance.
Other algorithms can be used instead to provide faster convergence rates or carry out
global optimization. SSS can also be useful in scenarios without a closed form for the
splitting criterion or for updating (see Chen et al. [45] and Su et al. [46] for examples where
evaluation of each cutpoint involves iterations). The approximation idea of SSS can be
incorporated into the associated models, which can then be estimated with the aid of
separable least squares, as discussed in Appendix A.

Our discussion has mainly focused on searching for the best cutoff point of a predictor
and one single split of data. We have demonstrated that SSS can be a superior alternative to GS,
with several appealing advantages. Our results suggest that implementation of many recursive
partitioning methods and their extensions can benefit from the SSS approach. Tree-based
methods have been extended to accommodate various types of data, and their applications
have expanded to serve a wider range of analytical purposes. A key idea is to formulate the
search for the optimal cutoff point as a one-dimensional optimization problem whenever
possible. For example, incorporating SSS into ensemble learning algorithms may enhance
predictive accuracy. The use of SSS in random forests [6,47] may lead to better variable
importance ranking. Future research to see how the benefits of SSS carry over to various
recursive partitioning settings and impact their final results is warranted. Additionally, SSS
can be especially beneficial for large-scale or high-dimensional data. Tree models process
variables individually and perform automatic variable selection, making them well suited for
high-dimensional analysis even in cases where p ≫ n. However, increased dimensionality
can lead to greater computational burden. In these scenarios, the efficiency of SSS makes its
incorporation especially advantageous, helping to alleviate the challenges associated with
high dimensionality. Implementing SSS in a lower-level programming language is another
promising future research avenue regarding computational efficiency concerns.
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Appendix A. Gauss–Newton Algorithm with Variable Projection

To estimate the nonlinear model in (3), i.e., yi = β0 + β1 s(c; xi) + εi = ηi + εi,
the Gauss–Newton algorithm with variable projection (Kaufman, 1975) described in
Algorithm A1 was used. In the algorithm, note that the intermediary updating step
on β is actually

β := β + δ = (STS)−1STy.

We denote η = Sβ = [ηi]. The Jacobian matrix of η, denoted as F, is

F =
dη

dθ
= [S, v], with v =

dη

dc
= [− a β1si(1 − si)].

The matrix F is closely related to the linearization step in nonlinear models, and plays a
critical role in both the optimization algorithm and statistical inference.

Algorithm A1 Gauss–Newton Algorithm with Variable Projection

initialize θ = (β0, β1, c)T).
repeat

compute δ = (STS)−1STr by first obtaining S and residual vector r = y − Sβ;
update β := β + δ.
evaluate Jacobian F = dη/dθ at current (β, c);
compute direction d = (FTF)−1FT(y − Sβ);
update θ := θ− αd with step size α > 0;

until convergence.

We next consider estimation of the nonlinear logit model (13): log{πi/(1 − πi)} =
β0 + β1 s(c; xi). The associated log-likelihood function is

ℓ(θ) =
n

∑
i=1

{yiηi + log(1 − πi)}.

Note that θ enters the likelihood through ηi and πi = logistic(ηi). Fisher scoring, a popular
variant of Newton–Raphson in which the Hessian matrix is replaced by its expected value
for simpler form, is the standard method for GLM. To apply it, we can verify that the
gradient is

g =
dℓ
dθ

= FT(y − π)

and the minus expected Hessian matrix (which is n times the Fisher information matrix) is
FTWF, where matrix W is diagonal with diagonal elements wi = πi(1 − π) for i = 1, . . . , n.
It is worth noting that the observed Fisher information matrix is not equal to the expected
Fisher information matrix with this nonlinear logistic model, even though the canonical
logistic link is used.

Therefore, the updating step is

θ := θ+ (FTWF)−1FT(y−π)

:= (FTWF)−1FTW
{

Fθ+W−1(y−π)
}

.

We define a new continuous response vector y′ = Fθ+ W−1(y − π). The updated θ can be
computed as a weighted least squares (WLS) estimate through model

y′ = Fθ+ ε, with ε ∼ (0, W−1).

The associated WLS criterion is ∥ W1/2(y′ − Fθ) ∥2 . Consequently, it can be immediately
recognized in the spirit of the Gauss–Newton approach that the updated θ can also be solved
through a separable (weighted) nonlinear least squares problem ∥ W1/2(y′ −Sβ) ∥2 associated
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with the model y′ = Sβ+ ε. This implies that the updated θ can also be solved via Algorithm A1
with response y′ and additional weights W. We may call this method iteratively re-weighted
separable nonlinear least squares (IRW-SNLS), as presented in Algorithm A2.

Algorithm A2 Iteratively Re-Weighted Separable Nonlinear Least Squares (IRWSNLS)

initialize θ = (β, c)T).
repeat

compute quantities si = s(c; xi) and πi = logistic(β0 + β1si) for i = 1, . . . , n;
form π = [πi], W = {πi(1 − πi)}, v = [− a β1si(1 − si)], and F = {j, s, v};
form new response vector y′ = Fθ+ W−1(y − π);
update θ = arg minθ ∥ W1/2(y′ − Sβ) ∥2 via Algorithm A1;

until convergence.

Appendix B. Proofs

Appendix B.1. Proof of Proposition 1

When the GS splitting is conducted via the updating formula, the method entails
sorting the response Y values in the ascending (or descending) order of X. For general-
purpose sorting, a stable algorithm is at best O{ln(n) n}. For example, the sort function in R
is either O(n4/3) if Shellsort is used, or O{ln(n) n} if the Quicksort method is used. As noted
earlier, centering Y yields further simplification of the objective function. The operation of
centering is O(n), and consequently does not escalate the computational complexity level
asymptotically.

Without updating, GS computes the least squares criterion for every distinct splitting
point of X. Note that extracting the unique values of X is O(n) in general; therefore, the total
complexity amounts to O(Kn) in this case, where K is the number of distinct values of X.
Because X is continuous, K = O(n); hence, the complexity becomes O(n2).

For SSS, each iterative step involves evaluation of the objective function, which is
O(n). SSS requires standardization of X and transformation of ĉ back to the original scale,
both operations being O(n). We also suggest an option of using the range of the γth and
(1 − γ)th percentiles in Brent’s method. Note that computation of the two percentiles is
O(n) as well. Put together, its complexity is O(mn), where m is the number of iterative
steps in the optimization algorithm.

Appendix B.2. Proof of Proposition 2

Recall that the reduction ∆ı in node impurity due to a split is provided by

∆ı = ı(t)− {pL ı(tL) + pR ı(tR)},

where pL = nL/n and pR = nR/n = 1 − pL. The first term ı(t) does not depend on the spe-
cific split at node t; thus, we can omit it and focus on the remaining part pL ı(tL) + pR ı(tR),
which isolates the impact of the split on node impurity. Note that eliminating the negative
sign in the front transforms the optimization problem from a maximization problem to a
minimization problem.

With the entropy impurity measure, up to a constant, we have the following:

∆ı =̂ pL{pL1 log pL1 + (1 − pL1) log(1 − pL1)}+ pR{pR1 log pR1 + (1 − pR1) log(1 − pR1)}.

Note that
pL pL1 =

nL
n

nL1

nL
=

nL1

n
.
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A similar form holds for the other terms pL(1 − pL1), pR pR1, and pR(1 − pR1). The constant
n in the denominator for all of these terms can be removed, as it does not depend on the
specific split. Thus, ∆ı becomes

∆ı =̂ nL1 log
nL1

nL
+ (nL − nL1) log

nL − nL1

nL
+ nR1 log

nR1

nR
+ (nR − nR1) log

nR − nR1

nR
,

for which the denominator parts can be further reduced:

−nL1 log nL − (nL −nL1) log nL −nR1 log nR − (nR −nR1) log nR = −nL log nL −nR log nR.

This yields

∆ı =̂ nL1 log nL1 + (nL − nL1) log(nL − nL1) + nR1 log nR1 + (nR − nR1) log(nR − nR1)

−nL log nL − nR log nR.

Finally, plugging in nR = n − nL and nR1 = n1 − nL1 yields the form as provided in (14).
Using the Gini index and similarly omitting or canceling out irrelevant constants, we have

∆ı =̂ pL pL1(1 − pL1) + pR pR1(1 − pR1)

=̂
nL
n

nL1

nL

nL − nL1

nL
+

nR
n

nR1

nR

nR − nR1

nR

=̂
nL1(nL − nL1)

nL
+

nR1(nR − nR1)

nR

=̂
nL1(nL − nL1)

nL
+

(n1 − nL1){(n − nL)− (n1 − nL1)}
n − nL

,

which yields (15). This completes the proof.
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