Research on Surface Defect Positioning Method of Air Rudder Based on Camera Mapping Model
Abstract
:1. Introduction
2. Related Work
- Use the GrabCut algorithm to segment the air rudder surface, establish the air rudder image coordinate system, and obtain the defect positioning coordinates at the image level.
- Establish a camera mapping model to obtain the defect’s position on the air rudder’s physical surface and conduct repeated positioning experiments on three typical defects. The maximum absolute error of the positioning results is 0.53 mm, and the maximum uncertainty is 0.26 mm.
- Relying on the hardware system and software interface, real-time positioning of air rudder surface defects is achieved. The maximum real-time positioning error is 0.38 mm. The positioning accuracy and speed meet actual production needs.
3. Methodology for Locating Surface Defects on Air Rudders
3.1. Analysis of Causes and Positioning Requirements for Surface Defects
3.2. Method for Precise Positioning of Air Rudder Surface Defects Based on Image Analysis
Segmentation of Air Rudder Using the GrabCut Algorithm
3.3. Physical Positioning Method for Detecting Defects on Air Rudder Surfaces
Establishment of Camera Mapping Model Based on Camera Calibration
- (1)
- Linear Model
- (2)
- Nonlinear model
4. Results
4.1. Establishment of an Experimental Platform
4.2. Image Level Defect Location Experiment
4.2.1. Rudder Surface Area Image Segmentation
4.2.2. Air Rudder Surface Defect Image-Level Positioning Experiment
4.3. Experimental Investigation of the Precise Localization of Physical Surface Defects
4.4. Analysis of the Positioning Effect of Surface Defects
4.4.1. Method for Verifying the Effect of Defect Positioning Based on Uncertainty Analysis
4.4.2. Analysis of the Experimental Results Regarding the Localization of Defects on the Air Rudder Surface
4.5. Analysis of Real-Time Positioning Effect of Air Rudder Surface Defects
4.5.1. Operation Instructions for Rudder Surface Defect Location Function
4.5.2. Analysis of the Positioning Effect of Air Rudder Surface Defects
- (1)
- Evaluation indicators
- (2)
- Positioning results and analysis
- The positioning error of defects in the verification results primarily arises from the following factors:
- The camera and lens themselves cannot ensure absolute accuracy, leading to systematic errors.
- The reconstructed defect area in defect detection deviates from the actual defect, resulting in a discrepancy in the bounding box range.
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Liu, S.; Bao, J.; Lu, Y.; Li, J.; Lu, S.; Sun, X. Digital twin modeling method based on biomimicry for machining aerospace components. J. Manuf. Syst. 2020, 58, 180–195. [Google Scholar] [CrossRef]
- Tao, J.; Qin, C.; Xiao, D.; Shi, H.; Ling, X.; Li, B.; Liu, C. Timely chatter identification for robotic drilling using a local maximum synchrosqueezing-based method. J. Intell. Manuf. 2019, 31, 1243–1255. [Google Scholar] [CrossRef]
- Torabi, A.R.; Shams, S.; Narab, M.F.; Atashgah, M.A. Unsteady aero-elastic analysis of a composite wing containing an edge crack. Aerosp. Sci. Technol. 2021, 115, 106769. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Zhang, J.; Zhong, R. Big data analytics for intelligent manufacturing systems: A review. J. Manuf. Syst. 2022, 62, 738–752. [Google Scholar] [CrossRef]
- Sreeshan, K.; Dinesh, R.; Renji, K. Nondestructive inspection of aerospace composite laminate using thermal image processing. SN Appl. Sci. 2020, 2, 1830. [Google Scholar] [CrossRef]
- Tiwari, K.A.; Raisutis, R.; Tumsys, O.; Ostreika, A.; Jankauskas, K.; Jakutavicius, J. Defect estimation in non-destructive testing of composites by ultrasonic guided waves and image processing. Electronics 2019, 8, 315. [Google Scholar] [CrossRef]
- Feng, Y.A.; Song, W.W. Surface Defect Detection for Aerospace Aluminum Profiles with Attention Mechanism and Multi-Scale Features. Electronics 2024, 13, 2861. [Google Scholar] [CrossRef]
- Xu, L.; Lv, S.; Deng, Y.; Li, X. A Weakly Supervised Surface Defect Detection Based on Convolutional Neural Network. IEEE Access 2020, 8, 42285–42296. [Google Scholar] [CrossRef]
- Fei, C.; Wen, J.; Han, L.; Huang, B.; Yan, C. Optimizable image segmentation method with superpixels and feature migration for aerospace structures. Aerospace 2022, 9, 465. [Google Scholar] [CrossRef]
- Ding, M.; Wu, B.; Xu, J.; Kasule, A.N.; Zuo, H. Visual inspection of aircraft skin: Automated pixel-level defect detection by instance segmentation. Chin. J. Aeronaut. 2022, 35, 254–264. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, M.; Chen, Y.; Hu, N.; Gao, L.; Liu, L.; Ping, E.; Song, J.I. Surface defect detection method for air rudder based on positive samples. J. Intell. Manuf. 2024, 35, 95–113. [Google Scholar] [CrossRef]
- Boykov, Y.Y.; Jolly, M.P. Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In Proceedings of the Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; pp. 105–112. [Google Scholar]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Hui, Z.; Kong, Y.; Yao, W.; Gang, C. Aircraft parameter estimation using a stacked long short-term memory network and Levenberg-Marquardt method. Chin. J. Aeronaut. 2024, 37, 123–136. [Google Scholar] [CrossRef]
- Fu, C.; Sinou, J.J.; Zhu, W.; Lu, K.; Yang, Y. A state-of-the-art review on uncertainty analysis of rotor systems. Mech. Syst. Signal Process. 2023, 183, 109619. [Google Scholar] [CrossRef]
- Taşan, M.; Taşan, S.; Demir, Y. Estimation and uncertainty analysis of groundwater quality parameters in a coastal aquifer under seawater intrusion: A comparative study of deep learning and classic machine learning methods. Environ. Sci. Pollut. Res. 2023, 30, 2866–2890. [Google Scholar] [CrossRef] [PubMed]
- Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu, L.; Ghavamzadeh, M.; Fieguth, P.; Cao, X.; Khosravi, A.; Nahavandi, S.; et al. A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Inf. Fusion 2021, 76, 243–297. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, Y.; Pantelous, A.A.; Dai, W. A systematic review of uncertainty theory with the use of scientometrical method. Fuzzy Optim. Decis. Mak. 2023, 22, 463–518. [Google Scholar] [CrossRef]
Connect | Weights | Pixel Ownership |
---|---|---|
Connect | Initial Weight | New Weight |
---|---|---|
Connect | Initial Weight | Increase Weight | New Weight |
---|---|---|---|
Hardware Device | Indicators | Parameters |
---|---|---|
MV-HS2000GM camera (Shaanxi Weishi Intelligent Manufacturing Technology Co., Ltd., Xi’an, China) | Maximum resolution | 5472 × 3648 |
2.4 × 2.4 | ||
Interface type | C-Mount | |
Power supply requirements | DC-12 V | |
Collection method | Continuous | |
BT-11C0814MP10 lens (Shaanxi Weishi Intelligent Manufacturing Technology Co., Ltd., Xi’an, China) | Focal length/mm | 8 |
Depth of field/mm | 2.2 | |
Interface type | C-Mount | |
Image size | 2/3″ | |
MV-WL600X27W-V light source (Shaanxi Weishi Intelligent Manufacturing Technology Co., Ltd., Xi’an, China) | Light source colour | White |
Number of LEDs | 6 | |
Luminous area/mm | 600 × 27 | |
Dimensions (length × width × height)/mm | 612 × 33.5 × 27 |
Experimental Order | Defect Location/Pixel | |||||
---|---|---|---|---|---|---|
Defect 1 (Pit) | Defect 2 (Crack) | Defect 3 (Stained Mold) | ||||
1 | (1302, 1350) | (1338, 1296) | (2292, 159) | (2324, 122) | (1849, 183) | (1904, 134) |
2 | (1303, 1352) | (1339, 1296) | (2293, 159) | (2324, 123) | (1850, 185) | (1906, 136) |
3 | (1300, 1349) | (1337, 1294) | (2291, 157) | (2321, 120) | (1850, 184) | (1905, 135) |
4 | (1301, 1350) | (1338, 1295) | (2292, 158) | (2323, 122) | (1849, 183) | (1903, 135) |
5 | (1299, 1349) | (1335, 1294) | (2290, 157) | (2320, 121) | (1848, 183) | (1904, 135) |
6 | (1302, 1350) | (1338, 1295) | (2291, 158) | (2322, 122) | (1846, 180) | (1902, 132) |
7 | (1301, 1349) | (1338, 1294) | (2288, 155) | (2320, 120) | (1848, 182) | (1903, 134) |
8 | (1302, 1350) | (1338, 1294) | (2290, 156) | (2321, 120) | (1847, 181) | (1903, 132) |
Experimental Order | Defect Location/mm | |||||
---|---|---|---|---|---|---|
Defect 1 (Pit) | Defect 2 (Crack) | Defect 3 (Stained Mold) | ||||
1 | (224.10, 229.27) | (230.29, 220.08) | (394.49,27.00) | (400.01,20.72) | (318.25, 31.08) | (327.71, 22.75) |
2 | (224.27, 229.61) | (230.46, 220.08) | (394.67,27.00) | (400.01,20.89) | (318.42, 31.42) | (328.06, 23.10) |
3 | (223.75, 229.10) | (230.12, 219.74) | (394.32, 26.66) | (399.49,20.37) | (318.42, 31.25) | (327.89, 22.93) |
4 | (223.92, 229.27) | (230.29, 219.91) | (394.49, 26.83) | (399.83,20.72) | (318.25, 31.08) | (327.54, 22.92) |
5 | (223.58, 229.10) | (229.78, 219.74) | (394.15, 26.66) | (399.31,20.55) | (318.07, 31.07) | (327.71, 22.92) |
6 | (224.10, 229.27) | (230.29, 219.91) | (394.32, 26.83) | (399.66,20.72) | (317.73, 30.56) | (327.37, 22.41) |
7 | (223.92, 229.10) | (230.29, 219.74) | (393.81, 26.32) | (399.32,20.38) | (318.08, 30.91) | (327.54, 22.76) |
8 | (224.10, 229.27) | (230.29, 219.74) | (394.15, 26.49) | (399.49,20.38) | (317.90, 30.73) | (327.54, 22.42) |
Defect Serial Number | Defect Location/mm | |||
---|---|---|---|---|
Measurements | Theoretical Value | |||
1 | (222.42 ± 0.21, 229.25 ± 0.15) | (230.23 ± 0.19, 219.87 ± 0.14) | (222.95, 229.23) | (230.23, 219.94) |
2 | (394.31 ± 0.25, 26.73 ± 0.22) | (399.64 ± 0.26, 20.59 ± 0.19) | (394.53, 26.85) | (399.76, 20.65) |
3 | (318.14 ± 0.23, 31.02 ± 0.25) | (327.67 ± 0.21, 22.78 ± 0.24) | (318.13, 30.98) | (327.55, 22.72) |
Defect Serial Number | Defect Location/mm | |||
---|---|---|---|---|
Measurements | Theoretical Value | |||
1 | (222.42, 229.25) | (230.23, 219.87) | (222.95, 229.23) | (230.43, 220.14) |
2 | (394.31, 26.73) | (399.64, 20.59) | (394.53, 26.85) | (399.76, 20.95) |
3 | (318.14, 31.02) | (327.67, 22.78) | (318.13, 30.98) | (327.85, 22.92) |
4 | (7.40, 73.37) | (10.49, 66.06) | (7.33, 73.31) | (10.16, 66.01) |
5 | (8.43, 88.82) | (11.5, 80.49) | (8.37, 88.80) | (11.21, 80.14) |
6 | (408.10, 131.11) | (412.39, 127.13) | (408.13, 131.14) | (412.08, 126.81) |
7 | (397.59, 139.43) | (400.96, 27.03) | (397.67, 39.40) | (400.67, 26.89) |
8 | (273.35, 224.69) | (281.50, 244.73) | (273.13, 242.65) | (281.27, 244.21) |
9 | (16.68, 141.46) | (19.97, 132.12) | (16.74, 141.46) | (19.88, 131.87) |
10 | (418.59, 143.50) | (432.08, 131.09) | (418.60, 143.53) | (432.42, 131.34) |
Defect Serial Number | IoU/% | /mm |
---|---|---|
1 | 96.83 | (0.37, 0.13) |
2 | 94.73 | (0.32, 0.24) |
3 | 96.68 | (0.34, 0.25) |
4 | 95.44 | (0.31, 0.09) |
5 | 93.64 | (0.24, 0.38) |
6 | 97.54 | (0.06, 0.16) |
7 | 98.31 | (0.10, 0.08) |
8 | 97.10 | (0.32, 0.38) |
9 | 99.09 | (0.04, 0.05) |
10 | 97.85 | (0.32, 0.24) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Xu, K.; Zhang, M.; Chen, Y.; Hu, N.; Zhang, Y.; Jin, Y.; Lv, Y. Research on Surface Defect Positioning Method of Air Rudder Based on Camera Mapping Model. Mathematics 2024, 12, 3191. https://doi.org/10.3390/math12203191
Yang Z, Xu K, Zhang M, Chen Y, Hu N, Zhang Y, Jin Y, Lv Y. Research on Surface Defect Positioning Method of Air Rudder Based on Camera Mapping Model. Mathematics. 2024; 12(20):3191. https://doi.org/10.3390/math12203191
Chicago/Turabian StyleYang, Zeqing, Kangni Xu, Mingxuan Zhang, Yingshu Chen, Ning Hu, Yi Zhang, Yi Jin, and Yali Lv. 2024. "Research on Surface Defect Positioning Method of Air Rudder Based on Camera Mapping Model" Mathematics 12, no. 20: 3191. https://doi.org/10.3390/math12203191
APA StyleYang, Z., Xu, K., Zhang, M., Chen, Y., Hu, N., Zhang, Y., Jin, Y., & Lv, Y. (2024). Research on Surface Defect Positioning Method of Air Rudder Based on Camera Mapping Model. Mathematics, 12(20), 3191. https://doi.org/10.3390/math12203191